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A NOTE ON ABSOLUTE RIESZ SUMMABILITY FACTORS

HÜSEYİN BOR

(communicated by L. Leindler)

Abstract. In the present paper a theorem on |N̄, pn|k summability factors of infinite series has
been proved under more weaker conditions. Also we have obtained a new result concerning the
|C, 1|k summability factors.

1. Introduction

Let
∑

an be a given infinite series with partial sums (sn) . We denote by uαn and
tαn the n-th Cesàro means of order α , with α > −1 , of the sequence (sn) and (nan) ,
respectively, i.e.,

uαn =
1
Aα

n

n∑
v=0

Aα−1
n−v sv, (1)

tαn =
1
Aα

n

n∑
v=1

Aα−1
n−v vav, (2)

where

Aα
n = O(nα), α > −1, Aα

0 = 1 and Aα
−n = 0 f or n > 0. (3)

A series
∑

an is said to be summable |C,α|k , k � 1 , if (see [6], [8])
∞∑
n=1

|tαn |k
n

< ∞. (4)

Let (pn) be a sequence of positive numbers such that

Pn =
n∑

v=0

pv → ∞ as n → ∞, (P−i = p−i = 0, i � 1). (5)

The sequence-to-sequence transformation

σn =
1
Pn

n∑
v=0

pvsv (6)
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defines the sequence (σn) of the Riesz mean or simply the (N̄, pn) mean of the sequence
(sn) , generated by the sequence of coefficients (pn) (see [7]). The series

∑
an is said

to be summable |N̄, pn|k, k � 1, if (see [2], [3])
∞∑

n=1

(Pn/pn)k−1|Δσn−1|k < ∞, (7)

where

Δσn−1 = − pn

PnPn−1

n∑
v=1

Pv−1av, n � 1. (8)

In the special case pn = 1 for all values of n |N̄, pn|k summability is the same as
|C, 1|k summability.

2. Known results.

Bor [4] has proved the following theorem for |N̄, pn|k summability.

THEOREM A. Let k � 1 and (Xn) be a positive non-decreasing sequence and
there be sequences (βn) and (λn) such that

|Δλn| � βn, (9)

βn → 0 as n → ∞, (10)
∞∑

n=1

n|Δβn|Xn < ∞, (11)

|λn|Xn = O(1) (12)
and

n∑
v=1

|sv|k
v

= O(Xn) as n → ∞. (13)

Suppose further, the sequence (pn) is such that

Pn = O(npn), (14)

PnΔpn = O(pnpn+1). (15)

Then the series
∑∞

n=1 an
Pnλn
npn

is summable |N̄, pn|k .

It may be noticed if we take k = 1 in Theorem A, then we get a result due to
Mishra and Srivastava (see [10]).

Later on Bor [5] has proved Theorem A under weaker conditions in the following
form.

THEOREM B. Let k � 1 and (Xn) be a positive non-decreasing sequence and
the sequences (βn) and (λn) are such that conditions (9) − (15) of Theorem A are
satisfied with the condition (13) replaced by:

n∑
v=1

|tv|k
v

= O(Xn) as n → ∞. (16)
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where (tn) is the n-th (C, 1) mean of the sequence (nan) , then the series
∑∞

n=1 an
Pnλn
npn

is summable |N̄, pn|k .

It may be noted that condition (16) is weaker than condition (13).

3. Main result

The aim of this paper is to prove Theorem B under weaker conditions. Therefore
we need the concept of almost increasing sequence. A positive sequence (bn) is said to
be almost increasing if there exists a positive increasing sequence (cn) and two positive
constants A and B such that Acn � bn � Bcn (see [1]). Obviously every increasing
sequence is almost increasing. However, the converse need not be true as can be seen
by taking the example, say bn = ne(−1)n .

Now we shall prove the following theorem.

THEOREM Let (Xn) be an almost increasing sequence. If the conditions (9)−(12)
and (14)−(16) are satisfied, then the series

∑∞
n=1 an

Pnλn
npn

is summable |N̄, pn|k , k � 1.

REMARK. It should be noted that from the hypotheses of the Theorem, (λn) is
bounded and Δλn = O(1/n) (see [4]).

4. Two lemmas

We require the following lemmas for the proof of the theorem.

LEMMA 1. ([9]) If (Xn) an almost increasing sequence, then under the conditions
(10) − (11) we have that

nXnβn = O(1), (17)

∞∑
n=1

βnXn < ∞. (18)

LEMMA2. ([5]) If the conditions (14) and (15) are satisfied, then Δ(Pn/pnn2) =
O(1/n2) .

5. Proof of the Theorem

Let (Tn) be the sequence of (N̄, pn) mean of the series
∑∞

n=1
anPnλn

npn
. Then, by

definition, we have

Tn =
1
Pn

n∑
v=1

pv

v∑
r=1

arPrλr

rpr
=

1
Pn

n∑
v=1

(Pn − Pv−1)
avPvλv

vpv
. (19)
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Then for n � 1

Tn − Tn−1 =
pn

PnPn−1

n∑
v=1

Pv−1Pvavλv

vpv

=
pn

PnPn−1

n∑
v=1

Pv−1Pvavvλv

v2pv
.

Using Abel’s transformation, we get

Tn − Tn−1 =
pn

PnPn−1

n∑
v=1

Δ
(

Pv−1Pvλv

v2pv

) v∑
r=1

rar +
λn

n2

n∑
v=1

vav

=
pn

PnPn−1

n−1∑
v=1

Pv

pv
(v + 1)tvpv

λv

v2
+

pn

PnPn−1

n−1∑
v=1

PvPvΔλv(v + 1)
tv

v2pv

− pn

PnPn−1

n−1∑
v=1

Pvλv+1(v + 1)tvΔ(Pv/v2pv) + λntn(n + 1)/n2

= Tn,1 + Tn,2 + Tn,3 + Tn,4, say

To prove the theorem, by Minkowski’s inequality, it is sufficient to show that

∞∑
n=1

(
Pn

pn

)k−1

|Tn,r|k < ∞, f or r = 1, 2, 3, 4. (20)

Now, applying Hölder’s inequality, we have that

m+1∑
n=2

(
Pn

pn

)k−1

|Tn,1|k = O(1)
m+1∑
n=2

pn

PnPk
n−1

{
n−1∑
v=1

Pv

pv
pv|tv||λv|1v

}k

= O(1)
m+1∑
n=2

pn

PnPn−1

n−1∑
v=1

(
Pv

pv

)k

pv|tv|k|λv|k 1
vk

{
1

Pn−1

n−1∑
v=1

pv

}k−1

= O(1)
m∑

v=1

(
Pv

pv

)k

pv|tv|k|λv|k 1
vk

m+1∑
n=v+1

pn

PnPn−1

= O(1)
m∑

v=1

(
Pv

pv

)k

|λv|k−1|λv|pv|tv|k 1
Pv

1
vk

= O(1)
m∑

v=1

(
Pv

pv

)k−1

|λv||tv|k 1
vk

= O(1)
m∑

v=1

vk−1 1
vk
|λv||tv|k

= O(1)
m∑

v=1

|λv| |tv|
k

v
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= O(1)
m−1∑
v=1

Δ|λv|
v∑

r=1

|tr|k
r

+ O(1)|λm|
m∑

v=1

|tv|k
v

= O(1)
m−1∑
v=1

|Δλv|Xv + O(1)|λm|Xm

= O(1)
m−1∑
v=1

βvXv + O(1)|λm|Xm = O(1)

as m → ∞, by virtue of the hypotheses of the Theorem and Lemma 1.
Now using the fact that (Pv/v) = O(pv) by (14), we have that

m+1∑
n=2

(
Pn

pn

)k−1

|Tn,2|k = O(1)
m+1∑
n=2

pn

PnPk
n−1

{
n−1∑
v=1

Pv

pv
|Δλv|pv|tv|

}k

= O(1)
m+1∑
n=2

pn

PnPn−1

{
n−1∑
v=1

(
Pv

pv

)k

|Δλv|k|tv|kpv

}
×

×
{

1
Pn−1

n−1∑
v=1

pv

}k−1

= O(1)
m∑

v=1

(
Pv

pv

)k

|Δλv|k|tv|kpv

m+1∑
n=v+1

pn

PnPn−1

= O(1)
m∑

v=1

(
Pv

pv

)k−1

|Δλv|k|tv|k

= O(1)
m∑

v=1

(
Pv

pv

)k−1

|Δλv|k−1|Δλv||tv|k

= O(1)
m∑

v=1

vk−1 1
vk−1

|Δλv||tv|k

= O(1)
m∑

v=1

βv|tv|k = O(1)
m∑

v=1

vβv
|tv|k
v

= O(1)
m−1∑
v=1

Δ(vβv)
v∑

r=1

|tr|k
r

+ O(1)mβm

m∑
v=1

|tv|k
v

= O(1)
m−1∑
v=1

v|Δβv|Xv + O(1)
m−1∑
v=1

βvXv + O(1)mβmXm

= O(1) as m → ∞,

in view of the hypotheses of the Theorem and Lemma 1.
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Now, since Δ( Pv
pvv2 ) = O( 1

v2 ) by Lemma 2, we have that

m+1∑
n=2

(
Pn

pn

)k−1

|Tn,3|k = O(1)
m+1∑
n=2

pn

PnPk
n−1

{
n−1∑
v=1

Pv|λv+1||tv|1v
v + 1

v

}k

= O(1)
m+1∑
n=2

pn

PnPk
n−1

{
n−1∑
v=1

Pv

pv
pv|λv+1|1v |tv|

}k

= O(1)
m+1∑
n=2

pn

PnPn−1

{
n−1∑
v=1

(
Pv

pv

)k

pv
1
vk
|λv+1|k|tv|k

} {
1

Pn−1

n−1∑
v=1

pv

}k−1

= O(1)
m∑

v=1

(
Pv

pv

)k

pv
1
vk
|λv+1|k−1|λv+1||tv|k

m+1∑
n=v+1

pn

PnPn−1

= O(1)
m∑

v=1

(
Pv

pv

)k−1 1
vk
|λv+1||tv|k

= O(1)
m∑

v=1

|λv+1| |tv|
k

v

= O(1)
m−1∑
v=1

Δ|λv+1|
v∑

r=1

|tr|k
r

+ O(1)|λm+1|
m∑

v=1

|tv|k
v

= O(1)
m−1∑
v=1

|Δλv+1|Xv + O(1)|λm+1|Xm

= O(1)
m−1∑
v=1

|Δλv+1|Xv+1 + O(1)|λm+1|Xm+1

= O(1)
m∑

v=2

|Δλv|Xv + O(1)|λm+1|Xm+1

= O(1)
m∑

v=1

βvXv + O(1)|λm+1|Xm+1 = O(1)

as m → ∞, by virtue of the hypotheses of the Theorem and Lemma 1.
Finally, as in Tn,3, we have that

m∑
n=1

(
Pn

pn

)k−1

|Tn,4|k = O(1)
m∑

n=1

(
Pn

pn

)k−1 (
n + 1

n

)k 1
nk
|λn|k|tn|k

= O(1)
m∑

n=1

nk−1 1
nk
|λn|k−1|λn||tn|k

= O(1)
m∑

n=1

|λn| |tn|
k

n
= O(1) as m → ∞.



A NOTE ON ABSOLUTE RIESZ SUMMABILITY FACTORS 625

Therefore, we get that

m∑
n=1

(
Pn

pn

)k−1

|Tn,r|k = O(1) as m → ∞, f or r = 1, 2, 3, 4.

This completes the proof of the Theorem.

If we take pn = 1 for all values of n, then we get a new result concerning the
|C, 1|k summability factors.
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