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Abstract. Westudy the stability criteria for set integro-differential equations in terms ofLyapunov-
like functions. Sufficient conditions for the stability of the null solution of set integro-differential
equations are presented.

1. Introduction

The study of set differential equations has been initiated as an independent subject
and several results of interest can be found in [2-3, 6-9]. The interesting feature
of the set differential equations is that the results obtained in this new framework
become the corresponding results of ordinary differential equations as the Hukuhara
derivative and the integral used in formulating the set differential equations reduce to
the ordinary vector derivative and integral when the set under consideration is a single
valued mapping. Moreover, in the present setup, we have only semilinear complete
metric space to work with, instead of complete normed linear space required in the
study of the ordinary differential systems. Furthermore, set differential equations, that
are generated by multivalued differential inclusions when the multivalued functions
involved do not possess convex values, can be used as a tool for studying multivalued
differential inclusions [11]. Set differential equations can also be utilized to investigate
fuzzy differential equations [7].

In this paper, we discuss stability criteria for set integro-differential equations. In
section 3, we present some basic results for the set integro-differential equations while
the stability criteria is developed in section 4. It has been found that the formulation
of the set integro-differential equations has an intrinsic disadvantage that the diameter
of the solution is nondecreasing as time increases and consequently the behavior of
the solutions, in some cases, does not match with the solutions of ordinary integro-
differential equations from which the set integro-differential equations are generated.
A criterion is also devised to overcome this inconsistency problem.
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2. Terminology and preliminaries

Let K(Rn) denote the collection of nonempty, compact and convex subsets of Rn.
We define the Hausdorff metric as

D[X, Y] = max[sup
y∈Y

d(y, X), sup
x∈X

d(x, Y)], (1)

where d(y, X) = inf[d(y, x) : x ∈ X] and X, Y are bounded subsets of Rn. Notice
that K(Rn) with the metric is a complete metric space. Moreover, K(Rn) equipped
with the natural algebraic operations of addition and nonnegative scalar multiplication
becomes a semilinear metric space which can be embedded as a complete cone into a
corresponding Banach space [1, 11]. The Hausdorff metric (1) satisfies the following
properties: ∀ X, Y, Z ∈ K(Rn) and μ ∈ R+, we have

D[X + Z, Y + Z] = D[X, Y] and D[X, Y] = D[Y, X], (2)

D[μX,μY] = μD[X, Y], (3)

D[X, Y] � D[X, Z] + D[Z, Y]. (4)

DEFINITION 1. The set Z ∈ K(Rn) satisfying X = Y+Z is known as the Hukuhara
difference of the sets X and Y in K(Rn) and is denoted as X − Y.

DEFINITION 2. For any interval I ∈ R, the mapping F : I → K(Rn) has a
Hukuhara derivative DHF(t0) at a point t0 ∈ I if there exists an element DHF(t0) ∈
K(Rn) such that the limits

lim
h→0+

F(t0 + h) − F(t0)
h

and lim
h→0+

F(t0) − F(t0 − h)
h

, (5)

exist in the topology of K(Rn) and each one is equal to DHF(t0).

If F : I → K(Rn) is Hukuhara differentiable, then the real valued function
t → diam[F(t)], t ∈ I is nondecreasing on I. Moreover, Hukuhara differentiability of
F on I and diam[F(t)] > 0, t ∈ I does not necessarily imply that F(t) is monotone
relative to the set inclusion [9].

By embedding K(Rn) as a complete cone in a corresponding Banach space and
taking into account the result on differentiation of Bochner integral, it is found that if

F(t) = X0 +
∫ t

0
φ(η)dη, X0 ∈ K(Rn), (6)

where φ : I → K(Rn) is integrable in the sense of Bochner, then DHF(t) exists and

DHF(t) = φ(t) a.e. on I. (7)

Also, for any compact set I ⊂ R+, the Hukuhara integral is defined by∫
I
F(η)dη = [

∫
I
f (η)dη : f is a continuous selector of F].
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Consider the set integro-differential equation

DHU(t) = F(t, U(t)) +
∫ t

t0

K(t,η, U(η))dη, U(t0) = U0 ∈ K(Rn), t0 > 0, (8)

where F ∈ C[R+ × K(Rn), K(Rn)], K ∈ C[R+ × R+ × K(Rn), K(Rn)].
The mapping U ∈ C1[J, K(Rn)], J = [t0, t0 + T], T > 0, is said to be a solution

of (8) on J if it satisfies (8) on J. Since U(t) is continuously differentiable, we have

U(t) = U0 +
∫ t

t0

DHU(η)dη, t ∈ J, (9)

which can be put in the form [10]

U(t) = U0 +
∫ t

t0

[F(η, U(η)) +
∫ t

η
K(σ,η, U(η))dσ]dη, t ∈ J, (10)

where the integral is in the sense of Hukuhara integral [4-5]. Thus, we can say that U(t)
is a solution of (8) if and only if it satisfies (10) on J.

3. Some basic results in set integro-differential equations

In order to establish the stability criteria for set integro-differential equations, we
present some basic results relative to such equations.

THEOREM 1. (Comparison result) Assume that F ∈ C[R+ × K(Rn), K(Rn)], K ∈
C[R+ × R+ × K(Rn), K(Rn)] and for t ∈ R+, X, Y ∈ K(Rn),

D[F(t, X) +
∫ t

t0

K(t,η, X)dη, F(t, Y) +
∫ t

t0

K(t,η, Y)dη]

� g(t, D[X, Y]) +
∫ t

t0

G(t,η, D[X, Y])dη,

where g ∈ C[R+ ×R+, R+] and G ∈ C[R+ ×R+ ×R+, R+]. Moreover, we require that
there exists the maximal solution r(t, t0, w0) of the scalar integro-differential equation

w′(t) = g(t, w(t)) +
∫ t

t0

G(t,η, w(η))dη, w(t0) = w0 � 0, t � t0.

Then, if U(t) = U(t, t0, U0), V(t) = V(t, t0, V0) are any two solutions of (8) such that
U0, V0 ∈ K(Rn) exist for t � t0 and U(t0) = U0, V(t0) = V0, we have

D[U(t), V(t)] � r(t, t0, w0), t � t0,

provided that D[U0, V0] � w0.
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Proof. Since U(t), V(t) are solutions of (8), the differences U(t+h)−U(t), V(t+
h) − V(t) exist for small h > 0. For t ∈ R+, we set m(t) = D(U(t), V(t)). Using the
properties (2)-(4) of Hausdorff metric, we have

m(t + h) − m(t) = D[U(t + h), V(t + h)] − D[U(t), V(t)]

� D[U(t + h), U(t) + h{F(t, U(t)) +
∫ t

t0

K(t,η, U(η))dη}] + D[U(t)

+ h{F(t, U(t)) +
∫ t

t0

K(t,η, U(η))dη}, V(t) + h{F(t, V(t)) +
∫ t

t0

K(t,η, V(η))dη}]

+ D[V(t) + h{F(t, V(t)) +
∫ t

t0

K(t,η, V(η))dη}, V(t + h)] − D[U(t), V(t)]

� D[U(t + h), U(t) + h{F(t, U(t)) +
∫ t

t0

K(t,η, U(η))dη}]

+ D[V(t) + h{F(t, V(t)) +
∫ t

t0

K(t,η, V(η))dη}, V(t + h)]

+ hD[F(t, U(t)) +
∫ t

t0

K(t,η, U(η))dη, F(t, V(t)) +
∫ t

t0

K(t,η, V(η))dη],

which implies that

m(t + h) − m(t)
h

� D[
U(t + h) − U(t)

h
, F(t, U(t)) +

∫ t

t0

K(t,η, U(η))dη]

+ D[F(t, V(t)) +
∫ t

t0

K(t,η, V(η))dη,
V(t + h) − V(t)

h
]

+ D[F(t, U(t)) +
∫ t

t0

K(t,η, U(η))dη, F(t, V(t)) +
∫ t

t0

K(t,η, V(η))dη],

Taking lim sup as h → 0+ yields

D+m(t) = lim sup
h→0+

1
h
[m(t + h) − m(t)]

� D[F(t, U(t)) +
∫ t

t0

K(t,η, U(η))dη, F(t, V(t)) +
∫ t

t0

K(t,η, V(η))dη]

� g(t, D[U, V]) +
∫ t

t0

G(t,η, D[U, V])dη

� g(t, D[U0, V0]) +
∫ t

t0

G(t,η, D[U0, V0])dη.

Which together with the fact that D[U0, V0] � w0 and by the comparison theorem
for ordinary integro-differential equations [10] gives

D[U(t), V(t)] � r(t, t0, w0), t � t0.

This completes the proof of the theorem.
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The following existence and uniqueness theorem is more general than Lipschitz
condition whose proof is based on the comparison result.

THEOREM 2. Assume that
(A1) F ∈ C[J×B(U0, b), K(Rn)] , K ∈ C[J× J×B(U0, b), K(Rn)], where B(U0, b) =

[U ∈ K(Rn) : D[U, U0] � b] and D[F(t, U), θ] � M0 on J × B(U0, b) ,∫ t
η D[K(σ,η, U(η)), θ]dσ � N0 on J × J × B(U0, b) , where θ is the zero el-

ement of Rn regarded as a one point set.
(A2) D[F(t, U), F(t, V)] � g(t, D[U, V]) on J × B(U0, b), D[K(t,η, U), K(t,η, V)] �

G(t,η, D[U, V]) on J × J × B(U0, b), where g ∈ C[J × [0, 2b], R+], G ∈ C[J ×
J × [0, 2b], R+], g(t, w) � M1 on J × [0, 2b], G(t,η, w) � N1 on J × J ×
[0, 2b], g(t, 0) = 0, G(t,η, 0) = 0, g(t, w) and G(t,η, w) are nondecreasing in
w for each t ∈ J, (t,η) ∈ J × J.

(A3) w(t) = 0 is the only solution of

w′(t) = g(t, w(t)) +
∫ t

t0

G(t,η, w(η))dη, w(t0) = w0.

Then the successive approximations defined by

Un+1(t) = U0 +
∫ t

t0

[F(η, Un(η)) +
∫ t

η
K(σ,η, Un(η))dσ]dη, n = 0, 1, 2, ...,

exist on J0 = [t0, t + α], where α = min(a, b/(M + N)], M = max(M0, M1), N =
max(N0, N1), as continuous functions and converge uniformly to the unique solution
U(t, t0, U0) of (8) on J0.

Now, we present a global existence result dealing with continuous dependence of
solution of (8) with respect to initial value (t0, U0). As the reasoning and working of
the proof of this theorem is similar to the one employed in proving comparison theorem,
so we omit its proof.

THEOREM 3. Assume that
(B1) F ∈ C[R+ × K(Rn), K(Rn)] and for (t, X) ∈ R+ × K(Rn),

D[F(t, X), θ] � q(t, D[X, θ]),

where q ∈ C[R+ × R+, R+] and q(t, w) is nondecreasing in w for each t ∈ R+,
and θ is the zero element of K(Rn) regarded as a one point set.

(B2) K ∈ C[R+ × R+ × K(Rn), K(Rn)] and let

D[K(t,η, X), θ] � Q(t,η, D[X, θ]),

where Q(t,η, w) is nondecreasing in w for each (t,η) ∈ R+ × R+.
(B3) The maximal solution r(t, t0, w0) of

w′(t) = q(t, w(t)) +
∫ t

t0

Q(t,η, w(η))dη, w(t0) = w0,

exists for t � t0 and for every w0 � 0.
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(B4) There exists a local solution U(t) = U(t, t0, U0) of (8) for every (t0, U0) ∈
R+ × K(Rn).
Then, for every U0 ∈ K(Rn) such that D[U0, θ] � w0, the initial value problem

(8) possesses a solution U(t) = U(t, t0, U0) defined for t � t0 satisfying D[U(t), θ] �
r(t, t0, w0), t � t0.

4. Stability criteria

The following comparison theorem provides a basis to investigate the stability
criteria of set integro-differential equation (8) in term of Lyapunov-like functions.

THEOREM 4. Assume that
(C1) V ∈ C[R+ × K(Rn), K(Rn)] and |V(t, X) − V(t, Y)| � LD[X, Y], where L is the

local Lipschitz constant, X, Y ∈ K(Rn), t ∈ R+.
(C2) g ∈ C[R+ × R+, R+], G ∈ C[R+ × R+ × R+, R+] and for X ∈ K(Rn), t ∈ R+,

D+V(t, X) = lim sup
h→0+

1
h
[V(t + h, X + h{F(t, X) +

∫ t

t0

K(t,η, X)dη}) − V(t, X))]

� g(t, V(t, X)) +
∫ t

t0

G(t,η, V(η, X))dη.

Then, if U(t) = U(t, t0, U0) is any solution of (8) existing on [t0,∞) such that
V(t0, U0) � w0, we have

V(t, U(t)) � r(t, t0, w0), t ∈ [t0,∞),

where r(t, t0, w0) is the maximal solution of

w′(t) = g(t, w(t)) +
∫ t

t0

G(t,η, w(η))dη, w(t0) = w0 � 0, (11)

existing on [t0,∞).

Proof. Define m(t) = V(t, U(t)) so that m(t0) = V(t0, U0) � w0. For small
h > 0, we consider

m(t+h)−m(t) = V(t + h, U(t + h)) − V(t, U(t))

= V(t+h, U(t+h))−V(t+h, U(t)+h{F(t, U(t))+
∫ t

t0

K(t,η, U(η))dη})

+ V(t + h, U(t)+h{F(t, U(t))+
∫ t

t0

K(t,η, U(η))dη})−V(t, U(t))

� LD[U(t + h), U(t) + h{F(t, U(t)) +
∫ t

t0

K(t,η, U(η))dη}]

+ V(t+h, U(t)+h{F(t, U(t))+
∫ t

t0

K(t,η, U(η))dη})−V(t, U(t)),

where we have used the Lipschitz condition described in (C1) . Thus,
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D+m(t) = lim sup
h→0+

1
h
[m(t + h) − m(t)]

� D+V(t, U(t)) + L lim sup
h→0+

1
h

[
D[U(t + h), U(t)

+h{F(t, U(t)) +
∫ t

t0

K(t,η, U(η))dη}]
]

.

Let U(t + h) = U(t) + Z(t), where Z(t) is the Hukuhara difference of U(t + h)
and U(t) for small h > 0 and is assumed to exist. Hence, employing the properties of
D[., .], it follows that

D[U(t + h), U(t) + h{F(t, U(t)) +
∫ t

t0

K(t,η, U(η))dη}]

= D[U(t) + Z(t), U(t) + h{F(t, U(t)) +
∫ t

t0

K(t,η, U(η))dη}]

= D[Z(t), h{F(t, U(t)) +
∫ t

t0

K(t,η, U(η))dη}]

= D[U(t + h) − U(t), h{F(t, U(t)) +
∫ t

t0

K(t,η, U(η))dη}].

Consequently, we find that

1
h
[D[U(t + h), U(t) + h{F(t, U(t)) +

∫ t

t0

K(t,η, U(η))dη}]

= D[
U(t + h) − U(t)

h
, F(t, U(t)) +

∫ t

t0

K(t,η, U(η))dη],

which, in view of the fact that U(t) is a solution of (8), yields

lim sup
h→0+

1
h
[D[U(t + h), U(t) + h{F(t, U(t)) +

∫ t

t0

K(t,η, U(η))dη}]

= lim sup
h→0+

D[
U(t + h) − U(t)

h
, F(t, U(t)) +

∫ t

t0

K(t,η, U(η))dη]

= D[U′
H(t), F(t, U(t)) +

∫ t

t0

K(t,η, U(η))dη] = 0.

Hence, we have the scalar integro-differential inequality

D+m(t) � g(t, m(t)) +
∫ t

t0

G(t,η, m(η))dη, m(t0) � w0,

which, by following the method of proof for Theorem 1.4.1 (page 13 [10]), provides
the desired estimate

m(t) � r(t, t0, w0), t ∈ [t0,∞).
This proves the assertion of the theorem.
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REMARK The set integro-differential equation (SIDE) (8) reduces to an ordinary
integro-differential equation (OIDE) when U(t) is single valued and SIDE (8) can be
generated from OIDE by setting F(t, X) = cof (t, X), G(t,η, X) = cog(t,η, X), X ∈
K(Rn) where co denotes closed convexhull and f : R+×Rn → Rn, g : R+×R+×Rn →
Rn arise from OIDE

u′(t) = f (t, u(t)) +
∫ t

t0

g(t,η, u(η))dη, u(t0) = u0 ∈ Rn.

Consequently, the solution of OIDE is imbedded in the solutions of SIDE.

For the stability criteria of the null solution of (8), one can employ the measure
D[U(t), θ] = ‖U(t)‖ = diam[U(t)], t � t0 so that diam[U(t)] is nondecreasing in t.
This measure needs to be introduced for the generation of SIDE from OIDE otherwise
the undesired elements enter the solution and the measure ‖U(t)‖ becomes unsuitable
to develop the stability theory. It has been noticed that the cause of the problem in SIDE
is due to the requirement of Hukuhara difference in its formulation. This problem can
be overcome by utilizing the existence of Hukuhara difference in the initial conditions
also, which in fact makes it possible to match the behavior of the solution of SIDE
with the corresponding solutions of OIDE. In order to do so, we suppose that the
Hukuhara difference exists for any given initial values U0, V0 ∈ K(Rn) so that we set
U0−V0 = W0 and consider the stability of the solution U(t, t0, U0−V0) = U(t, t0, W0)
of (8).

We are now in a position to formulate the stability criteria for the trivial solution
of (8) as follows:

THEOREM 5. Assume that the system (8) has the trivial solution, and (C1), (C2)
of Theorem 4 hold on R+ × Ω(ρ) instead of K(Rn), where Ω(ρ) = [U ∈ K(Rn) :
‖U‖ < ρ].

Further, suppose that b(‖U‖) � V(t, U) � a(‖U‖) on R+ × Ω(ρ), where
a, b ∈ [[0, ρ], R+] are the usual K class functions.

Then the stability properties of the trivial solution of (11) imply the corresponding
properties of the trivial solution of (8) subject to the condition U(t, t0, U0 − V0) =
U(t, t0, W0).

Proof. We only provide the outline of the proof. By Theorem 4 and using the
standard method of proof of known results [10], the conclusion of the theorem can be
established in a straightforward way.
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