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ON THE CHEBYSHEV FUNCTIONAL

MAREK NIEZGODA

(communicated by I. Perić)

Abstract. In this paper we prove an inequality for certain orthoprojectors. For orthoprojectors
of rank one we obtain a Chebyshev type inequality. Grüss-Lupaş type inequalities are also
discussed.

1. Introduction and summary

Let V be a real linear space with an inner product 〈 ·, ·〉 . The Chebyshev functional
is defined by

Tv(x, y) = ‖v‖2〈 x, y〉 − 〈 x, v〉 〈 y, v〉 for x, y ∈ V , (1)

where v ∈ V is a given nonzero vector and ‖v‖2 = 〈 v, v〉 .
The purpose of this note is to prove Chebyshev and Grüss-Lupaş type inequalities

in the framework of Eaton systems connected with group-induced cone orderings [1, 3].
That is, we shall give some bounds on the values of Chebyshev functional (1).

In Section 2 we present some notions related to Eaton systems. Also, a general
inequality is given for certain orthoprojectors (see Theorem 2.1). Equality case for this
inequality is studied in Theorem 2.2.

Section 3 is devoted to Chebyshev type inequalities. They are particular cases
of the above-mentioned result applied for special orthoprojectors of rank one. For the
E-system induced by the permutation group acting on R

n , one obtains the classical
Chebyshev sum inequality.

Grüss-Lupaş type inequalities are investigated in Section 4. Here we develop
recent results of Izumino, Pečarić and Tepeš [4]. We base on an identity generated by
certain class of linear operators. In particular, this method leads to an estimation of the
Chebyshev functional using the second order differences.

2. Projection inequality for Eaton systems

Throughout the paper, V is a finite-dimensional real linear space with a (real)
inner product 〈 ·, ·〉 unless otherwise indicated. Assume G is a closed subgroup of the
orthogonal group O(V) acting on V . For given x, y ∈ V , we write y �G x if y belongs
to the convex hull of the orbit Gx . The ordering �G on V is called G-majorization.
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If there exists a closed convex cone D ⊂ V such that
(A1) for each a ∈ V there exist g ∈ G and b ∈ D satisfying a = gb ,
(A2) 〈 a, gb〉 � 〈 a, b〉 for all a, b ∈ D and g ∈ G ,
then we say that (V, G, D) is an Eaton system (in short, E-system). Condition (A1)

asserts that vectors of the space can be decomposed with the aid of the operators of the
group and the vectors of the cone (see (2)). Condition (A2) generalizes von Neumann
trace inequality for matrices (see [1, p. 17]).

If axioms (A1) − (A2) are satisfied, the ordering �G is said to be group-induced
cone ordering [1, 3]. A related notion is a normal decompostion (ND) system introduced
by Lewis [5, 6, 7].

It can be shown (see e.g. [1, p. 15)], [11, p. 14]) that under (A1) and (A2) there
exists an idempotent operator (·)↓ : V → V with the range D such that

{a↓} = D ∩ Ga for each a ∈ V .

Then each a ∈ V has its decomposition

a = ga↓ for some g ∈ G . (2)

Examples of (2) cover such important results as the Spectral Theorem forHermitian
matrices and the Singular Value Theorem for complex matrices. In these cases the
operator (·)↓ is the eigenvalue map and the singular values map, respectively (see [1,
p. 17-18]).

The triple (V, G, (·)↓) is called a normal decomposition system and the operator
(·)↓ is called a normal map [5, 6, 7].

See [1, 2, 3, 5, 6, 7, 9, 11, 12] for examples and applications of group-induced cone
orderings, Eaton systems and ND systems (see also Examples 2.4 and 3.3-3.4).

We denote
MG(V) = {a ∈ V : ga = a for all g ∈ G}.

It is known that MG(V) ⊂ D [12, Theorem 3.1].

THEOREM 2.1. Let (V, G, D) be an Eaton system and let I and P stand, respec-
tively, for the identity operator on V and for the orthoprojector from V onto MG(V) .
Then the following inequality holds:

〈 x, (I − P)y〉 � 0 for x, y ∈ D. (3)

Proof. Since G is a closed subgroup of the compact group O(V) , G is compact.
Let μ denotes the Haar probability measure on G [10]. Denote

P0a =
∫

G
ga dμ(g) for a ∈ V .

Using condition (A2) we obtain

〈 x, y−P0y〉 = 〈 x, y−
∫

G
gy dμ(g)〉 =

∫
G
〈 x, y − gy〉 dμ(g) � 0 for x, y ∈ D . (4)

It is now sufficient to prove P = P0 . To this end we shall show that the operator
P0 is symmetric and idempotent, and that the range of P0 is MG(V) .
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Since G is unimodular [10, p. 81], for any a, b ∈ V we get

〈 a, P0b〉 = 〈 a,

∫
G

gb dμ(g)〉 =
∫

G
〈 a, gb〉 dμ(g)

=
∫

G
〈 g−1a, b〉 dμ(g) =

∫
G
〈 ga, b〉 dμ(g) = 〈P0a, b〉 ,

which gives the symmetry of P0 .
To see that P0 is idempotent, we employ the G -invariance of the Haar integral as

follows. For a ∈ V we have

P0
2a =

∫
G

g

(∫
G

g̃a dμ(g̃)
)

dμ(g) =
∫

G

(∫
G

gg̃a dμ(g̃)
)

dμ(g)

=
∫

G

(∫
G

g̃a dμ(g̃)
)

dμ(g) =
∫

G
g̃a dμ(g̃) · μ(G) = P0a.

It remains to show P0V = MG(V) . For a ∈ MG(V) , we have

P0a =
∫

G
ga dμ(g) =

∫
G

a dμ(g) = a.

This implies MG(V) ⊂ P0V.
The opposite inclusion can be obtained as follows. If a ∈ P0V then a = P0b for

some b ∈ V . So, for each g ∈ G , by the G -invariance, we get

ga = gP0b = g
∫

G
g̃b dμ(g̃) =

∫
G

gg̃b dμ(g̃) =
∫

G
g̃b dμ(g̃) = P0b = a.

This gives a ∈ MG(V) , as wanted.
In summary, we have proved that

Pa =
∫

G
ga dμ(g) for a ∈ V .

This together with (4) completes the proof of Theorem 2.1. �
We now study the case of equality in (3). We say that a linear subspace W ⊂ V

is G-invariant if ga ∈ W for all g ∈ G and a ∈ W . If W is G -invariant, the group
G is said to be irreducible on W (and W is said to be G-irreducible), if the only
G -invariant subspaces of W are W and {0} .

In what follows, we assume that MG(V) 
= V . In general, one has the orthogonal
decomposition

V = V0 + V1 + . . . + Vm (5)

for some positive integer m , where V0 = MG(V) , and Vi , i = 0, 1, . . . , m , are
mutually orthogonal G -invariant subspaces in V , and, additionally, Vi , i = 1, . . . , m ,
are nonzero and G -irreducible.

Denote W = V1 + . . . + Vm . Obviuosly, W is the orthogonal complement of
V0 = MG(V) . The linear operator Q = I − P is the orthoprojector from V onto W
(see Theorem 2.1).
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THEOREM 2.2. Under the assumptions of Theorem 2.1 , assume that (5) is
satisfied.

If W is G -irreducible, that is, if m = 1 and W = V1 , then equality holds in (3)
if and only if x ∈ MG(V) and/or y ∈ MG(V) .

Proof. Let x ∈ MG(V) and/or y ∈ MG(V) . Then Qx = 0 and/or Qy = 0 , and
therefore

0 = 〈Qx, Qy〉 = 〈 x, Q2y〉 = 〈 x, Qy〉 = 〈 x, (I − P)y〉 ,

as required.
Conversely, assume 〈 x, (I − P)y〉 = 0 for some x, y ∈ D , that is 〈Qx, Qy〉 = 0 .

Suppose that W is G -irreducible. It is evident that W is G -invariant. It is known that
(W, G|W , D∩W) is an Eaton system (see [12, p. 111]). Applying [12, Theorem 3.2] we
obtain 〈 a, b〉 > 0 for all nonzero a, b ∈ D ∩ W .

On the other hand, Qx, Qy ∈ D ∩W . Therefore the assumption that both Qx and
Qy are nonzero vectors leads to 〈Qx, Qy〉 > 0 , a contradiction. Thus we get Qx = 0
and/or Qy = 0 .

Hence x ∈ MG(V) and/or y ∈ MG(V) , completing the proof. �
We say that an Eaton system (V, G, D) is effective if MG(V) = {0} .

REMARK 2.3. For an effective Eaton system (V, G, D) we have P ≡ 0 . Therefore
in this case (3) reduces to

〈 x, y〉 � 0 for x, y ∈ D (6)

(cf. [12, Theorem 3.2]).

EXAMPLE 2.4. Let

V = {a = (a1, . . . , an)T ∈ R
n :

n∑
i=1

ai = 0}

with the standard inner product 〈 a, b〉 =
∑n

i=1 aibi .
Set

G = Pn = the group of all n -by-n permutation matrices.

Recall that a permutation matrix is a matrix with entries all 0 or 1 such that every
row and every column contains exactly one entry equal to 1 . Take

D = {a ∈ R
n : a1 � a2 � . . . � an,

n∑
i=1

ai = 0}.

Then (V, G, D) is an Eaton system (cf. [1, p. 16]). In addition, V is effective and
G -irreducible, that is V0 = {0} and W = V1 .

In this situation, (6) takes the form

n∑
i=1

xiyi � 0 for x, y ∈ D . (7)

This is a particular case of the Chebyshev sum inequality (see (14)). Equality
holds in (7) if and only if x = 0 and/or y = 0 (see Theorem 2.2).
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For an Eaton system (V, G, D) , one obtains

V =
⋃
g∈G

gD (8)

by (A1) .
We say that two vectors x, y ∈ V are synchronous (with respect to (V, G, D) ) if

there exists g ∈ G such that x, y ∈ gD .

REMARK 2.5. It is not hard to check that (V, G, D) is an Eaton system iff (V, G, gD)
is an Eaton system for each g ∈ G .

In consequence, under the assumptions of Theorem 2.1, inequality (3) extends to

〈 x, (I − P)y〉 � 0 for synchronous vectors x, y ∈ V . (9)

In particular, for each x ∈ V inequality (9) holds for y = x , because x and y = x
are synchronous vectors by (8). In this case, (9) asserts that the operator Q = I − P
is positive semidefinite. In fact, Q is the orthoprojector from V onto the subspace W
orthogonal to MG(V) .

3. Chebyshev type inequality

In this section we investigate the particular situation when the subspace MG(V) is
one-dimensional.

THEOREM 3.1. Let (V, G, D) be an Eaton system and let MG(V) = span v for
some nonzero v ∈ V .

Then the following Chebyshev type inequality holds:

‖v‖2〈 x, y〉 − 〈 x, v〉 〈 y, v〉 � 0 for x, y ∈ D. (10)

If, in addition, the subspace W = (span v)⊥ is G -irreducible, then equality holds
in (10) if and only if x and/or y is a scalar multiple of v .

Proof. It is sufficient to prove that

〈 x, y〉 − 〈 x,
v

‖v‖〉 〈 y,
v

‖v‖〉 � 0 for x, y ∈ D . (11)

Observe that the left-hand side of (11) is equal to 〈 x, y − 〈 y, v
‖v‖〉 v

‖v‖ 〉 .
The operator P̃ : V → V defined by

P̃a = 〈 a,
v

‖v‖〉
v
‖v‖ , a ∈ V,

is the orthoprojector from V onto span v . Since MG(V) = span v , P̃ is equal to the
orthoprojector P from V onto MG(V) .

Therefore (11) follows from (3). In consequence, (10) is valid.
It is obvious that if x and/or y is a scalar multiple of v , then equality holds in

(10). Conversely, suppose that equality holds in (10) and that W is G -irreducible. By
Theorem 2.2, x ∈ MG(V) = span v and/or y ∈ MG(V) = span v . This completes the
proof of Theorem 3.1. �
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REMARK 3.2. (a) Inequality (10) can be extended as follows:

‖v‖2〈 x, y〉 − 〈 x, v〉 〈 y, v〉 � 0 for synchronous vectors x, y ∈ V . (12)

To see this, apply (10) together with the fact that v ∈ MG(V) and gv = v for all
g ∈ G .

(b) It is easily seen that the case y = x of (12) leads to Cauchy-Schwarz inequality

‖v‖2‖x‖2 � 〈 v, x〉 2. (13)

EXAMPLE 3.3. Take V to be the Euclidean space R
n with the standard inner

product. Consider G = Pn = the group of all n -by-n permutation matrices, and

D = {a = (a1, . . . , an)T ∈ R
n : a1 � a2 � . . . � an}.

Then (V, G, D) is an Eaton system [1, p. 16].
Moreover, a↓ = (a[1], . . . , a[n]) , where a[1] � . . . � a[n] are the entries of a in

nonincreasing order. In addition, MG(V) = span v for v = (1, . . . , 1)T .
In this case, we have the following interpretation of (12): for any synchronous

n -tuples x = (x1, . . . , xn)T and y = (y1, . . . , yn)T

n
n∑

i=1

xiyi �
n∑

i=1

xi

n∑
i=1

yi (14)

with equality iff x and/or y is a scalar multiple of (1, . . . , 1)T (cf. [13, Section 4]).
This result is the classical Chebyshev sum inequality.

Here the synchronicity of x and y means

(xi − xj)(yi − yj) � 0 for all 1 � i, j � n .

EXAMPLE 3.4. Let

V = Hn = the real space of all n-by-n Hermitian matrices,

G = {U(·)U∗ : U ∈ Un} = the group of all unitary similarities,

and

D = {a ∈ Dn : a11 � a22 � . . . � ann}
= the convex cone of all real n-by-n diagonal matrices

with decreasingly ordered diagonal entries.

The inner product on V is given by 〈 a, b〉 = tr ab , the trace of the matrix ab .
By virtue of the Spectral Theorem, condition (A1) holds. On the other hand,

the von Neumann trace inequality implies (A2) (see [1, p. 17] for details). Therefore
(V, G, D) is an Eaton system. Here MG(V) = span In , where In denotes the n -by-n
identity matrix. Additionally, a↓ = diagλ (a) , where λ (a) = (λ1(a), . . . , λn(a))T is
the vector of the eigenvalues of a Hermitian matrix a with λ1(a) � . . . � λn(a) .
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It now follows from Theorem 3.1 that the following Chebyshev type inequality is
valid:

ntr xy � tr x tr y for x, y ∈ D .

In other words, by (2),

ntr x↓y↓ � tr x tr y for x, y ∈ V ,

or, equivalently,

n
n∑

i=1

λi(x)λi(y) � tr x tr y for x, y ∈ V . (15)

This is a matrix version of (14).
Equality holds in (15) iff x and/or y is a scalar multiple of In .

4. Grüss-Lupaş type inequality

Assume ‖v‖ = 1 . Remind that

Tv(x, y) = 〈 x, y〉 − 〈 x, v〉 〈 y, v〉 = 〈 x − 〈 x, v〉 v, y〉 for x, y ∈ V . (16)

In this section our main goal is to provide an estimate for the modulus of Tv(x, y) .
Here we develop a method used in [4].

In the sequel V is a finite-dimensional real inner product space and {ei : i =
1, 2, . . . , n} is a basis in V . Denote by {di : i = 1, 2, . . . , n} the dual basis of {ei} ,
i.e., 〈 ei, dj〉 = δij , the Kronecker symbol, i, j = 1, . . . , n .

Then the following formula holds:

〈 a, b〉 =
n∑

i=1

〈 a, ei〉 〈 b, di〉 for a, b ∈ V . (17)

We assume that for each i = 1, . . . , n the space V possesses the orthogonal
decomposition

V = V1i + V2i (18)

for some (orthogonal) subspaces V1i and V2i .
For k = 1, 2 , suppose that Aki, Bki, Cki : Vki → Vki are linear operators (matrices)

such that
B∗

kiAki = Iki and C∗
kiCki = Iki , (19)

where Iki is the identity operator on Vki .
Here B∗

ki is the dual operator of Bki in the sense that 〈B∗
kiw, v〉 = 〈w, Bkiv〉 for

all v, w ∈ Vki . (For Cki analogously.)
Then the identity

〈 a, b〉 = 〈A1iC1i a1i, B1iC1i b1i〉 + 〈A2iC2i a2i, B2iC2i b2i〉 for a, b ∈ V (20)

holds, where a = a1i + a2i and b = b1i + b2i with aki, bki ∈ Vki , k = 1, 2 .
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THEOREM 4.1. Under the above assumptions, the following Grüss-Lupaş type
inequality holds:

|Tv(x, y)| �
n∑

i=1

(|〈A1iC1i w1i, B1iC1i v1i〉 |

+ |〈A2iC2i w2i, B2iC2i v2i〉 |) · |〈 v, ei〉 | · |〈 y, di〉 |
(21)

for x, y, v ∈ V with ‖v‖ = 1 , where w(i) = x− 〈 x,ei〉
〈 v,ei〉 v with 〈 v, ei〉 
= 0 , and wki and

vki are the projections of w(i) and v , respectively, into Vki , k = 1, 2 .

Proof. Because of (16) and (17) we can write

Tv(x, y) =
n∑

i=1

〈 x − 〈 x, v〉 v, ei〉 〈 y, di〉 .

Hence

|Tv(x, y)| �
n∑

i=1

|〈 x − 〈 x, v〉 v, ei〉 | · |〈 y, di〉 |. (22)

Denoting Px = 〈 x, v〉 v and ηi = 〈 x,ei〉
〈 v,ei〉 we have

〈Px − x, ei〉 = 〈Px, ei〉 − 〈 x, ei〉 = 〈Px, ei〉 − ηi〈 v, ei〉
= 〈P(x − ηiv), ei〉 = 〈Pw(i), ei〉
= 〈 〈w(i), v〉 v, ei〉 = 〈w(i), v〉 〈 v, ei〉 .

In consequence, we derive

|〈 x − 〈 x, v〉 v, ei〉 | = |〈w(i), v〉 ||〈 v, ei〉 |. (23)

Combining (22) and (23), we get

|Tv(x, y)| �
n∑

i=1

|〈w(i), v〉 | · |〈 v, ei〉 | · |〈 y, di〉 |.

Finally, employing (20) for a = w(i) and b = v yields (21). This completes the
proof of Theorem 4.1. �

Remark that for any μ ∈ R

Tv(x, y) = 〈 x − 〈 x, v〉 v, y〉 = 〈 x − 〈 x, v〉 v, y − μv〉 = Tv(x, yμ) for x, y ∈ V

where ‖v‖ = 1 and yμ = y − μv .
Using a similar argument as in the above proof, for μ = 〈 y, v〉 we get

|〈 y − 〈 y, v〉 v, di〉 | = |〈 w̃(i), v〉 ||〈 v, di〉 |,

where w̃(i) = y − 〈 y,di〉
〈 v,di〉 v with 〈 v, di〉 
= 0 .
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Therefore, applying a representation of type (20), one can obtain a version of (21)
with an estimate for 〈 w̃(i), v〉 analogously as for 〈w(i), v〉 . Namely,

|Tv(x, y)| �
n∑

i=1

(|〈A1iC1i w1i, B1iC1i v1i〉 | + |〈A2iC2i w2i, B2iC2i v2i〉 |) · |〈 v, ei〉 |×

× (|〈 Ã1iC̃1i w̃1i, B̃1iC̃1i v1i〉 | + |〈 Ã2iC̃2i w̃2i, B̃2iC̃2i v2i〉 |) · |〈 v, di〉 |
for x, y, v ∈ V with ‖v‖ = 1 , and wki and vki are the projections of w(i) and v ,
respectively, into Vki , k = 1, 2 .

For k = 1, 2 , Ãki , B̃ki and C̃ki are operators (matrices) such that B̃∗
kiÃki = Iki and

C̃∗
kiC̃ki = Iki .

Additionally, w̃ki are the projections of w̃(i) into Ṽki , k = 1, 2 , satisfying V =
Ṽ1i + Ṽ2i with orthogonal Ṽ1i and Ṽ2i .

We now show how our theory works. In Example 4.2 we specialize Theorem 4.1
to obtain a recent result of Izumino, Pečarić and Tepeš [4, Theorem 2.3].

EXAMPLE 4.2. Let V be R
n and let p = (p1, . . . , pn)T be a probabilistic vector,

i.e.,
∑n

i=1 pi = 1 and pi > 0 . Consider the inner product defined by

〈 x, y〉 =
n∑

i=1

xiyipi (24)

for x = (x1, . . . , xn)T and y = (y1, . . . , yn)T .
That is, 〈 x, y〉 = 〈 x, Ly〉 s , where 〈 ·, ·〉 s is the standard inner product and L =

diag (p1, . . . , pn) is the diagonal matrix with the pi ’s on the main diagonal.
Let ei = (1/

√
pi)(0, . . . , 0, 1, 0, . . . , 0)T with 1 at the i th position, i = 1, . . . , n .

Then 〈 ei, ej〉 = δij , the Kronecker delta. In other words, ei ’s constitute an orthonornal
basis in R

n with respect to 〈 ·, ·〉 . So, di = ei , i = 1, . . . , n , is the dual basis of ei ’s.
Putting

V1i = {(z1, . . . , zi−1, 0, . . . , 0)T : z1, . . . , zi−1 ∈ R}
and

V2i = {(0, . . . , 0, zi, . . . , zn)T : zi, . . . , zn ∈ R}
we obtain (18).

For simplicitywe identify the vectors (z1, . . . , zi−1, 0, . . . , 0)T and (z1, . . . , zi−1)T .
Thus V1i is identified with R

i−1 . Similarly for V2i .
For 1 � m � n we denote by Am and Bm the m -by-m matrices

Am =

⎛
⎜⎜⎜⎜⎜⎝

1 −1 0 . . . 0 0
0 1 −1 0 0
...

. . .
. . .

0 0 0 1 −1
0 0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎠ and Bm =

⎛
⎜⎜⎜⎜⎜⎝

1 0 . . . 0 0
1 1 0 0
...

...
. . .

...
1 1 . . . 1 0
1 1 . . . 1 1

⎞
⎟⎟⎟⎟⎟⎠ . (25)

Furthermore, we set

A1i = Ai−1, B1i = Bi−1, A2i = An−i+1, B2i = Bn−i+1,
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and

C1i =

⎛
⎜⎜⎜⎜⎜⎝

1 0 . . . 0 0
0 1 0 0
...

. . .
...

0 0 1 0
0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎠ and C2i =

⎛
⎜⎜⎜⎜⎜⎝

0 0 . . . 0 1
0 0 1 0
...

...
0 1 0 0
1 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎠ . (26)

Here C1i and C2i are matrices of sizes (i − 1) -by- (i − 1) and (n − i + 1) -by-
(n − i + 1) , respectively.

Notice that (19) is satisfied for B∗
ki = L−1

ki BT
kiLki , where L1i = diag (p1, . . . , pi−1)

and L2i = diag (pi, . . . , pn) . For this reason, (20) takes the form

〈 a, b〉 = 〈A1iC1ia1i, B1iC1iL1ib1i〉 s + 〈A2iC2ia2i, B2iC2iL2ib2i〉 s for a, b ∈ R
n , (27)

where

a1i = (a1, . . . , ai−1)T , a2i = (ai, . . . , an)T ,

b1i = (b1, . . . , bi−1)T , b2i = (bi, . . . , bn)T .

Take

x = (x1, . . . , xn)T , y = (y1, . . . , yn)T and v = (v1, . . . , vn)T

with ‖v‖2 =
∑

v2
i pi = 1 .

Let w(i) = (w(i)
1 , . . . , w(i)

n )T be defined as in Theorem 4.1, that is w(i) = x − ηiv
for ηi = xi/vi .

Clearly, the i -th entry of w(i) is zero. Denote

Δxj = xj+1 − xj, Δvj = vj+1 − vj, Δw(i)
j = w(i)

j+1 − w(i)
j , and

Sj = v1p1 + . . . + vjpj, Sj+1 = vj+1pj+1 + . . . + vnpn.

Now, applying (25)-(27) leads to the conclusion that

〈w(i), v〉 =
i−1∑
j=1

(−Δxj + ηiΔvj)Sj +
n−1∑
j=i

(Δxj − ηiΔvj)Sj+1, (28)

because Δw(i)
j = Δxj − ηiΔvj .

Consequently, (21) becomes

|
n∑

i=1

xiyipi −
n∑

i=1

xivipi

n∑
i=1

yivipi|

�
n∑

i=1

⎛
⎝ i−1∑

j=0

|Sj||Δw(i)
j | +

n∑
j=i

|Sj+1||Δw(i)
j |

⎞
⎠ |vi||yi|pi

(29)

with S0 = Sn+1 = 0 .
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Taking v = (1, . . . , 1)T , we have ‖v‖2 = 〈 v, v〉 = 1 . Also, Δvj = 0 and

therefore Δw(i)
j = Δxj for all j .

Finally, (29) reduces to the mentioned result of Izumino, Pečarić and Tepeš (see
[4, Theorem 2.3]):

|
n∑

i=1

xiyipi −
n∑

i=1

xipi

n∑
i=1

yipi| �
n∑

i=1

⎛
⎝ i−1∑

j=0

Pj|Δxj| +
n∑

j=i

Pj+1|Δxj|
⎞
⎠ |yi|pi, (30)

where

Pj = p1 + . . . + pj, Pj+1 = pj+1 + . . . + pn, P0 = Pn+1 = 0.

In Example 4.3 we employ Theorem 4.1 to derive an analog of (30) for the second
order differences (cf. [4, Theorem 2.3])).

EXAMPLE 4.3. Let V , V1i , V2i , ei = di and 〈 ·, ·〉 be defined as in Example 4.2.
We introduce the following n -by-n matrices

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −2 1 0 . . . 0 0 0
0 1 −2 1 0 0 0
...

. . .
. . .

. . .
...

0 0 0 0 1 −2 1
0 0 0 0 . . . 0 1 −2
0 0 0 0 . . . 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and B =

⎛
⎜⎜⎜⎜⎜⎝

1 0 . . . 0 0
2 1 . . . 0 0
...

...
. . .

...
n − 1 n − 2 . . . 1 0

n n − 1 . . . 2 1

⎞
⎟⎟⎟⎟⎟⎠ .

Take A1i and A2i to be, respectively, the (i− 1) -by- (i− 1) upper left corner and
the (n − i + 1) -by- (n− i + 1) lower right corner of A . Likewise, let B1i and B2i be,
respectively, the (i−1) -by- (i−1) upper left corner and the (n− i+1) -by- (n− i+1)
lower right corner of B . Since A and B are triangular, and BT = A−1 , one has the
needed property BT

kiAki = Iki .
Moreover, C1i and C2i are defined as in Example 4.2. We also define

Δ2xj = Δxj+1 − Δxj = xj − 2xj+1 + xj+2,

S2
j = S1 + . . . + Sj = jv1p1 + (j − 1)v2p2 + . . . + 2vj−1pj−1 + vjpj,

S
2

j+1 = Sj+1 + . . . + Sn = vj+1pj+1 + 2vj+2pj+2 + . . . + (n − j)vnpn.

Applying (21), we get the conclusion that

|
n∑

i=1

xiyipi −
n∑

i=1

xipi

n∑
i=1

yipi|

�
n∑

i=1

⎛
⎝ i−1∑

j=1

|S2
j ||Δ2w(i)

j | + |Δw(i)
i ||S2

i+1 − S2
i−1| +

n−2∑
j=i

|S2

j+2||Δ2w(i)
j |

⎞
⎠ |yi|pi.
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In particular, if v = (1, . . . , 1)T then

|
n∑

i=1

xiyipi −
n∑

i=1

xipi

n∑
i=1

yipi|

�
n∑

i=1

⎛
⎝ i−1∑

j=1

P2
j |Δ2xj| + |Δxi||P

2

i+1 − P2
i−1| +

n−2∑
j=i

P
2

j+2|Δ2xj|
⎞
⎠ |yi|pi,

where

P2
j = P1 + . . . + Pj = jp1 + (j − 1)p2 + . . . + 2pj−1 + pj,

P
2

j+1 = Pj+1 + . . . + Pn = pj+1 + 2pj+2 + . . . + (n − j)pn.
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