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THE BUTZER–FLOCKE–HAUSS OMEGA FUNCTION
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(communicated by Th. M. Rassias)

Abstract. A new integral representation is obtained for the Butzer-Flocke-Hauss complete real-
argument Omega function Ω(x), which is closely associated with the complex-index Bernoulli
function Bα (z) and with the complex-index Euler function Eα(z). Three two-sided bounding
inequalities are given for this Omega function and their efficiency is also discussed.

1. Introduction, definitions and preliminaries

In the course of their investigation of the complex-index Euler function Eα(z),
Butzer, Flocke and Hauss [4] introduced the following special function:

Ω(w) = 2
∫ 1

2

0+
sinh(uw) cot(πu)du (w ∈ C), (1)

which they called the complete Omega function (see also [2, Definition 7.1]). On the
other hand, in view of the definition of the Hilbert transform, the complete Omega
function Ω(w) is the Hilbert transform H(e−wx)1(0) at 0 of the 1 -periodic function
(e−xw)1 defined by the periodic continuation of the following exponential function [2,
p. 67]:

e−xw

(
x ∈

[
− 1

2
,
1
2

]
; w ∈ C

)
,

that is,

H(e−xw)1(0) := P.V.
∫ 1

2

− 1
2

ewu cot(πu) du = Ω(w) (w ∈ C),

where the integral is to be understood in the sense of Cauchy’s P.V. (Principal Value) at
zero.
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Recently, Butzer et al. [5] gave an integral expression for the Omega function
Ω(x) (x ∈ R), which we recall here as follows (cf. [5, Theorem 2]):

Ω(x) =
2
π

sinh

(
x
2

) ∫ ∞

0
cos

(
xt
2π

)
dt

et + 1
(x ∈ R). (2)

Additional links to the various applications of the Omega function Ω(w) (w ∈ C)
in generating-functiondescriptions and allied considerationsof the complex-indexEuler
Eα(z) and the complex-index Bernoulli function Bα(z) include (for example) [2, 3, 4].

The main features of this paper are being listed below:
(i) A new integral representation for the real-argument Ω(x) and the consequent

bounding inequality;
(ii) A bounding inequality based upon (2);
(iii) A bounding inequality by means of the Chaplygin Comparation Theorem

applied to a certain linear ODE [5, Theorem 1] of which Ω(x) is a solution.
An appropriate efficiency analysis is also provided for each of the bounding in-

equalities derived here.
Throughout this paper, we use the familiar notation [x] to denote the integer part

of the real number x .

2. The first set of main results

We begin by considering the following partial-fraction expansion of the Omega
function (see [2, Theorem 1.3] and [4]):

πΩ(2πw)
2 sinh(πw)

=
∞∑
n=1

(−1)n−1 n
n2 + w2

(w ∈ C), (3)

which, for w = x (x ∈ R), readily yields

S̃1(x) :=
∞∑

n=1

(−1)n−1 n
n2 + x2 =

∞∑
n=1

(−1)n−1 n
∫ ∞

0
e−(n2+x2)tdt

=
∫ ∞

0
e−x2t

( ∞∑
n=1

(−1)n−1 n e−n2t

)
dt.

(4)

The inner alternatingDirichlet series D̃N(t) in (4) can be expressed as a Laplace integral
as follows:

D̃N(t) =
∞∑
n=1

(−1)n−1 n e−n2t = t
∫ ∞

0
e−tu

( ∑
�∈N: �2 � u

(−1)�−1 �

)
du. (5)
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But the finite sum Ã(u) in (5) is given by

Ã(u) =
[
√

u ]∑
�=1

(−1)�−1 � =
{ 1

2

(
[
√

u ] + 1
)

([
√

u ] odd)

− 1
2 [
√

u ] ([
√

u ] even)

=
[
√

u ] + 1
2

sin2

(
π[
√

u ]
2

)
− [

√
u ]

2
cos2

(
π[
√

u ]
2

)
=

1
2

sin2

(
π[
√

u ]
2

)
− [

√
u ]
2

cos
(
π[
√

u]
)
.

(6)

It follows from (6) that

Ã(u) ≡ 0 (0�u < 1).

Therefore, since

D̃N(t) =
t
2

∫ ∞

1
e−tu

(
sin2

(
π[
√

u ]
2

)
− [

√
u ] cos

(
π[
√

u]
))

du,

by collecting all these expressions together, we conclude that

S̃1(x) =
1
2

∫ ∞

0

∫ ∞

1
t e−x2t

(
sin2

(
π[
√

u]
2

)
− [

√
u ] cos

(
π[
√

u]
))

dt du

=
1
2

∫ ∞

1

(
sin2

(
π[
√

u]
2

)
− [

√
u ] cos

(
π[
√

u]
))(∫ ∞

0
t e−(u+x2)t dt

)
du

=
1
2

∫ ∞

1

sin2
(

1
2π[

√
u]
)− [

√
u ] cos

(
π[
√

u]
)

(u + x2)2
du.

(7)

Some straightforward steps would now lead us from (3) to our first main result
asserted by Theorem 1 below.

THEOREM 1. For all x ∈ R, the following integral representation holds true for
Ω(x) :

Ω(x) =
1
π

sinh
( x

2

) ∫ ∞

1

sin2
(

1
2π[

√
u]
)− [

√
u ] cos

(
π[
√

u]
)(

u + x2/(4π2)
)2 du. (8)

We are now interested in a one-sided bounding inequality for the Omega function
Ω(x) , which is derived via the integral representation (8).

THEOREM 2. The following one-sided bounding inequality holds true for Ω(x) :

|Ω(x)|�π
∣∣∣ sinh

( x
2

)∣∣∣( 4
x2 + 4π2

+
1
|x|

)
(x ∈ R \ {0}). (9)
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Proof. By setting

α :=
x2

4π2 ,

the formula (8) gives us the following obvious consequence:

|Ω(x)|� 1
π

∣∣∣ sinh
( x

2

)∣∣∣( ∫ ∞

1

du
(u + α)2︸ ︷︷ ︸

I1

+
∫ ∞

1

[
√

u]
(u + α)2

du︸ ︷︷ ︸
I2

)
. (10)

It is not difficult to observe that

I1 =
4π2

x2 + 4π2 (11)

and

I2 =
∫ ∞

0

[
√

u ]
(u + α)2

du�
∫ ∞

0

√
u

(u + α)2
du

=
1√
α

∫ ∞

0

√
u

(1 + u)2
du =

1√
α

B

(
3
2
,
1
2

)
=

π2

|x| ,

(12)

where B(λ ,μ) denotes the familiar Beta function given by

B(λ ,μ) :=
∫ 1

0
tλ−1(1 − t)μ−1 dt = B(μ, λ ) (min{�(λ ),�(μ)} > 0)

or, equivalently, by

B(λ ,μ) =
Γ(λ )Γ(μ)
Γ(λ + μ)

in terms of the classical Gamma function.
Upon substituting from (11) and (12) into (10), we deduce the inequality (9)

asserted by Theorem 2.

3. Two-sided bounding inequalities for Ω(x)

Butzer et al. [5] showed that the real-argument Butzer-Flocke-Hauss complete
Omega function Ω(x) is a particular solution of the following linear ODE (cf. [5,
Theorem 1]):

dy
dx

=
1
2

coth
( x

2

)
y − x

π3
sinh

( x
2

)
S̃
( x

2π

)
(x ∈ R), (13)

where

S̃(w) =

⎧⎨⎩
1
2w

∫ ∞

0

t sin(wt)
et + 1

dt (w �= 0)

η(3) (w = 0)
(14)

and

η(s) :=
∞∑

n=1

(−1)n−1

ns
=: (1 − 21−s) ζ(s) (�(s) > 0; s �= 1)
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denotes the Dirichlet Eta function, ζ(s) being the Riemann Zeta function.
Our aim in this section is first to derive a two-sided bounding inequality for Ω(x)

with the help of the linear first-orderODE (13) and the ChaplyginComparison Theorem
associated with it (see, for details, [1, Section 15] and [6, Section I.1]).

Consider the Cauchy problem given by

dy
dx

= f (x, y)
(
y(x0) = y0

)
. (15)

For a given interval I in R , let x0 ∈ I and let the functions ϕ,ψ ∈ C1(I) . We
say that ϕ and ψ are the lower and the upper functions, respectively, if

ϕ′(x)� f
(
x,ϕ(x)

)
and ψ ′(x)� f

(
x,ψ(x)

)
(
x ∈ I; ϕ(x0) = ψ(x0) = y0

)
.

Suppose also that the function f (x, y) is continuous on some domain D in the
(x, y) -plane containing the interval I with the lower and upper functions ϕ and ψ ,
respectively. Then the solution y(x) of the Cauchy problem (15) satisfies the following
two-sided inequality:

ϕ(x)� y(x)�ψ(x) (x ∈ I) . (16)

This is actually the so-called Chaplygin type Differential Inequality or the Chap-
lygin type Comparison Theorem (see [1, p. 202] and [6, pp. 3-4]).

REMARK. The two-sided bounding inequalities (17) below were stated (without
proof) by Butzer et al. [5, Theorem 3]. Here we take the opportunity to give a complete
proof of this interesting result.

THEOREM 3. For all x�0, the following two-sided bounding inequalities hold
true :

1
π

sinh
( x

2

)
ln

(
ζ(3)x2 + 8π2

3x2 + 2π2

)
�Ω(x)� 1

π
sinh

( x
2

)
ln

(
3x2 + 8π2

ζ(3)x2 + 2π2

)
. (17)

Moreover , for x < 0, the opposite inequalities hold true.

Proof. Consider the following two-sided bounding inequalities for the alternating
Mathieu series S̃(x) [7, Proposition 2] (see also [8]):

4ζ(3) − 3

(3x2 + 4)
(
ζ(3)x2 + 1

) < S̃(x) <
12 − ζ(3)

(3x2 + 1)
(
ζ(3)x2 + 4

) (x �= 0) (18)

and suppose that I = [0,∞) . Applying the bounds (18) to the ODE (13), for the
Cauchy problem given by

Ω′(x) =
1
2

coth
( x

2

)
Ω(x) − x

π3
sinh

( x
2

)
S̃
( x

2π

) (
Ω(0) = 0

)
we deduce the following two inequalities:

ϕ′(x)� 1
2

coth
( x

2

)
ϕ(x) +

4π
(
ζ(3) − 12

)
(3x2 + 2π2)

(
ζ(3)x2 + 8π2

) x sinh
( x

2

)
(19)
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and

ψ ′(x)� 1
2

coth
( x

2

)
ψ(x) +

4π
(
3 − 4ζ(3)

)
(3x2 + 8π2)

(
ζ(3)x2 + 2π2

) x sinh
( x

2

)
. (20)

We point out that the initial condition Ω(0) = 0 is chosen in accordance with the
behaviour of the Omega function Ω(x) given by

Ω(x) =
2
π

sinh
( x

2

)
S̃1

( x
2π

)
∼ 2

π
η(1) sinh

( x
2

)
= o(x) (x → 0) , (21)

provided by the partial-fraction expansions (3) and (4). The solutions ϕ and ψ of the
lower and upper ODEs (which appear in (19) and (20) with equalities) are given by

ϕ(x) = sinh
( x

2

){
Cϕ +

1
π

ln

(
ζ(3)x2 + 8π2

3x2 + 2π2

)}
(22)

and

ψ(x) = sinh
( x

2

){
Cψ +

1
π

ln

(
3x2 + 8π2

ζ(3)x2 + 2π2

)}
, (23)

respectively, Cϕ and Cψ being arbitrary constants of integration.
According to the above-stated definitions of the lower and upper functions, and

keeping (16) in mind, we now find the values of the integration constants Cϕ and Cψ .
Indeed, since

ϕ(x) ∼ sinh
( x

2

)(
Cϕ +

2 ln 2
π

)
(x → 0)

and

ψ(x) ∼ sinh
( x

2

)(
Cψ +

2 ln 2
π

)
(x → 0),

it follows by the constraint (21) that

ϕ(x) ∼ sinh
( x

2

)(
Cϕ +

2 ln 2
π

)

� 2
π
η(1) sinh

( x
2

)
� sinh

( x
2

)(
Cψ +

2 ln 2
π

)
∼ ψ(x) (x → 0),

that is, that
Cϕ = Cψ ≡ 0.

Finally, since Ω(x) is an odd function, we arrive immediately at the second
assertion of Theorem 3.
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4. Comparation and further analysis of the derived bounds

In this section, our main goal is to give the sharpest bounds for Ω(x) by fur-
ther analyzing the bounding inequalities (9) and (17) in light of the known integral
representation (2). Our first observation from (2) is that

Ω(x)� 0 (x�0) . (24)

Secondly, if we estimate Ω(x) in (2) by using the fact that

| cos(x)|� 1 (x ∈ R),

we get

|Ω(x)|�
(

ln 4
π

) ∣∣∣ sinh
( x

2

)∣∣∣ (x ∈ R).

At the first sight, it is clear that

ln

(
3x2 + 8π2

ζ(3)x2 + 2π2

)
� ln 4 (x ∈ R) ,

where the equality is attained only at x = 0 . Therefore, we favour (9) as the most
efficient of all the upper bounds for the Omega function Ω(x) , which are presented
here so far.

Next we put

ψΩ(x) :=

⎧⎪⎨⎪⎩
Ω(x)

sinh
( x

2

) (x �= 0)

0 (x = 0),

where we have set ψΩ(0) = 0 by continuity consideration [see Equation (21)]. We
assume that x > 0 (the opposite case can easily be handled in a similar way). Then,
upon dividing (9) by sinh

(
x
2

)
and (17) by π , we deduce the following two-sided

bounding inequalities for ψΩ(x) :

− π

(
4

x2 + 4π2
+

1
x

)
� ψΩ(x)�π

(
4

x2 + 4π2
+

1
x

)
=: a(x) (25)

and

b(x) :=
1
π

ln

(
ζ(3)x2 + 8π2

3x2 + 2π2

)
� ψΩ(x)� 1

π
ln

(
3x2 + 8π2

ζ(3)x2 + 2π2

)
=: c(x) . (26)

So, in view of (24), we conclude that

b+(x) := max{b(x), 0}�ψΩ(x)� min{a(x), c(x)} . (27)

Let
Δ(ψΩ) :=

{
x ∈ R+ : b+(x)�ψΩ(x)� min{a(x), c(x)}} .



594 TIBOR K. POGÁNY AND H. M. SRIVASTAVA

It is not difficult to see that

x0 =
π
√

6√
3 − ζ(3)

is the unique zero of b(x) and the only one intersection of the two functional upper
bounds in (9), namely (25) and (26), occurs at

x1 ≈ 12.7639,

which is found numerically by using Mathematica 5.0 (see Figure 1). Thus, by
means of (27), we arrive at the sharpest possible bounds for Ω(x) based upon the
various bounding inequalities presented in this paper.

x0 x10

a(x)

b(x)

c(x)-1ln4
-1ln(3/ (3))

-1ln( (3)/3)

( )

Figure 1. Bounding domain Δ(ψΩ) of ψΩ(x) (x�0)

THEOREM 4. The following two-sided bounding inequalities hold true for the
Butzer-Flocke-Hauss complete Omega function Ω(x) :

LΩ(x)�Ω(x)�UΩ(x) (x�0), (28)

where

LΩ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
π

sinh
( x

2

)
ln

(
ζ(3)x2 + 8π2

3x2 + 2π2

) (
0� x� x0 =

π
√

6√
3 − ζ(3)

)

0

(
x > x0 =

π
√

6√
3 − ζ(3)

) (29)

and

UΩ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
π

sinh
( x

2

)
ln

(
3x2 + 8π2

ζ(3)x2 + 2π2

)
(0� x� x1 ≈ 12.7639)

π sinh
( x

2

)( 4
x2 + 4π2

+
1
x

)
(x > x1 ≈ 12.7639) .

(30)
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