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SOME NEW INEQUALITIES BETWEEN IMPORTANT MEANS

AND APPLICATIONS TO KY FAN – TYPE INEQUALITIES

JAMAL ROOIN AND MEHDI HASSANI

(communicated by J. E. Pečarić)

Abstract. In this paper, mainly using the convexity of the function ax−bx

cx−dx and convexity or

concavity of the function ln ax−bx

cx−dx on the real line, where a > b � c > d > 0 are fixed real
numbers, we obtain some important relations between various important means of these numbers.
Also, we apply the obtained results to Ky Fan type inequalities and get some new refinements.

1. Introduction and motivation

Suppose that a > b � c > d > 0 . It is shown in [11] that the function

f (x) =
ax − bx

cx − dx
(−∞ < x < +∞),

is strictly increasing on the real line, moreover lim
x→+∞ f (x) = +∞ and lim

x→−∞ f (x) = 0 .

By a simple calculation, we have

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a − b
c − d

L(c, d)
L(a, b)

x = 0,

a − b
c − d

x = 1,

a − b
c − d

(
Lx−1(a, b)
Lx−1(c, d)

)x−1

x �= 0, 1,

f ′(x)
f (x)

=
1
x

ln
I(ax, bx)
I(cx, dx)

(x �= 0),

f ′(0) =
a − b
c − d

L(c, d)
L(a, b)

ln
G(a, b)
G(c, d)

.

(1)

Note that the notations L(a, b), Lp(a, b) and G(a, b) are well-known means between
a, b > 0 . We recall them in the following table:
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Name Notation Definition

arithmetic mean A(a, b) a+b
2

geometric mean G(a, b)
√

ab

harmonic mean H(a, b) 2
1
a + 1

b

logarithmic mean L(a, b)
{

a a = b
a−b

ln a−ln b a �= b

identric mean I(a, b)

⎧⎨
⎩

a a = b

1
e

(
aa

bb

) 1
a−b

a �= b

p− logarithmic mean Lp(a, b)

⎧⎨
⎩

a a = b(
ap+1−bp+1

(p+1)(a−b)

) 1
p

a �= b
p �= 0,−1

REMARK 1. (i) With above notations, we have the following limit cases:

lim
p→0

Lp(a, b) = I(a, b), lim
p→−1

Lp(a, b) = L(a, b). (2)

(ii) The following inequalities are well-known in the literature [5]:

H(a, b) � G(a, b) � L(a, b) � I(a, b) � A(a, b), (3)

and equality holds in each inequality if and only if a = b .

In [4] it is declared that f is strictly convex on the real line, which by considering
f (x) → 0 (x → −∞) , it is a stronger result than being strictly increasing, and besides,
the function

g(x) = ln
ax − bx

cx − dx
,

is strictly convex if ad − bc > 0 , and is strictly concave if ad − bc < 0 . Since, we
can write f and g in terms of means, we can use the convexity or concavity of them in
order to get some relations between different means mentioned in the above table.

In this paper, first we study these functions more closely and get some interesting
inequalities which are contained in the heart of these functions, and then as applications,
using the achieved results, we sharpen some Ky Fan type inequalities. We refer the
readers who are interested in further results on the p− logarithmic mean and in Ky Fan
- type inequalities to [1, 7, 8, 9].

2. Study of the functions ax−bx

cx−dx and ln ax−bx

cx−dx

In this section, we will prove our claims about the functions f and g . First g :

THEOREM 2.1. Suppose a > b � c > d > 0 , and let

g(x) = ln
ax − bx

cx − dx
.

Then g is strictly convex if ad − bc > 0 , and is strictly concave if ad − bc < 0 . If
ad − bc = 0 , then g turns out to be a linear mapping.
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Proof. Suppose that ad − bc > 0 . Since

g(x) = ln
( a

b )
x − 1

( c
d )x − 1

+ x ln
b
d
,

it is sufficient to show that if a > b > 1 , then ln ax−1
bx−1 is strictly convex, and since

ln ax−1
bx−1 = ln ex ln a−1

ex ln b−1
, it is sufficient to show that if a > b > 0 , then

u(x) = ln
eax − 1
ebx − 1

is strictly convex. A simple calculation yields that

u′′(x) =
b2ebx

(ebx − 1)2
− a2eax

(eax − 1)2
(x �= 0).

So, for x �= 0 , u′′(x) > 0 is equivalent to | sinh ax
2 |

a >
| sinh bx

2 |
b , or sinh ax

2
ax
2

>
sinh bx

2
bx
2

.

But it is clear that the function sinh x
x is strictly decreasing on (−∞, 0] and strictly

increasing on [0, +∞) . This yields our claim in this case.
In the case ad − bc < 0 , rewrite g as follows

g(x) = − ln
( c

d )x − 1

( a
b )

x − 1
+ x ln

b
d
.

According to the above argument, the function − ln
( c
d )x−1

( a
b )x−1 , and so g , is strictly concave.

If ad − bc = 0 , then g(x) = x ln b
d ; a straight line through the origin. This

completes the proof.

Now, consider the function f . If ad− bc = 0 , then f (x) = ( b
d )x which is clearly

strictly convex. If ad − bc > 0 , g is strictly convex, and since the function “exp” is
strictly increasing and convex, f = exp(ln(f )) = exp(g) is strictly convex. But, in the
case of ad − bc < 0 , we cannot use the above method. Therefore, we are going to
prove the convexity of f independently.

THEOREM 2.2. Suppose a > b � c > d > 0 and

f (x) =
ax − bx

cx − dx
.

Then f is strictly convex on the real line.

Proof. Since a
d > b

d � c
d > 1 and f (x) =

( a
d )x−( b

d )x

( c
d )x−1 , it is sufficient to consider

f (x) =
ax − bx

cx − 1
(a > b � c > 1),

and since f (x) = ex ln a−ex ln b

ex ln c−1 and ln a > ln b � ln c > 0 , it is sufficient to consider

f (x) =
eax − ebx

ecx − 1
(a > b � c > 0).
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But, f (x) = eax

ecx−1 − ebx

ecx−1 , and so

f ′′(x) =
eax{[(a − c)ecx − a]2 + c2ecx} − ebx{[(b − c)ecx − b]2 + c2ecx}

(ecx − 1)3
.

Therefore, it is sufficient to prove that for any fixed x > 0 (x < 0) , the function

h(t) = etx{[(t − c)ecx − t]2 + c2ecx},
is strictly increasing (decreasing) on t � c . But,

h′(t) = xetx{[(t − c)ecx − t]2 + c2ecx} + 2(ecx − 1)[(t − c)ecx − t]etx.

Since etx > 0 , the sign of h′(t) agrees with the sign of

k(t) =
h′(t)
etx

= x{[(t − c)ecx − t]2 + c2ecx} + 2(ecx − 1)[(t − c)ecx − t].

On the other hand,

k′(t) = 2x(ecx − 1)[(t − c)ecx − t] + 2(ecx − 1)2,

and
k′′(t) = 2x(ecx − 1)2.

So, if x > 0 , then k′(t) is strictly increasing, and so for t > c , k′(t) > k′(c) .
Also, if x < 0 , then k′(t) is strictly decreasing and so for t > c , k′(t) < k′(c) .
But, k′(c) = 2(ecx − 1)(ecx − 1 − cx) , and ecx − 1 − cx > 0 (x �= 0) . So, if
x > 0 , then k′(c) > 0 and if x < 0 , then k′(c) < 0 . Thus, when x > 0 , we have
k′(t) > k′(c) > 0 (t > c) and when x < 0 we have k′(t) < k′(c) < 0 (t > c) .
Therefore, if x > 0 , then k(t) is strictly increasing and if x < 0 , then k(t) is strictly
decreasing on [c,∞) . So, for t > c , if x > 0 , then k(t) > k(c) and if x < 0 , then
k(t) < k(c) .

Now, let
u(x) = k(c) = xc2 + xc2ecx − 2c(ecx − 1).

We have
u′(x) = xc3ecx − c2ecx + c2,

and
u′′(x) = xc4ecx.

Thus, if x > 0 , then u′′(x) > 0 , u′(x) > u′(0) = 0 , and therefore, u(x) >
u(0) = 0 . Also, if x < 0 , then u′′(x) < 0 and u′(x) < u′(0) = 0 , and therefore
u(x) < u(0) = 0 . So for t > c , if x > 0 , then k(t) > k(c) = u(x) > 0 and if x < 0 ,
then k(t) < k(c) = u(x) < 0 . So, for t > c , the sign of h′(t) is same as the sign of
x . Thus if x > 0 , then the function h(t) is strictly increasing on t � c and if x < 0 ,
then the function h(t) is strictly decreasing on t � c . So, if x > 0 , h(a) > h(b) and
therefore f ′′(x) > 0 , and besides if x < 0 , h(a) < h(b) and again f ′′(x) > 0 . This
completes the proof.
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3. Applications to special means

As we said before, the convexity of f is a strong equipment for establishing
interesting inequalities. For example, if a > b � c > d > 0 , we have the following
nontrivial inequality

ab−bb

cb−db − ad−bd

cd−dd

b − d
<

aa−ba

ca−da − ac−bc

cc−dc

a − c
,

since md,b < mc,a , where mα,β denotes the slope of the line segment joining points
(α, f (α)) and (β , f (β)) . Some other results are given in the next theorems.

THEOREM 3.1. Suppose a > b � c > d > 0 and p, q �= 0,−1 . Then we have the
following inequality

Lp
p(a, b)

Lp
p(c, d)

� Lq
q(a, b)

Lq
q(c, d)

(
1 +

(
p − q
q + 1

)
ln

I(aq+1, bq+1)
I(cq+1, dq+1)

)
, (4)

with equality holding if and only if p = q .
In particular

exp

(
1 − L(c, d)

L(a, b)

)
<

I(a, b)
I(c, d)

< exp

(
L(a, b)
L(c, d)

− 1

)
, (5)

and for a > b > 0 ,

exp

(
1 − b

L(a, b)

)
<

I(a, b)
b

< exp

(
L(a, b)

b
− 1

)
. (6)

Proof. Since f is strictly convex, we have

f (p + 1) � f (q + 1) + (p − q)f ′(q + 1),

with equality holding if and only if p = q . Considering this fact and (1) yields (4).
Now, if we put p = −1 and q = 0 in the last relation, considering (1), we have

L(c, d)
L(a, b)

> 1 − ln
I(a, b)
I(c, d)

,

which yields the left hand side of (5). Similarly, if we put p = −1 and q = −2 , then

L(c, d)
L(a, b)

>
L−2
−2(a, b)

L−2
−2(c, d)

(
1 − ln

I(a−1, b−1)
I(c−1, d−1)

)
.

But, L−2
−2(a, b) = 1

ab and 1
d > 1

c � 1
b > 1

a > 0 . So, changing 1
d , 1

c ,
1
b and 1

a by
a, b, c and d respectively and considering L(a−1, b−1) = 1

abL(a, b) , we get the right
hand side of (5).

Since

L(a, b)
b

=
a
b − 1

ln a
b

and ln
I(a, b)

b
= −1 +

a
b

a
b − 1

ln
a
b
, (7)
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putting x = a
b , the inequalities in (6) follow from

x ln x + ln x − 2x + 2 > 0 (x > 1),

(x − 1)2 − x ln2 x > 0 (x > 1),

respectively.

THEOREM 3.2. If a > b � c > d > 0 , then

L(a, b)
L(c, d)

> 1 + ln
G(a, b)
G(c, d)

>
2ab

ab + cd
, (8)

and

L(a, b)
L(c, d)

>
ln G(a,b)

G(c,d)

ln I(a,b)
I(c,d)

. (9)

In particular, if a > b > 0 , then

L(a, b)
b

> 1 +
1
2

ln
a
b

>
2a

a + b
>

ln a
b

2 ln I(a,b)
b

. (10)

Proof. Since f (x) = ax−bx

cx−dx is strictly convex, we have

f ′(0)x + f (0) < f (x) (x �= 0),

which by setting x = 1 and using (1), we get the first inequality in (8). The second
inequality in (8) is equivalent to

ln
G(a, b)
G(c, d)

>
ab − cd
ab + cd

, (11)

which by putting x = ab and y = cd , (11) follows from

1
2

ln
x
y

>

x
y − 1
x
y + 1

(x > y > 0). (12)

But, (12) is obtained by the facts that the function h(x) = 1
2 ln x − x−1

x+1 is strictly
increasing on [1,∞) and x

y is greater than 1.
The inequality (9) follows from f ′(0) < f ′(1) and considering (1).
Considering (7) and putting x = a

b , the inequalities in (10) follow from left to
right from

ln2 x + 2 ln x − 2x + 2 < 0 (x > 1),

x ln x + ln x − 2x + 2 > 0 (x > 1),

(x2 − 1) ln x − 4x(1 − x + x ln x) < 0 (x > 1),

respectively. This completes the proof.
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Now, consider the function g(x) = ln ax−bx

cx−dx . It is evident from (1), g′(0) =

ln G(a,b)
G(c,d) and for x �= 0 , g′(x) = 1

x ln I(ax,bx)
I(cx,dx) .

THEOREM 3.3. Suppose a > b � c > d > 0 and p, q �= 0,−1 . If ad − bc > 0 ,
then

(
Lp(a, b)
Lp(c, d)

)p

�
(

Lq(a, b)
Lq(c, d)

)q (
I(aq+1, bq+1)
I(cq+1, dq+1)

) p−q
q+1

. (13)

If ad − bc < 0 , the inequality reverses. The equality holds if and only if ad − bc = 0
or p = q .

Proof. If ad−bc > 0 , then byTheorem2.1, g is strictly convex and so considering
the tangent line at x = q + 1 , we have

g(p + 1) � g(q + 1) + (p − q)g′(q + 1),

with equality holding if and only if p = q . Now, considering (1), we get (13) with
equality if and only if p = q .

If ad − bc < 0 , then g is strictly concave and the argument is similar.
If ad − bc = 0 , then g(x) = x ln b

d is linear, and so equality always holds in (13).

In the cases p, q = 0,−1 , we conclude the following nice result:

THEOREM 3.4. Suppose a � b � c � d > 0 . If ad − bc > 0 , then

H(a, b)
H(c, d)

<
G(a, b)
G(c, d)

<
L(a, b)
L(c, d)

<
I(a, b)
I(c, d)

<
A(a, b)
A(c, d)

. (14)

If ad − bc < 0 , all inequalities reverse, and if ad − bc = 0 , all inequalities turn out
to be equalities.

Proof. Case I. ad− bc > 0 . It is divided into two branches; a > b � c > d and
a > b � c = d .

If a > b � c > d , writing the first inequality in (14) in terms of a
b and c

d , it
follows from the fact that the function x + 1

x is strictly increasing on [1,∞) .
The second one follows from the fact that the slope of the line segment between

(−1, g(−1)) and (0, g(0)) is strictly less than the slope of the line segment between
(0, g(0)) and (1, g(1)) .

The third one follows from the fact that the point (0, g(0)) is strictly above the
tangent line to the graph of g at x = 1 .

Writing the last inequality in (14) in terms of a
b and c

d , and considering (7), it
follows from the fact that the function x ln x

x−1 − ln(x+1) is strictly decreasing on [1,∞) .
If a > b � c = d , all denominators in (14) are all equal to c , and so (14) follows

from Remark 1, (ii) .

Case II. ad−bc < 0 . We have a > b � c > d or a = b � c > d , and the result
follows similarly by using the strict concavity of g .
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Case III. ad − bc = 0 . It turns to two branches; a > b � c > d and a = b =
c = d . To prove the first case, proceed as the case I and use the linearity of g . In the
second case, all the fractions in (14) are equal to 1.

Now, we give a nice example concerning some numerical sequences.

EXAMPLE. For every n ∈ N , we have

n + 2
n + 1

< 1 + ln

√
n + 2

n
<

ln(1 + 1
n )

ln(1 + 1
n+1 )

, (15)

and

ln
√

n+2
n

ln
(n+2)(1+ 1

n+1 )n+1

(n+1)(1+ 1
n )n

<
ln(1 + 1

n )
ln(1 + 1

n+1 )
. (16)

Also, we have

2n + 3
2n + 1

<
n + 2
n + 1

(1 + 1
n+1 )

n+1

(1 + 1
n )

n
<

ln(1 + 1
n )

ln(1 + 1
n+1 )

<

√
n + 2

n
<

(n + 2)(2n + 1)
n(2n + 3)

. (17)

These are obtained from (8), (9) and Theorem 3.4, by putting a = n+2 , b = c = n+1
and d = n with considering ad − bc < 0 .

4. Applications to Ky Fan type inequalities

Throughout this section, given n arbitrary nonnegative real numbers x1, · · · , xn

belonging to (0, 1
2 ] , we denote by An and Gn , the unweighted arithmetic and geometric

means of x1, · · · , xn respectively, i.e.

An =
1
n

n∑
i=1

xi, Gn =
n∏

i=1

x1/n
i ,

and by A′
n and G′

n , the unweighted arithmetic and geometricmeans of 1−x1, · · · , 1−xn

respectively, i.e.

A′
n =

1
n

n∑
i=1

(1 − xi), G′
n =

n∏
i=1

(1 − xi)1/n.

With the above notations, the Ky Fan’s inequality [3] asserts that:

A′
n

G′
n

� An

Gn
, (18)

with equality holding if and only if x1 = · · · = xn .
In 1988, H. Alzer [2] obtained an additive analogue of Ky Fan’s inequality as

follows:

A′
n − G′

n � An − Gn, (19)
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with equality holding if and only if x1 = · · · = xn .
Also, in 1995, J. E. Pečarić and H. Alzer [10], using the Dinghas Identity [6],

proved that:

An
n − Gn

n � A′
n
n − G′

n
n
, (20)

in which if n = 1, 2 , equality always holds in (20) , and if n � 3 , the equality is valid
if and only if x1 = · · · = xn .

Now,we use the obtained results in Theorems 3.2 and 3.4 and find some refinements
and inverses of Ky Fan’s inequality (18) and its additive analogues (19) and (20).
Perhaps, the most interesting results are:(

A′
n

G′
n

)A′
n+G′

n

�
(

An

Gn

)An+Gn

, (21)

(
A′

n

G′
n

)An−Gn

�
(

An

Gn

)A′
n−G′

n

, (22)

with equality holding if and only if x1 = · · · = xn .
These are easily obtained from the first inequality in (29) which need a great labor

to handle them directly.

THEOREM 4.1. Suppose x1, · · · , xn ∈ (0, 1
2 ] not all equal. Then

A′
n

G′
n

<

(
An

Gn

) A′n−G′
n

An−Gn
−

ln
A′n
G′

n
ln

An
Gn

ln

√
A′nG′

n
AnGn

<

(
An

Gn

) A′n−G′
n

An−Gn
−

ln
A′n
G′

n

ln
An
Gn

ln
A′n
An

<

(
An

Gn

)1−
ln

A′n
G′

n

ln
An
Gn

ln
A′n
An

<
An

Gn
,

(23)

and

A′
n

G′
n

< max

⎧⎪⎨
⎪⎩

(
A′

n

G′
n

)1+ln

√
A′nG′

n
AnGn

,

(
A′

n

G′
n

) An−Gn
A′n−G′

n

⎫⎪⎬
⎪⎭

<

(
A′

n

G′
n

)(
1+ln

√
A′nG′

n
AnGn

)
An−Gn
A′n−G′

n
<

An

Gn
,

(24)

which are some refinements of Ky Fan’s inequality (18) .
Also,

A′
n
n − G′

n
n

An
n − Gn

n <
ln

(
A′

n
G′

n

)A′
n
n
G′

n
n

ln
(

An
Gn

)AnnGnn , (25)

which gives an inverse to (20) .
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Proof. Since A′
n > G′

n > An > Gn > 0 , using the first inequality in (8), we get
the first inequality in (23) and the last one in (24). The last inequality in (23), and using
(19), the first one in (24) are trivial. The other inequalities in (23) and (24) follow from
(18) and (19).

For proving (25), note that f (−n) < f (0) , where f (x) = A′
n
x−G′

n
x

Anx−Gnx .

THEOREM 4.2. Suppose x1, · · · , xn ∈ (0, 1
2 ] not all equal. Then

max

{
A′

n
n − G′

n
n

An
n − Gn

n

(
AnGn

A′
nG′

n

) n
2

,
A′

n − G′
n

An − Gn

(
AnGn

A′
nG′

n

) 1
2

}

<
ln A′

n
G′

n

ln An
Gn

<
A′

n − G′
n

An − Gn

ln I(A′
n,G′

n)
I(An,Gn)

ln
√

A′
nG′

n
AnGn

< min

⎧⎨
⎩A′

n − G′
n

An − Gn
,
ln I(A′

n,G
′
n)

I(An,Gn)

ln
√

A′
nG′

n
AnGn

⎫⎬
⎭ < 1,

(26)

and

A′
n

G′
n

<

(
A′

n

G′
n

) ln

√
A′nG′

n
AnGn

ln
I(A′n,G′

n)
I(An,Gn) <

(
An

Gn

) A′n−G′
n

An−Gn
<

An

Gn
<

(
A′

n

G′
n

)(
A′nG′

n
AnGn

) n
2

, (27)

which give some refinements and inverses of Ky Fan’s inequality (18).
Moreover,

A′
n
n − G′

n
n

An
n − Gn

n <
ln( A′

n
G′

n
)(A′

nG′
n)

n
2

ln( An
Gn

)(AnGn)
n
2

<

(
A′

nG
′
n

AnGn

) n
2

, (28)

which gives some inverses of (20).

Proof. For proving the left hand side of (26), use G(a,b)
G(c,d) > L(a,b)

L(c,d) in Theorem 3.4

with a = A′
n, b = G′

n, c = An, d = Gn and also with a = A′
n
n
, b = G′

n
n
, c = An

n, d =
Gn

n . For the second inequality in (26), use (9) with a = A′
n, b = G′

n, c = An, d = Gn .

The third and forth inequalities in (26) follow from I(A′
n,G

′
n)

I(An,Gn) <
√

A′
nG′

n
An,Gn

in Theorem 3.4,

and (19).
Putting a = A′

n, b = G′
n, c = An and d = Gn , the first inequality in (27) follows

from Theorem 3.4, the second one follows from (9), the third one follows from (19),
and the last one follows from (26) by considering (20).

Inequalities in (28) follow from (26) and (18).

THEOREM 4.3. Suppose x1, · · · , xn ∈ (0, 1
2 ] not all equal. Then

A′
n

G′
n

<

(
An

Gn

) An+Gn
A′n+G′

n

A′n−G′
n

An−Gn
< min

⎧⎨
⎩

(
An

Gn

) An+Gn
A′n+G′

n
,

(
An

Gn

) A′n−G′
n

An−Gn

⎫⎬
⎭ <

An

Gn
, (29)
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A′
n

G′
n

<

(
A′

n

G′
n

) I(A′n,G′
n)

I(An,Gn)
An−Gn
A′n−G′

n
<

An

Gn
, (30)

which are some refinements of Ky Fan’s inequality. Moreover, we have

AnGn

A′
nG′

n
< min

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎣ ln( A′

n
G′

n
)

1

A′n−G′
n

ln( An
Gn

)
1

An−Gn

⎤
⎥⎦

2

,

⎡
⎢⎣ ln( A′

n
n

G′
n
n )

1

A′nn−G′
n
n

ln( Ann

Gnn )
1

Ann−Gnn

⎤
⎥⎦

2
n
⎫⎪⎪⎬
⎪⎪⎭ < 1. (31)

Proof. Put a = A′
n, b = G′

n, c = An, d = Gn . The inequalities in (29) follow
from L(a,b)

L(c,d) > A(a,b)
A(c,d) in Theorem 3.4, (19) and An + Gn < A′

n + G′
n .

The first inequality in (30) follows from Theorem 3.4 and (19), and the second
one follows from L(a,b)

L(c,d) > I(a,b)
I(c,d) in Theorem 3.4.

From (29) we obtain ( A′
n

G′
n
)

1
A′n−G′

n < ( An
Gn

)
1

An−Gn , considering this relation, we get

(31) by solving the first inequality in (26) with respect to AnGn
A′

nG′
n
.
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