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AN APPLICATION OF A-METHOD ON
INEQUALITIES OF SHAFER-FINK’S TYPE

BRANKO J. MALESEVIC

(communicated by J. Sdndor)

Abstract. In this article A -method of Mitrinovié¢-Vasi¢ [1] is applied to improve the upper bound
for the arcsin function of L. Zhu [4].

1. Inequalities of Shafer-Fink’s type

D. S. Mitrinovié in [1] considered the lower bound of the arc sin function, which
belongs to R. E. Shafer. Namely, the following statement is true.
THEOREM 1.1. For 0 < x < 1 the following inequalities are true :
3x < 6(v1I+x—+1—x)
2+4VI—2 4+ VI+x+VT—x

A. M. Fink proved the following statement in [2] .

< arcsinx. (1)

THEOREM 1.2. For 0 < x < 1 the following inequalities are true :

3x X

————— arcsinx  ————. (2)
24+ V1 —x2 24 V1—x2
B. J. Malesevic¢ proved the following statement in [3].
THEOREM 1.3. For 0 < x < 1 the following inequalities are true :
3x 5 Tx
——  <arcsinx < - < . (3)
2+VI—x2 ST VI 2412
The main result of the article [3] can be formulated with the next statement.
PROPOSITION 1.4. In the family of the functions:
(b+1)x
frlx) = ——— (0<x<1) (4)
b Jr 1 — x2 ~X X ’
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according to the parameter b > 0, the function f(x) is the greatest lower bound of the
arcsinx function and the function f5 ;) (x) is the least upper bound of the arc sinx
function.

L. Zhu proved the following statement in [4].
THEOREM 1.5. For x € [0, 1] the following inequalities are true:
s _ 6T VT
2+VI-2  A+VI+x+VI-x
A DTV
A4 VI+x+VIi-x 2412

In this article we further improve the upper bound of the arc sin function. Namely,
in the next section we will give proof of the following theorem:

< arcsinx

(5)

THEOREM 1.6. For x € [0, 1] the following inequalities are true :
3x < 6(v1+x—+1—x)
24+ V1 —x% 4+\/1+x—|—\/1—x
= 2\/_ (\/l—i—x V1 —x)
— 2\/— —|—\/1+x+\/1—x
(V2 + H(VT+x— V1T —x) < Tx
b+ VTHx+VT—x 2+/1—22

REMARK 1.7. Using numerical method from [5] we have the following conclu-
sions:
1°. For values x € (0,0.387266274 ...) the following inequality is true:

£ I HIER - VITY)

< arcsinx

N

arc sinx < < ) 7
= +V1—x2 44+ V1+x+V1—x 7)
and for values x € (0.387266274...,1) the following inequality is true:
, (V24 H(VT+x— VT —x) 25X
arcsinx < (8)

< u .
44+VT+x+/1T—x L+ V1I-2

Numerically determined constant ¢ = 0.387266274 ... is the unique number
where the previous bounds have the same values over (0,1).
2°. For values x € (0, 1) the following inequality is true:

72\[ (\/1+X \/lfx) %x
Vali-) 24 VTHx+vVT—x %2+v1*x2'

arcsinx <
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2. The main results

In this article, using A -method of Mitrinovi¢-Vasi¢ we give an analogous statement
to Proposition 1.4. Let us notice that from inequality given by L. Zhu [4]:

6Wltx=VI—Y) < arcsinx < (\/E—'_%)( L+x—vI-» (10)
b4+ VTH+x+VT—-x 4+VT+x+VI—-x

for x € [0, 1], we can conclude that the function @(x) = arcsinx has a lower bound
and upper bound in the family of the functions:

o(vV1+x—+1—x)
B+V1+x++1—x

for some values of parameters o, B > 0. Next for x = 0 it is true that ®,g(0) =0,
for a, 8 > 0. On the other hand, for values x € (0, 1] it is true:

Dy, g, (X) > Dy, g, (x) <= a1fr — P > (0 — o) (V1+x+V1-x), (12)

for ai2,Bi2 > 0. Let us apply A-method of Mitrinovi¢-Vasi¢ on the considered
two-parameters family @, g(x) in order to determine the bounds of the function ¢(x)
under the following conditions:

Do p(x) = O<x<1), (11)

d

d
D, p(0) =@(0) and —D,p(0) = o

7 —¢(0). (13)

It follows that & = 8 + 2. In that way we get one-parameter subfamily:

B+2)(V1I+x—+v1—x)

fp(x) = Ppiap(x) =

B+vV1+x++1—x
according to the parameter 3 > 0. For that family the condition (13) is true:
f(0) = 9(0) and £ 75(0) = £ 0/0) (15)
pl =@ ax P T dx(p
Additionally, we have:
d? d? & d* 4-p
0 d 0)+ 16
dxzfﬁ( ) dx zq)( ) an dx 3fﬁ( )= dx3q)( ) 4(2+B) ( )
and
d* d* d &’ 3(128+18B—13[3%)
—=/8(0) = —50(0) and  —=f5(0) = —=(0)+ - (17)
P dx* ax'P dx> 16(2—|—ﬁ)2

Let us notice that for the family of the functions fg(x), on the basis of (12), for
values x € (0, 1] the following equivalence is true:

[ (x) > fp,(x) <= B1 < Bo, (18)
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for B> > 0. Let us emphasize that there is a better upper bound f, (x) than upper
bound @, 5, /2>~4(x) of the function ¢(x) over (0,1]. It is true that the parameter

B = by fulfils:

fo(1) = 9(1) = 7. (19)
hence: 3
V24 —-m)
b= = 3876452527 . <4, (20)

Let us prove that the function f3, (x) is the upper bound of the function @(x) over
[0, 1]. Let us define the function:

h(x) = fu, (x) — @(x) (1)

for 0 < x < 1. For the function h(x) we introduce two substitutions x = cost
(r€10,%]) and t =4arctgu (u € [0,tg Z]) respectively, and we get a new function:

V2(by +2)(u? +2u — 1)
(V2—b )2 —2v2u—b —v2 2

for0<u<tg§:\/§—1.Then:

o(u) = h(cos(4arctgu)) = T\ darc tgu (22)

diw(u) = [(4b§+2ﬁb§—8b1—4\f2b1—8)u4+(—4ﬁb%+8\f2b1—32)u3
u

+ (857 — 16y — 16)u® + (— 4V2b] + 8V2b; + 32)u

23)
+ (463 — 22D} — 8b1 + 4v20, - 8)| /
{(u2 + 1) (bi® — V2u? +2V2u + by + \5)2} :
All solutions of the equation %a}(u) = 0 are determined by terms:
b 2V2 F \/—b} + 4b3 + 4b? — 16D,
b b> —2b; +2v2 — 4 ’ (24)
U3 = V2 —1;

or by numerical values: u; = 0.0869..., u3 = 0.4142..., usy = 0.8400.... The
function @ (u) has local maximum at the point u; and ®(0) = w(v/2—1) = 0. Hence
w(u) > 0 for u € [0,v/2 — 1]. Therefore the function:

SR T
LU Tx+VT—x

is the upper bound of @(x) over [0, 1]. Let us notice that, for values x € (0, 1], on the
basis (12), the following inequalities are true:

D) < [ (x) = Doy 2, (%) < P39 4 (%) (26)

fo(x) = (25)
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Let us prove that the function f}, (x) is the least upper bound of the function @(x)
from the family (14). The following implication is true:

by < b= fp(1) <fn (1) =@(1) =

STE

(27)

Hence for b > b; the function fj(x) is not the upper bound for the function @(x)
over [0, 1]. According to the previous consideration we can conclude that the function
S, (x) is the least upper bound of the function @(x) over [0, 1].

The lower bound of the function f4(x) of the function ¢(x) over [0, 1], which
belongs to R. E. Shafer, according to formulas (15) - (17), has at x = 0 the root of
the fifth order. Let us prove that the function f4(x) is the greatest lower bound of the
function ¢(x) from the family (14). For fixed b € (b, 4) let us define the function:

a x =0,
8lx) = - (28)
fr(x) — 0(x) - o) :x € (0,1];
I

with the constant:

Lfo(0) — Lg0)  4-b
6 ©24(2+0)

o= > 0. (29)

The function g(x) is continuous over [0, 1] and the following is true:
g(0) >0 and g(1)<O. (30)

Therefore we can conclude that there is ¢, € (0, 1) such that g(c;) = 0. Let us
notice that g(0) > 0 and g(cp) = 0. Then, there is some point &, € (0, cp) such that
g(&) >0 (g € C[0,cp)). This is sufficient for conclusion that, for each b € (b;,4),
the function f5(x) is not the lower bound of the function ¢(x) over [0, 1]. According
to the previous consideration we can conclude that the function f4(x) is the greatest
lower bound of the function ¢(x) over [0, 1].

On the basis of the previous consideration the following statement is true.

PROPOSITION 2.1. In the family of the functions:

b+2)(V1+x—+v1-x)
b+v1i+x++v1—x

according to the parameter b > 0, the function f4(x) is the greatest lower bound of
the arc sinx function and the function ~f\/§(4fn)/(7r72\/§) (x) is the least upper bound of
the arcsinx function.

Ip(x) = Ppipp(x) =

(0<x<1), (31)

REMARK 2.2. Let us emphasize that Theorem 1.6 has been recently considered
in [6] and [7]. In the article [7] a simple proof of Theorem 1.6 based on “L’Hospital rule
for monotonicity” is obtained.
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