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A NOTE ON ABSOLUTE RIESZ SUMMABILITY FACTORS

HUSEYIN BOR

(communicated by L. Leindler)

Abstract. In the present paper a theorem on |N, py|; summability factors of infinite series has
been proved under more weaker conditions. Also we have obtained a new result concerning the
|C, 1], summability factors.

1. Introduction

Let Y a, be a given infinite series with partial sums (s,). We denote by u% and
1% the n-th Cesaro means of order o, with o > —1, of the sequence (s,) and (na,),
respectively, i.e.,

1 n
o __ } : a—1
u, = E An—vSV’

moy=0

where

Ay =00n%), oa>-1, Af=1 and A%,=0 for n>0.

n

A series Y a, is said to be summable |C, o], k > 1, if (see [6], [8])

Let

The

oo
tock
bl o
n

n=1

(pn) be a sequence of positive numbers such that

n
P,,:vaﬂoo as n—oo, (P_ij=p_;=0,i>1).
v=0
sequence-to-sequence transformation

1 n
On = - vasv
P, —0
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defines the sequence (0,) of the Riesz mean or simply the (N, p,) mean of the sequence
(sn), generated by the sequence of coefficients (p,) (see [7]). The series Y a, is said
to be summable [N, p,|,, k > 1, if (see [2], [3])

o0
(Pu/pa)* ' AG,1 [} < 0, (7)

n=1

where
n
Pn

Ao, 1 = — P, > 1. 8
n—1 PnPn,l - y—1Qy, nz ( )

In the special case p, = 1 for all values of n |N, p,|, summability is the same as
|C, 1|, summability.

2. Known results.

Bor [4] has proved the following theorem for |N, p,|, summability.

THEOREM A. Let k > | and (X,) be a positive non-decreasing sequence and
there be sequences (B,) and (A,) such that

|AL| < B, ©)
B, —0 as n— oo, (10)
> n|AB, X, < oo, (11)
n=1
|An|Xn = 0(1) (12)
and
- Jsu*
Z — =0(X,) as n— oo. (13)
v
v=1
Suppose further, the sequence (p,) is such that
P, = O(npn)a (14)
PnApn = 0(pnpn+l)~ (15)
Then the series Y-, an% is summable |N,p,i.

It may be noticed if we take k = 1 in Theorem A, then we get a result due to
Mishra and Srivastava (see [10]).

Later on Bor [5] has proved Theorem A under weaker conditions in the following
form.

THEOREM B. Let k > 1 and (X,) be a positive non-decreasing sequence and
the sequences (f,) and (A,) are such that conditions (9) — (15) of Theorem A are
satisfied with the condition (13) replaced by:

n 7 k
Z % =0(X,) as n— 0. (16)
v=1
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PIIA’H
n=19n npn

where (t,) is the n-th (C, 1) mean of the sequence (na,), then the series >~
is summable |N,p,|,.

It may be noted that condition (16) is weaker than condition (13).

3. Main result

The aim of this paper is to prove Theorem B under weaker conditions. Therefore
we need the concept of almost increasing sequence. A positive sequence (b,) is said to
be almost increasing if there exists a positive increasing sequence (c,) and two positive
constants A and B such that Ac, < b, < Bc, (see [1]). Obviously every increasing
sequence is almost increasing. However, the converse need not be true as can be seen
by taking the example, say b, = ne(=1" .

Now we shall prove the following theorem.

THEOREM Let (X,) be an almost increasing sequence. Ifthe conditions (9)— (12)
and (14)—(16) are satisfied, then the series Y~ | a, I;’ﬁ" is summable |N,p,|,, k > 1.

REMARK. It should be noted that from the hypotheses of the Theorem, (4,) is
bounded and A4, = O(1/n) (see [4]).

4. Two lemmas

We require the following lemmas for the proof of the theorem.

LEMMA 1. ([9]) If (X,) analmostincreasing sequence, then under the conditions
(10) — (11) we have that

anBn = 0(1)7 (17)
iﬁnx,, < 0. (18)
n=1

LEMMA 2. ([5]) Ifthe conditions (14) and (15) are satisfied, then A(P,/p.n*) =
Oo(1/n?).

5. Proof of the Theorem

Let (T,) be the sequence of (N,p,) mean of the series >, ‘@%’1’1 Then, by
definition, we have

n

vaZaP/l _ PLZ(Pn*Pvfl)aVPVAV- (19)
Pr —

VDv
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Then for n > 1

n
Pn PV—IPVGVA’V
T,—T,—1 =
" ol PnPnfl ; Vpy

_ D Z P, (P, avv)L
PnPnfl —1 Vzpv

Using Abel’s transformation, we get

n
Pn y— IPA
n n—1 PP, VE:I < Vzpv > E ra, + 2 § va,,

n—1

pn PV A‘V pﬂ
= i Dt,p,—= P,P,AL(
PnPn_I;pV(VJF )pv2+ppnlz (v+ )

vapy

P 2’; 1 ZP AV+1 V (PV/VZPV) + Antn(l’l + 1)/n2
= Ipn1 + Tn,2 + Tn,3 + Tn,4, say

To prove the theorem, by Minkowski’s inequality, it is sufficient to show that

[e%e] P k—1

Z(—) T, |f <00, for r=1,2,3,4. (20)
Pn

n=1

Now, applying Holder’s inequality, we have that

k
m+1 k—1 m+1 n—1
P, Pn P, 1
_ |T, f= (1) _pv‘thA’v‘_
; (pn> Pnpﬁfl ZPV v

n=2 v=1

m+1

n—1 n—1 k=1
1 1
0 1 V v A‘ k I Vv
WY e Y p it {PZP}
k m+1
P, 1 Pn
- 15|12 |F
< V) ‘ ‘ ‘ | Z PnPn—l
n=v+1
11
k—1 k
( ) Ml
1)ka71§|lv\|fvlk
v=1
m ‘tv‘k
DDl
v=1

1
MVHIVVCJ
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m—1 m k
WX 8 |Z P L o,y 1
v=1

m—1
1)) 1ALX, + O(1)[An| X,y

v=1

m—1

1) Y BX, + O(1) 2lX, = O(1)

v=1

as m — oo, by virtue of the hypotheses of the Theorem and Lemma 1.
Now using the fact that (P,/v) = O(p,) by (14), we have that

m+1 P k—1 m+1 p n—1 P k
n k _ n Vv
S (2) it oy 5 {Z p—vam}

n=2 Pn n=2 n—1 v=1

m+1 p n—1 P k
=0(1 u =) 1AL Fpy b x
Y 5 {Z(pv) AL p}

n=2 y=1

. k=1
Pv}

—
~

T Lol
._.M .

m P k m+1 p
—om > (2) n e Y 52
v=1 Dy n=v+1 ntn—1
—omS (2) an
p vV v

<
—

Sl

I
i~
N
—~

<
Il
—_

~
|
—_

|AAL A1 [

<
N——— N————
=~
|

T |&

m

1
I)ka lpmvwk

k
Zﬁv\tv\k oy

v=1
m—1 m
(1) 808) Z WL omp, 30
v=1
m—1 m—1

1) Y VIABIX, +0(1) Y BX, + O(1)mBy X,y

v=1 y=1

=0(1) as m— oo,

in view of the hypotheses of the Theorem and Lemma 1.
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Now, since A(p’: ») = O(%) by Lemma 2, we have that

m+1 k—1 m+1 n—1
P, 1v+1
Z(,,—) Tl = O(1) {ZP PRAL }

n=2 n n= 2 ” 1
k
m+1 n—1
Pn P, 1
=0(1 Py Afv - tv
D2, 55 I{me wlsl |}
n— v=1
m+1 P n—1 P k n—1
=0(1 . - v Afv 1 tv
08 (S e} 5 50)
m P k 1 m+1 »
= 0 1 _V v Av k=1 Av tv k "
O3 ) prgon ol 3 g
m k—1
P 1
—om > (2) il
B m N ‘tv‘
=0(1) > A1
v=1
m—1 |[ |t
vamz " +o(l Mmmz .
m—1
= 0(1) Z |AA‘V+1|XV + 0(1)Mlm+l|xm
v=1
m—1
D) A dat| Xt + O(1) At X
v=1

m

1) " [AMIX, + O(1) A1 X 1
v=2

1) Z ﬁva + 0(1)Mlm+l|xm+l = 0(1)

v=1

as m — oo, by virtue of the hypotheses of the Theorem and Lemma 1.
Finally, as in T, 3, we have that

m

k—1 m k—1 k
P P n+1\"1
2 T4 = o@1 2 — A, 512,
E (p> | T4l ()nE_l(pn> ( " ) nk\ WA

n=1 n
- 1
0y ! A = A

n=1

[t

= O(I)ZM,,\ . =0(1) as m— 0.
n=1
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Therefore, we get that

m P k—1
Z(—") T, *=0(1) as m—oco, for r=12734.
Pn

n=1

This completes the proof of the Theorem.

If we take p, = 1 for all values of n, then we get a new result concerning the
|C, 1|, summability factors.
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