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ASYMPTOTIC BEHAVIOR OF NONOSCILLATORY SOLUTIONS OF

SECOND ORDER NONLINEAR NEUTRAL DIFFERENTIAL EQUATIONS

MUSTAFA HASANBULLI AND YURI V. ROGOVCHENKO

(communicated by R. P. Agarwal)

Abstract. Westudy asymptotic behavior of solutions of second order nonlinear neutral differential
equations of the form

(x (t) + p(t)x (t − τ))′′ + f
(
t, x (t) , x (ρ (t)) , x′ (t) , x′ (σ (t))

)
= 0.

First we prove that solutions can be indefinitely continued to the right. Then, using the
celebrated Bihari integral inequality, we obtain conditions for all nonoscillatory solutions to
behave at infinity like nontrivial linear functions. Our theorems complement and extend recent
results reported in the literature.

1. Introduction

In this paper, we are concerned with asymptotic behavior of nonoscillatory solu-
tions of the second order nonlinear neutral differential equation

(x (t) + p(t)x (t − τ))′′ + f
(
t, x (t) , x (ρ (t)) , x′ (t) , x′ (σ (t))

)
= 0. (1)

By a solution of Eq. (1) we mean a continuous function x(t) which satisfies the
differential equation on [tx, +∞) for some tx � t0, that is, the function x (t) , defined
on [tx, +∞), such that x (t) + p(t)x (t − τ) is twice continuously differentiable and
x (t) satisfies (1) for t � tx. A nontrivial solution of Eq. (1) is called oscillatory if it
does not have the largest zero and nonoscillatory otherwise. In what follows, we assume
that Eq. (1) possesses nontrivial nonoscillatory solutions.

This research is motivated by recent papers regarding existence of solutions to
nonlinear second order differential equations

u′′ + f (t, u, u′) = 0, t � t0 � 1 (2)

and
u′′ + f (t, u) = 0, t � t0 � 1 (3)

which behave at infinity like solutions of the simplest second order differential equa-
tion, u′′ = 0, see, for instance, Constantin [4], Constantin and Villari [5], Lipovan
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[13], Mustafa and Rogovchenko [15, 16, 17, 18], Philos et al. [21], Rogovchenko and
Rogovchenko [22, 23], Rogovchenko [24], Rogovchenko and Villari [25], Seifert [26],
Serrin and Zou [27], Yin [28], Zhao [29] and the references cited therein. Very recently,
interesting applications of the analysis of nonoscillatory solutions to ordinary differ-
ential equations for some important classes of equations in mathematical physics have
been discussed in Agarwal et al. [1], Agarwal and Mustafa [2], Hesaaraki andMoradifam
[10].

Two types of behavior of asymptotically linear solutions of Eqs. (2) and (3) have
been studiedmore extensively. Namely, Constantin [4], Rogovchenko andRogovchenko
[23], Yin [28], and Zhao [29] explored conditions which guarantee asymptotic represen-
tation

u(t) = At + o(t) as t → +∞, (4)

whereas Lipovan [13], Mustafa [14], and Mustafa and Rogovchenko [15] derived con-
ditions for a more precise asymptotic development

u(t) = At + B + o(1) as t → +∞,

where A, B ∈ R and A �= 0. Our goal is to establish sufficient conditions for all
nonoscillatory solutions of nonlinear neutral differential equation (1) to have asymptotic
representation (4) as t → +∞.

Many authors were concerned with the oscillatory and asymptotic properties of
solutions of different classes of neutral differential equations. In particular, Kulcsár [11]
obtained sufficient conditions for the convergence to zero of nonoscillatory solutions of
the second order linear neutral differential equation

(x (t) − px (t − τ))′′ + q (t)x (σ(t)) = 0.

Graef and Spikes [8] derived two sets of sufficient conditions which guarantee that
any bounded nonoscillatory solution of a forced nonlinear neutral differential equation

[y(t) + P(t)y(g(t))]′′ − Q(t)f (y(t − σ)) = R(t) (5)

tends to zero as t → +∞, while Grammatikopoulos et al. [9] established similar
conditions for nonoscillatory solutions of Eq. (5) in the case R(t) ≡ 0. Further
studies in this direction have been undertaken by Graef et al. [7] who derived sufficient
conditions for solutions of neutral differential equation (5) with R(t) ≡ 0 to have one of
the following properties: (a) the nonoscillatory solutions are bounded or tend to zero;
(b) the bounded solutions are either oscillatory or tend to zero; (c) the unbounded
solutions are either oscillatory or tend to infinity.

For higher order equations, Y. Naito [20] obtained a necessary and sufficient
condition for the neutral differential equation

dn

dtn
[x(t) − h(t)x(τ(t))] + f (t, x(g(t))) = 0

to have a positive solution satisfying

lim
t→+∞

x(t) − h(t)x(τ(t))
tk

= c > 0,
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whereas M. Naito [19] proved that n -th order nonlinear neutral differential equation

dn

dtn
[x(t) + λx(t − τ)] + σF(t, x(g(t))) = 0

has a solution satisfying

lim
t→+∞

x(t)
tk

= c > 0

if and only if ∫ +∞

t0

tn−k−1F(t, c [g(t)]k)dt < +∞ for some c > 0.

Recently, Džurina [6] extended results of the second author [24] on asymptotic
integration of Eq. (2) to second order nonlinear neutral differential equation

(x (t) + px (t − τ))′′ + f (t, x (t)) = 0

establishing conditions under which all nonoscillatory solutions behave like linear func-
tions at + b as t → +∞ for some a, b ∈ R and stated without proof similar theorem
for

(x (t) + px (t − τ))′′ + f
(
t, x (t) , x′(t)

)
= 0.

We shall show that, in a similar manner, one can extend more general results on
asymptotic behavior of solutions of the nonlinear differential equation (2) due to S.
Rogovchenko and the second author [22, 23] to nonlinear neutral differential equation
(1).

2. Auxiliary results

Let R
+ = [0, +∞). In the sequel, we suppose that the function f (t, u1, u2, v1, v2)

satisfies the following conditions:
(A1) f (t, u1, u2, v1, v2) is continuous in

D = {(t, u1, u2, v1, v2) : t � t0 � 1, u1, u2, v1, v2 ∈ R} ;

(A2) there exist functions h1, . . . , h5, g1, . . . , g4 ∈ C [R+, R+] such that either

|f (t, u1, u2, v1, v2)| � h1 (t) g1

( |u1|
t

)
+ h2 (t) g2

( |u2|
ρ (t)

)
+ h3 (t) , (6)

or

|f (t, u1, u2, v1, v2)| � h4 (t) g3

( |u1|
t

)
g4

( |u2|
ρ (t)

)
+ h5 (t) , (7)

where, for s > 0, the functions gi (s) , i = 1, . . . , 4, are positive, non-decreasing, and∫ +∞

t0

hi (s) ds = Hi < +∞, i = 1, . . . , 5.

(A3) ρ,σ ∈ C [R+, R+] , ρ (t) � t, σ (t) � t, limt→+∞ ρ (t) = +∞, and
limt→+∞ σ (t) = +∞;
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(A4) p ∈ C [R+, R+] , 0 � p (t) � p∗ < 1, and limt→+∞ p (t) = p0.
For t � t0, introduce the functions G1 and G2 by

G1 (t) =
def

∫ t

t0

ds
g1 (s) + g2 (s)

, G2 (t) =
def

∫ t

t0

ds
g3 (s) g4 (s)

.

We need the following result which, although independent of Eq. (1), helps to
study behavior of nonoscillatory solutions of this equation, cf. Džurina [6, Lemma 1],
Györi and Ladas [12, Lemma 6.1.1].

LEMMA 1. Let x (t) > 0 (or x (t) < 0 ) eventually, τ > 0, and let p(t) satisfy
(A4) . Define

w (t) = x (t) + p (t)
t − τ

t
x (t − τ) . (8)

If there exists a finite limit limt→+∞ w (t) = c, then

lim
t→+∞ x (t) =

c
1 + p0

. (9)

Proof. Suppose that x (t) > 0. It is clear from (8) that c � 0 and (9) yields

lim inf
t→+∞ x (t) � c

1 + p0
� lim sup

t→+∞
x (t) .

Assume that there exist α1,α2 � 0 and sequences μn, νn diverging to +∞ such
that

lim sup
t→+∞

x (t) = lim
t→+∞ x (μn) =

c + α1

1 + p0
,

lim inf
t→+∞ x (t) = lim

t→+∞ x (νn) =
c − α2

1 + p0
.

We have to prove that α1 = α2 = 0. Consider the following two cases.

Case 1. Assume that α1 > 0 and α1 � α2 � 0. It follows from (8) that, for any
ε > 0,

w (t) � x (t) + p (t)
t − τ

t
c − α2 − ε

1 + p0
. (10)

Letting in (10) t = μn and passing to the limit as n → +∞, we obtain

c � c + α1

1 + p0
+ p0

c − α2 − ε
1 + p0

,

or, equivalently,
α1 � p0 (α2 + ε) . (11)

Chose now ε = (2p0)
−1 (1 − p0)α2. Since p0 < 1, (11) yields

α1 � 1
2
α2 (p0 + 1) < α2,

which contradicts our initial assumption that α1 � α2.
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Case 2. Assume now that α2 > 0 and α2 � α1 � 0. Similarly to Case 1, (8)
implies that, for any ε > 0,

w (t) � x (t) + p (t)
t − τ

t
c + α1 + ε

1 + p0
. (12)

Let in (12) t = νn and pass to the limit as n → +∞ to obtain

c � c − α2

1 + p0
+ p0

c + α1 + ε
1 + p0

,

which is equivalent to
α2 � p0 (α1 + ε) . (13)

Choose ε = (2p0)
−1 (1 − p0)α1. Using (13) and the fact that p0 < 1, we

conclude that

α2 � 1
2
α1 (p0 + 1) < α1,

which contradicts our assumption that α2 � α1.
The proof is complete. �

REMARK 2. In the case p(t) = p, Lemma 1 reduces to Džurina’s result [6, Lemma
1].

Let z (t0) = c1 and z′ (t0) = c2. In what follows, we shall use the notation

c∗ =
def |c1| + |c2| .

Further, define z(t) by

z (t) = x (t) + p(t)x (t − τ) . (14)

The next result provides useful estimate for solutions of Eq. (1).

LEMMA 3. (i) Assume that f (t, u1, u2, v1, v2) satisfies (6) . Then, for all t � t0,
one has

max

[ |z (t)|
t

,
|z (ρ (t))|
ρ (t)

]
� Φ1(t), (15)

where

Φ1(t) =
def

c∗+
∫ t

t0

h1 (s) g1

( |z (s)|
s

)
ds+

∫ t

t0

h2 (s) g2

( |z (ρ (s))|
ρ (s)

)
ds+

∫ t

t0

h3 (s) ds.

(ii) Assume that f (t, u1, u2, v1, v2) satisfies (7) . Then, for all t � t0, one has

max

[ |z (t)|
t

,
|z (ρ (t))|
ρ (t)

]
� Φ2(t), (16)

where

Φ2(t) =
def

c∗ +
∫ t

t0

h4 (s) g3

( |z (s)|
s

)
g4

( |z (ρ (s))|
ρ (s)

)
ds +

∫ t

t0

h5 (s) ds.
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Proof. Part (i) . Let x (t) be a nonoscillatory solution of Eq. (1). Clearly,

|z (t)| � |x (t)| , (17)

and it follows from Eq. (1) that

z′′ (t) = −f
(
t, x (t) , x (ρ (t)) , x′ (t) , x′ (σ (t))

)
, (18)

where z (t) is defined in (14). Integrating (18) twice from t0 to t , we obtain

z′ (t) = c2 −
∫ t

t0

f
(
s, x (s) , x (ρ (s)) , x′ (s) , x′ (σ (s))

)
ds, (19)

z (t) = c2 (t − t0) + c1 −
∫ t

t0

(t − s) f
(
s, x (s) , x (ρ (s)) , x′ (s) , x′ (σ (s))

)
ds, (20)

and it follows from (20) that, for t � t0,

|z (t)| � t

(
c∗ +

∫ t

t0

∣∣f (
s, x (s) , x (ρ (s)) , x′ (s) , x′ (σ (s))

)∣∣ ds

)
.

Using (6), (17), and monotonicity of the functions g1 and g2, we have∣∣f (
t, x (t) , x (ρ (t)) , x′ (t) , x′ (σ (t))

)∣∣
� h1 (t) g1

( |x (t)|
t

)
+ h2 (t) g2

( |x (ρ (t))|
ρ (t)

)
+ h3 (t)

� h1 (t) g1

( |z (t)|
t

)
+ h2 (t) g2

( |z (ρ (t))|
ρ (t)

)
+ h3 (t) .

Hence, for all t � t0,

|z (t)|
t

� c∗ +
∫ t

t0

h1 (s) g1

( |z (s)|
s

)
ds

+
∫ t

t0

h2 (s) g2

( |z (ρ (s))|
ρ (s)

)
ds +

∫ t

t0

h3 (s) ds = Φ1 (t) .

(21)

Clearly, Φ1 (t) is increasing because, for all t � t0, Φ′
1 (t) > 0. Then, by the

assumption (A3) , one has

|z (ρ (t))| � ρ(t)Φ1 (ρ (t)) � ρ(t)Φ1 (t) ,

or |z (ρ (t))|
ρ(t)

� Φ1 (t) . (22)

Now (15) follows from (21) and (22).
Part (ii) . Assume that f satisfies (7). Following the same lines as above, we

conclude that, for t � t0,

|z (t)|
t

� c∗ +
∫ t

t0

h4 (s) g3

( |z (s)|
s

)
g4

( |z (ρ (s))|
ρ (s)

)
ds +

∫ t

t0

h5 (s) ds, (23)



ASYMPTOTIC BEHAVIOR OF NONOSCILLATORY SOLUTIONS 613

which, combined with

|z (ρ (t))| � ρ(t)Φ2 (ρ (t)) � ρ(t)Φ2 (t) , (24)

immediately yields (16). �
The following lemma establishes existence of solutions of Eq. (1) for all t � t0 � 1

and resembles the result proved by Mustafa and the second author for Eq. (2) in the
case where f satisfies the growth condition

|f (t, u, v)| � h1 (t) g1

( |u|
t

)
+ h2 (t) g2 (|v|) + h3 (t) ,

cf. [17, Lemma 3.6, pp. 318-319].

LEMMA 4. Suppose that there exists a solution x(t) of Eq. (1) defined on [1, T),
1 < T < +∞, which cannot be continued to the right of T.

(i) If f (t, u1, u2, v1, v2) satisfies (6) , then G1(+∞) < +∞.
(ii) If f (t, u1, u2, v1, v2) satisfies (7) , then G2(+∞) < +∞.

Proof. Part (i) . Let x(t) be a solution of Eq. (1) which is defined on [1, T),
1 < T < +∞, and cannot be continued to the right of T, and let z(t) be defined by
(14). Using estimates (21) and (22), we conclude that, for t ∈ [1, T),

max

[ |z(t)|
T

,
|z (ρ (t))|
ρ (T)

]
� max

[ |z(t)|
t

,
|z (ρ (t))|
ρ (t)

]
� γ (t), (25)

where γ (t) is the maximal solution of the initial value problem{ ξ ′ = (h1(t) + h2(t) + h3(t)) (g1(ξ) + g2(ξ) + 1) ,

ξ(1) = ξ0 =
def

c∗.
(26)

Since solution x(t) of Eq. (1) cannot be continued to the right,

lim
t→T−

|x(t)| = +∞,

which, in virtue of (17) and (25), implies γ (t) → +∞ as t → T − . Integration of
(26) yields, for t ∈ [1, T),∫ γ (t)

ξ0

ds
g1(s) + g2(s) + 1

=
∫ t

1
(h1(s) + h2(s) + h3(s)) ds. (27)

Passing in (27) to the limit as t → T−, we deduce that∫ +∞

ξ0

ds
g1(s) + g2(s) + 1

=
∫ T

1
(h1(s) + h2(s) + h3(s)) ds < +∞. (28)

If G1(+∞) = +∞, then, according to [15, Lemma 7, p. 346], one has∫ +∞

ξ0

ds
g1(s) + g2(s) + 1

= +∞,



614 MUSTAFA HASANBULLI AND YURI V. ROGOVCHENKO

which contradicts (28). Thus, Part (i) is proved.
Part (ii) . Let x(t) and z(t) be as in Part (i) . Using estimates (23) and (24), we

conclude that, for t ∈ [1, T), inequality (25) holds, where this time γ (t) is the maximal
solution of the initial value problem{

ξ ′ = (h4(t) + h5(t)) (g3(ξ)g4(ξ) + 1) ,

ξ(1) = ξ0,
(29)

and ξ0 is defined in (26). Integrating ordinary differential equation in (29) and taking
into account that γ (t) → +∞ as t → T−, we obtain, for t ∈ [1, T),∫ γ (t)

ξ0

ds
g3(s)g4(s) + 1

=
∫ t

1
(h4(s) + h5(s)) ds. (30)

Passing in (30) to the limit as t → T− , we conclude that∫ +∞

ξ0

ds
g3(s)g4(s) + 1

=
∫ T

1
(h4(s) + h5(s)) ds < +∞. (31)

Another application of [15, Lemma 7, p. 346] yields∫ +∞

ξ0

ds
g3(s)g4(s) + 1

= +∞

provided that G2(+∞) = +∞ , which, in virtue of (31), leads to the contradiction.
This completes the proof of lemma. �
As an immediate consequence of Lemma 4, we obtain the following important

continuation result.

COROLLARY 5. Assume that the nonlinearity f satisfies (6) (respectively, (7))
and G1(+∞) = +∞ (respectively, G2(+∞) = +∞) . Then all solutions of Eq. (1)
can be indefinitely continued to the right.

3. Existence of asymptotically linear solutions

THEOREM 6. Suppose that (6) holds and G1 (+∞) = +∞. Then any nonoscilla-
tory solution of Eq. (1) has the asymptotic representation (4) , and there exist solutions
for which A �= 0.

Proof. Let x (t) be a nonoscillatory solution of Eq. (1) and z(t) be defined by (14).
Then, by virtue of Lemma 3, (15) holds. Since g1 (s) and g2 (s) are non-decreasing
for s > 0 , one has

g1

( |z (t)|
t

)
� g1 (Φ1 (t)) and g2

( |z (ρ (t))|
ρ (t)

)
� g2 (Φ1 (t)) . (32)

Taking into account (32) and the definition of Φ1 (t) , we conclude that

Φ1 (t) � M +
∫ t

t0

h1 (s) g1 (Φ1 (s)) ds +
∫ t

t0

h2 (s) g2 (Φ1 (s)) ds,
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where M =
def

c∗ + H3. Observing further that

h1 (s) g2 (Φ1 (s))+h2 (s) g2 (Φ1 (s)) � (h1 (s) + h2 (s)) (g1 (Φ1 (s))+g2 (Φ1 (s))) ,

we obtain

Φ1 (t) � M +
∫ t

t0

(h1 (s) + h2 (s)) (g1 (Φ1 (s)) + g2 (Φ1 (s))) ds. (33)

Application of the Bihari inequality [3] to (33) yields

Φ1 (t) � G−1
1

(
G1 (M) +

∫ t

t0

(h1 (s) + h2 (s)) ds

)
,

where G−1
1 is the inverse of G1 defined for x ∈ (G1 (0+) , +∞) . Let

K1 =
def

G1 (M) + H1 + H2 < +∞.

Since G−1
1 is increasing, we conclude that

Φ1 (t) � G−1
1 (K1) =

def
K2 < +∞.

Thus,
|z (t)|

t
� K2 and

|z (ρ (t))|
ρ (t)

� K2,

where the second inequality follows from (22). On the other hand, for t � t0 ,∫ t

t0

∣∣f (
s, x (s) , x (ρ (s)) , x′ (s) , x′ (σ (s))

)∣∣ ds � g1 (K2) H1

+ g2 (K2) H2 + H3 =
def

K3 < +∞.

Therefore,

lim
t→+∞

∫ t

t0

∣∣f (
s, x (s) , x (ρ (s)) , x′ (s) , x′ (σ (s))

)∣∣ ds

exists, and it follows from (19) that there exists a number μ ∈ R such that

lim
t→+∞ z′ (t) = μ.

Choosing t0 appropriately, one can always ensure that μ �= 0. Furthermore,
application of the l’Hospital rule implies that

lim
t→+∞

z (t)
t

= lim
t→+∞ z′ (t) = μ.

Set w (t) = z (t) /t and u (t) = x (t) /t. Then (14) yields

w (t) = u (t) + p (t)
t − τ

t
u (t − τ) .
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Taking into account that

lim
t→+∞w (t) = lim

t→+∞
z (t)

t
= μ �= 0

and using Lemma 1, we conclude that

lim
t→+∞ u (t) = lim

t→+∞
x (t)

t
=

μ
1 + p0

=
def

A.

The proof is complete now. �

EXAMPLE 7. For t � 2 , consider the nonlinear neutral differential equation

(x (t) + p (t) x (t − 1))′′ + a (t) tanh
(
x′ (σ (t))

)
+ b (t) = 0, (34)

where

α (t) =
[
(2t + 1)3 (t − 1)2

]−1
, a(t) =

12t3α (t)
tanh (1 + 2/t)

,

b(t)=α (t) t−2
[
(4 ln (t−1)−10) t4+(5−8 ln (t−1)) t3 + (4 ln (t−1)−3) t2+4t+1

]
,

p (t) =
t

2t + 1
and σ (t) = t/2.

By Theorem 6, for any nonoscillatory solution of Eq. (34), (4) holds. In fact,
x (t) = t + ln t is such a solution. We note that neither results reported by Džurina in
[6], nor those in the references [7] - [11], [19], [20] apply to Eq. (34).

THEOREM 8. Suppose that (7) holds and G2 (+∞) = +∞. Then the conclusion
of Theorem 6 holds.

Proof. Let x (t) and z(t) be as be as in Theorem 6. By Lemma 3,

|z (t)|
t

� Φ2 (t) and
|z (ρ (t))|
ρ (t)

� Φ2 (t) . (35)

Using (16), (35), and monotonicity of the functions g3 and g4 , we obtain

Φ2 (t) � N +
∫ t

t0

h4 (s) g3 (Φ2 (s)) g4 (Φ2 (s)) ds, (36)

where N =
def

c∗ + H5 . Application of the Bihari inequality to (36) yields

Φ2 (t) � G−1
2

(
G2 (N) +

∫ t

t0

h4 (s) ds

)
,

where G−1
2 is the inverse of G2 defined for x ∈ (G2 (0+) , +∞) . Let

K4 =
def

G2 (N) + H4 < +∞.
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Then,

Φ2 (t) � G−1
2 (K4) =

def
K5 < +∞,

and the proof is completed in the same manner as in Theorem 6 . �

EXAMPLE 9. For t � 2 , consider the nonlinear neutral differential equation

(x (t) + p (t) x (t − 1))′′ + a (t)
[

x2 (t)
x2 (t) + 1

]3/4
[

(x′ (t))2

(x′ (t))2 + 1

]1/4

= b (t) , (37)

where

a (t) =
28t3

(
t4 − t2 + 1

)3/4 (
2t4 + 2t2 + 1

)1/4

(t2 − 1)3/2 (t2 + 1)1/2 (2t2 − t − 1)3
,

b (t) =
2

(
18t5 − 6t4 − 8t3 − 3t2 + 3t + 1

)
t3 (2t2 − t − 1)3 and p (t) =

1
2t + 1

.

By Theorem 8, for any nonoscillatory solution x (t) of Eq. (37), (4) holds. In fact,
x (t) = t − 1/t is such a solution. Remarkably, results due to Džurina [6] and other
authors, see [7] - [11], [19], [20], do not apply to Eq. (37).

Acknowledgement. The authors express their sincere gratitude to the referee for
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