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Abstract. In this article λ -method of Mitrinović-Vasić [1] is applied to improve the upper bound
for the arc sin function of L. Zhu [4].

1. Inequalities of Shafer-Fink’s type

D. S. Mitrinović in [1] considered the lower bound of the arc sin function, which
belongs to R. E. Shafer. Namely, the following statement is true.

THEOREM 1.1. For 0 � x � 1 the following inequalities are true :
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A. M. Fink proved the following statement in [2] .

THEOREM 1.2. For 0 � x � 1 the following inequalities are true :
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B. J. Malešević proved the following statement in [3].

THEOREM 1.3. For 0 � x � 1 the following inequalities are true :
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The main result of the article [3] can be formulated with the next statement.

PROPOSITION 1.4. In the family of the functions:

f b(x) =
(b + 1)x

b +
√

1 − x2
(0 � x � 1), (4)
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according to the parameter b > 0 , the function f 2(x) is the greatest lower bound of the
arc sin x function and the function f 2/(π−2)(x) is the least upper bound of the arc sin x
function.

L. Zhu proved the following statement in [4].

THEOREM 1.5. For x ∈ [0, 1] the following inequalities are true :
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In this article we further improve the upper bound of the arc sin function. Namely,
in the next section we will give proof of the following theorem:

THEOREM 1.6. For x ∈ [0, 1] the following inequalities are true :
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REMARK 1.7. Using numerical method from [5] we have the following conclu-
sions:

1◦. For values x ∈ (0, 0.387 266 274 . . .) the following inequality is true:
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and for values x ∈ (0.387 266 274 . . . , 1) the following inequality is true:
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Numerically determined constant c = 0.387 266 274 . . . is the unique number
where the previous bounds have the same values over (0, 1) .

2◦. For values x ∈ (0, 1) the following inequality is true:
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2. The main results

In this article, using λ -method ofMitrinović-Vasićwe give an analogous statement
to Proposition 1.4. Let us notice that from inequality given by L. Zhu [4]:
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for x ∈ [0, 1] , we can conclude that the function ϕ(x) = arc sin x has a lower bound
and upper bound in the family of the functions:
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(0 � x � 1), (11)

for some values of parameters α, β > 0 . Next for x = 0 it is true that Φα,β (0) = 0 ,
for α, β > 0 . On the other hand, for values x ∈ (0, 1] it is true:

Φα1,β1(x) > Φα2,β2(x) ⇐⇒ α1β2 − α2β1 > (α2 − α1)(
√
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for α1,2, β1,2 > 0 . Let us apply λ -method of Mitrinović-Vasić on the considered
two-parameters family Φα,β(x) in order to determine the bounds of the function ϕ(x)
under the following conditions:

Φα,β(0) = ϕ(0) and
d
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d
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It follows that α = β + 2 . In that way we get one-parameter subfamily:
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according to the parameter β > 0 . For that family the condition (13) is true:
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Let us notice that for the family of the functions f β(x) , on the basis of (12), for
values x ∈ (0, 1] the following equivalence is true:

f β1(x) > f β2(x) ⇐⇒ β1 < β2, (18)
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for β1,2 > 0 . Let us emphasize that there is a better upper bound f b1(x) than upper
bound Φπ(

√
2+1/2),4(x) of the function ϕ(x) over (0, 1] . It is true that the parameter

β = b1 fulfils:

f b1(1) = ϕ(1) =
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, (19)

hence:
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= 3.876 452 527 . . . < 4. (20)

Let us prove that the function f b1(x) is the upper bound of the function ϕ(x) over
[0, 1] . Let us define the function:

h(x) = f b1(x) − ϕ(x) (21)
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All solutions of the equation d
duω(u) = 0 are determined by terms:
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(24)

or by numerical values: u1 = 0.0869 . . . , u2,3 = 0.4142 . . . , u4 = 0.8400 . . . . The
function ω(u) has local maximum at the point u1 and ω(0) = ω(

√
2−1) = 0 . Hence
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2 − 1] . Therefore the function:
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is the upper bound of ϕ(x) over [0, 1] . Let us notice that, for values x ∈ (0, 1] , on the
basis (12), the following inequalities are true:

ϕ(x) < f b1(x) = Φb1+2,b1(x) < Φπ(
√

2+1/2),4(x). (26)
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Let us prove that the function f b1(x) is the least upper bound of the function ϕ(x)
from the family (14). The following implication is true:

b1 < b =⇒ f b(1) < f b1(1) = ϕ(1) =
π
2

. (27)

Hence for b > b1 the function f b(x) is not the upper bound for the function ϕ(x)
over [0, 1] . According to the previous consideration we can conclude that the function
f b1(x) is the least upper bound of the function ϕ(x) over [0, 1] .

The lower bound of the function f 4(x) of the function ϕ(x) over [0, 1] , which
belongs to R. E. Shafer, according to formulas (15) - (17), has at x = 0 the root of
the fifth order. Let us prove that the function f 4(x) is the greatest lower bound of the
function ϕ(x) from the family (14). For fixed b ∈ (b1, 4) let us define the function:

g(x) =

⎧⎨
⎩

α : x = 0,

f b(x) − ϕ(x)
x3

: x ∈ (0, 1];
(28)

with the constant:

α =
d3

dx3 f b(0) − d3

dx3ϕ(0)
6

=
4 − b

24
(
2 + b

) > 0. (29)

The function g(x) is continuous over [0, 1] and the following is true:

g(0) > 0 and g(1) < 0. (30)

Therefore we can conclude that there is cb ∈ (0, 1) such that g(cb) = 0 . Let us
notice that g(0) > 0 and g(cb) = 0 . Then, there is some point ξb ∈ (0, cb) such that
g(ξb) > 0

(
g ∈ C[0, cb]

)
. This is sufficient for conclusion that, for each b ∈ (b1, 4) ,

the function f b(x) is not the lower bound of the function ϕ(x) over [0, 1] . According
to the previous consideration we can conclude that the function f 4(x) is the greatest
lower bound of the function ϕ(x) over [0, 1] .

On the basis of the previous consideration the following statement is true.

PROPOSITION 2.1. In the family of the functions:

f b(x) = Φb+2,b(x) =
(b + 2)(

√
1 + x −√

1 − x)
b +

√
1 + x +

√
1 − x

(0 � x � 1), (31)

according to the parameter b > 0 , the function f 4(x) is the greatest lower bound of
the arc sin x function and the function f√2(4−π)/(π−2

√
2)(x) is the least upper bound of

the arc sin x function.

REMARK 2.2. Let us emphasize that Theorem 1.6 has been recently considered
in [6] and [7]. In the article [7] a simple proof of Theorem 1.6 based on “L’Hospital rule
for monotonicity” is obtained.
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