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TWO EXTRAPOLATION THEOREMS FOR

RELATED WEIGHTS AND APPLICATIONS

M. LORENTE AND M. S. RIVEROS

(communicated by L. Pick)

Abstract. In this paper we prove two extrapolation theorems for related weights. The theorems
proved by C. Segovia and J. L. Torrea in [C. Segovia and J. L. Torrea, Weighted inequalities for
commutators of fractional and singular integrals, Publ. Mat. 35, (1991), 209–235] are adapted
for one-sided weights. We apply these extrapolation theorems to improve weighted inequalities
for commutators (with symbol b depending on the relatedweights) of several one-sided operators
such as the Weyl and the Riemann-Liouville fractional integrals, or one-sided maximal operators
given by the convolution with a smooth function. We also characterize the symbols b for which
the commutators of these one-sided operators are bounded.

1. Introduction

Extrapolation theorems have been a very useful tool in Harmonic Analysis. Rubio
de Francia developed extrapolation technics for the Ap Muckenhoupt classes of weights
in 1984 ([16]). Several authors had obtained generalizations of these results or had
adapted his technics to solve a great kind of problems referring to weighted inequalities
(see [5], [6], [11], [18], [9], [3]).

In this paper we prove two extrapolation theorems for related weights. Before
stating the results we need some definitions. Throughout this paper the letter C will
be a positive constant, not necessarily the same at each occurrence and M will be the
Hardy-Littlewood maximal function, Mf (x) = suph>0

1
2h

∫ x+h
x−h |f | . If 1 � p � ∞ ,

then its conjugate exponent will be denoted by p′ . By a weight we understand a
nonnegative locally integrable function, and Ap will be the classical Muckenhoupt
class of weights (see [14]). Also, given an interval I = (x, x + h) , h > 0 , we will
denote by I+ = (x + h, x + 2h) and I− = (x − h, x) .

DEFINITION 1.1. The one-sided Hardy-Littlewood maximal operators M+ and
M− are defined for locally integrable functions f by

M+f (x) = sup
h>0

1
h

∫ x+h

x
|f | , and M−f (x) = sup

h>0

1
h

∫ x

x−h
|f |.
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The good weights for these operators are the one-sided weights, A+
p and A−

p :

sup
a<b<c

1
(c − a)p

∫ b

a
ω
(∫ c

b
ω1−p′

)p−1

< ∞, 1 < p < ∞, (A+
p )

M−ω(x) � Cω(x) a.e., (A+
1 )

and
A+
∞ = ∪p�1A

+
p . (A+

∞ )

The classes A−
p are defined in a similar way. It is interesting to note that Ap = A+

p ∩A−
p ,

Ap �A+
p and Ap �A−

p . Also w ∈ A+
p if and only if w1−p′ ∈ A−

p′ , 1 < p < ∞ . (See
[17], [10], [11], [12] for more definitions and results.)

DEFINITION 1.2. The one-sided maximal fractional operator M+
γ , 0 < γ < 1 , is

defined, for locally integrable functions f , by

M+
γ f (x) = sup

h>0

1
h1−γ

∫ x+h

x
|f |.

It is proved in [2] that ||M+
γ f ||Lq(wq) � C||f ||Lp(wp) if and only if w ∈ A+(p, q) ,

for 1 < p < 1/γ , 1/p − 1/q = γ , where

(
1
h

∫ x

x−h
ωq

)1/q
(

1
h

∫ x+h

x
ω−p′

)1/p′

� C, (A+(p, q) )

||ωχ[x−h,x]||∞
(

1
h

∫ x+h

x
ω−p′

)1/p′

� C, (A+(p,∞) )

for all h > 0 and x ∈ R . The classes A−(p, q) are defined in a similar way and also
A(p, q) = A+(p, q) ∩ A−(p, q) , for all 1 � p < ∞ and 1 < q � ∞ .

Now we are ready to state the extrapolation results.

THEOREM 1.1. Let ν be a weight and T a sublinear operator defined in C∞c (R)
(the set of C∞ functions with compact support) and satisfying

||βTf ||∞ � C||f α||∞,

for all β and α , such that α = νβ , β−1 ∈ A−
1 and α−1 ∈ A1 .

Then, for 1 < p < ∞ ,

||Tf ||Lp(w) � C||f ||Lp(v),

holds whenever w ∈ A+
p and v = νpw ∈ Ap .
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THEOREM 1.2. Let ν be a weight, p0 > 1 and T be a sublinear operator defined
in C∞c (R) such that

||βTf ||∞ � C||f α||p0 ,

for all β , α , such that β ∈ A+(p0,∞) and α = νβ ∈ A(p0,∞) .
Then, if 1 < p < p0 and q is such that 1

p − 1
q = 1

p0
, the inequality

||Tf ||Lq(wq) � C||f ||Lp(vp),

holds whenever w ∈ A+(p, q) and v = νw ∈ A(p, q) .

In section 2 we state and prove several applications for these theorems, and in
section 3 we give the proof of the extrapolation results.

2. Applications

First we give some definitions.

DEFINITION 2.1. For b ∈ L1(R) and ν ∈ A∞ , we say that b ∈ BMOν if

||b||BMOν = sup
I

1
ν(I)

∫
I
|b − bI| < ∞,

where I denotes any bounded interval and bI = 1
|I|
∫

I b . (For ν = 1 we get the
classical BMO space.)

Observe that b ∈ BMOν if and only if supI
1

ν(I)
∫

I |b−bI+ | < ∞ , or equivalently,

supI
1

ν(I)
∫

I∪I+ |b − bI+ | < ∞ .

DEFINITION 2.2. Let f be a locally integrable function. The one-sided sharp
maximal function is defined by

f #,+(x) = sup
h>0

1
h

∫ x+h

x

(
f (y) − 1

h

∫ x+2h

x+h
f

)+

dy.

It is proved in [13] that

f #,+(x) � sup
h>0

inf
a∈R

1
h

∫ x+h

x
(f (y) − a)+dy +

1
h

∫ x+2h

x+h
(a − f (y))+dy

� C||f ||BMO.

DEFINITION 2.3. Let 0 < γ < 1 . The Weyl fractional integral is defined by

I+
γ f (x) =

∫ ∞

x

f (y)
(y − x)1−γ dy

and, for appropriate b , the commutator of the Weyl fractional integral is defined by

I+
γ ,bf (x) =

∫ ∞

x
(b(x) − b(y))

f (y)
(y − x)1−γ dy.

We shall also use for our purposes the following variant of the one-sided Hardy-
Littlewood maximal operator:
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DEFINITION 2.4. For ϕ ∈ C∞c (−∞, 0] , ϕ � 0 and nondecreasing in
(−∞, 0] , let ϕε(x) = ε−1ϕ(ε−1x) for ε > 0 . The maximal operator associated
to ϕ is defined as

M+
ϕ f (x) = sup

ε>0
ϕε ∗ |f |(x).

It is not difficult to see that M+
ϕ f is pointwise equivalent to M+f .

DEFINITION 2.5. Let ϕ be as in definition 2.4. For appropriate b we define the
operators

M+
ϕ,bf (x) = sup

ε>0

∫ ∞

x
|b(x) − b(y)|ϕε(x − y)|f (y)| dy ,

and

M+
b f (x) = sup

h>0

1
h

∫ x+h

x
|b(x) − b(y)||f (y)| dy .

Now we will give the definition of another maximal fractional operator.

DEFINITION 2.6. Let 0 < γ < 1 . Suppose ϕγ ∈ C∞((−∞, 0]) , ϕγ � 0 ,
nondecreasing in (−∞, 0] and such that |ϕγ (x− y)− ϕγ (x)| � C|y||x|γ−2 , for all x, y
such that |x| > 2|y| . The maximal operator associated to ϕγ is defined by

M+
ϕγ f (x) = sup

ε>0
ϕγ ,ε ∗ |f |(x).

DEFINITION 2.7. Let ϕγ as in definition 2.6. For appropriate b we define the
operators

M+
ϕγ ,bf (x) = sup

ε>0

∫ ∞

x
|b(x) − b(y)|ϕγ ,ε(x − y)|f (y)| dy

and

M+
γ ,bf (x) = sup

h>0

1
h1−γ

∫ x+h

x
|b(x) − b(y)||f (y)| dy .

Now we are ready to state the boundedness results for the operators just defined.
The proofs are based on the extrapolation theorems of section 1.

In the next theorem we get a boundedness result for M+
ϕ,b .

THEOREM 2.1. Let ϕ be as in definition 2.4. Assume that 1 < p < ∞ , v ∈ Ap ,

w ∈ A+
p are such that ν =

(
v
w

)1/p ∈ A∞ . Then, for b ∈ BMOν , there exists C > 0
such that ∫

R

|M+
ϕ,bf |pw � C

∫
R

|f |pv ,

for all bounded f with compact support.

In the following theorem we get a boundedness result for the commutator of the
one-sided fractional integral.
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THEOREM 2.2. Let γ , p , q be such that 0 < γ < 1 , 1 < p < 1
γ and 1

p − 1
q = γ .

Assume that v ∈ A(p, q) , w ∈ A+(p, q) are such that ν = v
w ∈ A∞ . Then, for

b ∈ BMOν , there exists C > 0 such that∫
R

|I+
γ ,bf |qwq � C

∫
R

|f |pvp ,

for all bounded f with compact support.

Finally we state the result for M+
ϕγ ,b .

THEOREM 2.3. Let γ , p , q be such that 0 < γ < 1 , 1 < p < 1
γ and 1

p − 1
q = γ .

Assume that v ∈ A(p, q) , w ∈ A+(p, q) and ν = v
w ∈ A∞ . Then, for b ∈ BMOν ,

there exists C > 0 such that∫
R

|M+
ϕγ ,bf |qwq � C

∫
R

|f |pvp,

for all bounded f with compact support.

REMARK 1. Observe that the results in [8] are absolutely different. In [8] we dealt
with only one weight (this allowed us to give results for commutators of higher order).
On the other hand, we can not obtain the results in [8] (for order k = 1 ) from the
present Theorems since we can not take w = v .

REMARK 2. The results of Theorems 2.1, 2.2 and 2.3 for two-sided operators and
related Ap weights are due to Segovia and Torrea (see [18] and [19]). The improvement
in our theorems for the corresponding one-sided operators is that we take into consid-
eration a wider class of weights. By taking w ∈ A+

p (or w ∈ A+(p, q) ), one improves
not only on the left hand side of the inequality, but also on the right hand side. Notice
the fact that v = νpw (or v = νw ) gives∫

R

|f |pv =
∫
R

|f ν|pw ( or
∫
R

|f |pvp =
∫
R

|f ν|pwp) .

An example showing that our class of weights is wider can be seen in [7].

REMARK 3. Theorems 2.1 and 2.2 in [7], i.e., the same result of Theorem 2.1, for
one-sided singular integrals and for the one-sided discrete square function instead of
M+

ϕ , can be obtained applying the extrapolation Theorem 1.1 and following the same
pattern as in the proof of our Theorem 2.1.

REMARK 4. Condition b ∈ BMOν is the natural one. Given ν ∈ A∞ , and
assuming that there exists w ∈ A+

p with v = νpw ∈ Ap , then, by factorization, it can be
proved that ν ∈ A−

2 (see [11] and [20]). This fact, together with the doubling property
for ν , easily gives that ν ∈ A2 . It can be proved that b ∈ BMOν is necessary to obtain
the boundedness of M+

b and M+
γ ,b , 0 < γ < 1 . We shall state and prove this claim for

M+
b . In a similar way the same result can be obtained for M+

γ ,b .
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THEOREM 2.4. Let ν ∈ A2 and b ∈ L1
loc(R) . The following conditions are

equivalent:
(i) M+

b is bounded from Lp(α) to Lp(β) , for all 1 < p < ∞ , α ∈ Ap , β ∈ A+
p

such that
(
α
β

)1/p
= ν .

(ii) M+
b is bounded from L2(ν) to L2(ν−1) .

(iii) b ∈ BMOν .

Proof. (iii) ⇒ (i) It is a consequence of Theorem 2.1.
(i) ⇒ (ii) It is direct, by taking p = 2 , α = ν ∈ A2 and β = ν−1 ∈ A2 ⊂ A+

2 .
(ii) ⇒ (iii) Recall that b ∈ BMOν is equivalent to prove that there exists C such

that
1

ν(I)

∫
I
|b − bI+ | � C,

for any bounded interval I . Fixed I , let c be the right extreme of I+ . Then

1
ν(I)

∫
I
|b(y) − bI+ |dy =

1
ν(I)

∫
I

∣∣∣∣ 1
|I+|

∫
I+

(b(y) − b(x))dx

∣∣∣∣ dy

� 1
ν(I)

∫
I

1
|I+|

∫
I+
|b(y) − b(x)| dxdy .

Observe that, for y ∈ I ,

1
|I+|

∫
I+
|b(x) − b(y)| dx =

1
|I+|

∫ c

y
|b(x) − b(y)|χI+(x) dx

� CM+
b χI+(y) .

Therefore, by Hölder’s inequality, (ii) and the fact that ν is doubling,

1
ν(I)

∫
I
|b(y) − bI+ | dy � C

1
ν(I)

∫
I
M+

b χI+(y) dy

� C
1

ν(I)

(∫
I
|M+

b χI+(y)|2ν−1(y)dy

)1/2(∫
I
ν
)1/2

� C
1

ν(I)

(∫
R

|χI+(y)|2ν(y)dy

)1/2(∫
I
ν
)1/2

=
1

ν(I)

(∫
I+
ν
)1/2(∫

I
ν
)1/2

� C. �

To prove the above theorems we also need the following lemmas. The first one
can be found in [10].

LEMMA 2.1. Let w be a weight such that w−1 ∈ A−
1 . Then, there exists ε > 0

such that, for all 1 � r � 1 + ε , w−r ∈ A−
1 ⊂ A−

r and wr′ ∈ A+
r′ .



EXTRAPOLATION THEOREMS AND APPLICATIONS 649

LEMMA 2.2. Assume b ∈ BMOν , x ∈ R and h > 0 . For each k ∈ Z , set
Ik = [x + 2kh, x + 2k+1h) , and Jk = [x, x + 2k+1h) . Then for each l ∈ Z there exists
δ > 0 such that,

|bJl−1
− bIk | � C

2k(1−δ)

|Jk−1|
∫

Jk−1

ν ,

for all k > l .

Proof. Fix l ∈ Z and set I = Jl−1 for simplicity. First of all observe that

|bI − bIk | � |bI − bIl | +
k−1∑
j=l

|bIj − bIj+1
|.

Since b ∈ BMOν we get

|bI − bIl | =
∣∣∣∣ 1
|I|
∫

I
(b(x) − bIl) dx

∣∣∣∣
� 1

|I|
∫

I
|b(x) − bIl | dx � C

ν(I)
|I| .

Then, using that ν ∈ A∞ , there exists δ > 0 such that

|bI − bIl | � C
ν(I)

ν(Jk−1)
|Jk−1|
|I|

1
|Jk−1|

∫
Jk−1

ν

� C

( |I|
|Jk−1|

)δ |Jk−1|
|I|

1
|Jk−1|

∫
Jk−1

ν

= C

( |Jk−1|
|I|

)1−δ 1
|Jk−1|

∫
Jk−1

ν

= C

(
2k

2l

)1−δ
1

|Jk−1|
∫

Jk−1

ν

� C
2k(1−δ)

|Jk−1|
∫

Jk−1

ν .

In the same way,
k−1∑
j=l

|bIj − bIj+1
| � C

k−1∑
j=l

ν(Ij)
|Ij|

� C
k−1∑
j=l

( |Jk−1|
|Ij|

)1−δ 1
|Jk−1|

∫
Jk−1

ν

= C
k−1∑
j=l

(21−δ )k−j

|Jk−1|
∫

Jk−1

ν

� C
2k(1−δ)

|Jk−1|
∫

Jk−1

ν . �
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LEMMA 2.3. Let ν ∈ A∞ . Assume that β and α = νβ are such that β−1 ∈ A−
1

and α−1 ∈ A1 . Let b ∈ BMOν . Then, there exists ε > 0 such that, for all
1 < r < 1 + ε ,(

1
|I|
∫

I
|b − bI|rα−r

)1/r

� Cβ−1(x) , a.e. x ∈ I ∪ I+.

Proof. Since β−1 ∈ A−
1 and α−1 ∈ A1 , there exists ε > 0 such that β−r ∈ A−

1
and α−r ∈ A1 , for all 1 < r < 1 + ε . Let s′ > 1 be such that α−r ∈ RHs′ (see [12]
and [15] for definition). Then, by Hölder’s and John-Nirenberg’s inequalities (see Prop.
6, Chap. III in [21]), we have that

1
|I|
∫

I
|b − bI|rα−r �

(
1
|I|
∫

I
|b − bI|rs

) 1
s
(

1
|I|
∫

I
α−rs′

) 1
s′

� C

(
ν(I)
|I|
)r 1

|I|
∫

I
α−r .

(2.1)

Using now that ν ∈ A∞ ⊂ A+
∞ , α−r ∈ A1 ⊂ Ar ⊂ A+

r and β−r ∈ A−
1 , Hölder’s

inequality gives,(
ν(I)
|I|
)r 1

|I|
∫

I
α−r �

(
1
|I|
∫

I+
αβ−1

)r 1
|I|
∫

I
α−r

�
(

1
|I|
∫

I+
αr′
) r

r′ 1
|I|
∫

I+
β−r 1

|I|
∫

I
α−r

� C
1
|I|
∫

I+
β−r � C β−r(x) ,

(2.2)

for almost every x ∈ I ∪ I+ . Putting together inequalities (2.1) and (2.2) we get the
desired result. �

We now pass to prove the theorems of this section.

Proof of Theorem 2.1 . For b ∈ L∞ and f bounded of compact support we have
that M+

ϕ,bf ∈ Lp(w) . Using theorem 4 in [13],∫
R

|M+
ϕ,bf |pw � C

∫
R

|M+(M+
ϕ,bf )|pw � C

∫
R

|(M+
ϕ,bf )#,+|pw. (2.3)

To prove the theorem for any b ∈ BMOν we proceed in the same way as in [7].
Let λ be an arbitrary constant. Then b(x) − b(y) = (b(x) − λ ) − (b(y) − λ ) and

M+
ϕ,bf (x) = sup

ε>0

∫ ∞

x
|b(x) − b(y)|ϕε(x − y)|f (y)| dy

� sup
ε>0

|b(x) − λ |
∫ ∞

x
ϕε(x − y)|f (y)| dy

+ sup
ε>0

∫ ∞

x
|λ − b(y)|ϕε(x − y)|f (y)| dy

= |b(x) − λ |M+
ϕ f (x) + M+

ϕ ((λ − b)f )(x).

(2.4)
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We will control (M+
ϕ,bf )#,+ by sum of several one-sided maximal operators, which

using Theorem 1.1, we shall prove that they are bounded from Lp(v) to Lp(w) . Fix
x ∈ R and h > 0 . Set J = [x, x + 8h) , λ = bJ and write f = f 1 + f 2 , where
f 1 = f χJ . Then

1
h

∫ x+2h

x
|M+

ϕ,bf (y) − M+
ϕ ((b − bJ)f 2)(x + 2h)| dy

� 1
h

∫ x+2h

x
|M+

ϕ ((b − bJ)f 1)(y)| dy

+
1
h

∫ x+2h

x

∣∣M+
ϕ ((b − bJ)f 2)(y) − M+

ϕ ((b − bJ)f 2)(x + 2h)
∣∣ dy

+
1
h

∫ x+2h

x
|b(y) − bJ||M+

ϕ f (y)| dy

= I(x) + II(x) + III(x).

Observe that

II(x) � C
1
h

∫ x+2h

x

∫ ∞

x+8h

x + 2h − y
(z − (x + 2h))2

|b(z) − bJ||f (z)| dzdy, (2.5)

by the conditions imposed on ϕ .
Consider the following sublinear operators:

M+
1 f (x) = sup

h>0

1
h

∫ x+2h

x
|M+

ϕ ((b − bJ)f χJ)(y)| dy,

M+
2 f (x) = sup

h>0

1
h

∫ x+2h

x

∫ ∞

x+8h

x + 2h − y
(z − (x + 2h))2

|b(z) − bJ ||f (z)| dzdy,

and

M+
3 g(x) = sup

h>0

1
h

∫ x+2h

x
|b(y) − bJ ||g(y)| dy

where, for each h > 0 , J is the interval [x, x + 8h) .
The above inequalities and definitions give that

(M+
ϕ,bf )#,+(x) � C

(
M+

1 f (x) + M+
2 f (x) + M+

3 (M+
ϕ f )(x)

)
. (2.6)

Boundedness of M+
1 :

Let f ∈ C∞
c (R) . Let β be a weight such that β−1 ∈ A−

1 and, defining α = νβ ,
then α−1 ∈ A1 . Using Hölder’s inequality, the fact that M+

ϕ is bounded from Lr(R)
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to Lr(R) (for all 1 < r < ∞ ) and Lemma 2.3 we obtain,

1
h

∫ x+2h

x
|M+

ϕ ((b − bJ)f χJ)(y)| dy �
(

1
h

∫ x+2h

x
|M+

ϕ ((b − bJ)f χJ)(y)|rdy

)1/r

� C

(
1
h

∫ x+8h

x
|b − bJ|r|f |r dy

)1/r

� C||f α||∞
(

1
h

∫
J
|b − bJ|rα−rdy

)1/r

� C||f α||∞β−1(x) .

That is,
||βM+

1 f ||∞ � C||f α||∞ .

So, by Theorem 1.1,
||M+

1 f ||Lp(w) � C||f ||Lp(v) (2.7)
holds, whenever w ∈ A+

p and v = νpw ∈ Ap .
Boundedness of M+

3 :
Let g ∈ C∞

c (R) . Let β be a weight such that β−1 ∈ A−
1 , and such that defining

α = νβ , then α−1 ∈ A1 . By Hölder’s inequality and Lemma 2.3,

1
h

∫ x+2h

x
|b(y) − bJ ||g(y)| dy � C||gα||∞ 1

8h

∫ x+8h

x
|b(y) − bJ |α−1(y) dy

� C||gα||∞
(

1
8h

∫ x+8h

x
|b(y) − bJ|rα−r(y) dy

) 1
r

� C||gα||∞β−1(x) .

That is,
||βM+

3 g||∞ � C||gα||∞ .

By Theorem 1.1,
||M+

3 g||Lp(w) � C||g||Lp(v) , (2.8)
provided that w ∈ A+

p and v = νpβ ∈ Ap .
Boundedness of M+

2 :
Let f ∈ C∞

c (R) . Let β be a weight such that β−1 ∈ A−
1 , and such that defining

α = νβ , then α−1 ∈ A1 . For each j ∈ N , write Ij = [x + 2jh, x + 2j+1h) and
Jj = [x, x + 2j+1h) . Then

1
h

∫ x+2h

x

∫ ∞

x+8h

x + 2h − y
(z − (x + 2h))2

|b(z) − bJ||f (z)| dzdy

� C
1
h

∫ x+2h

x
h

∞∑
j=3

∫
Ij

|b(z) − bJ|
(z − (x + 2h))2

|f (z)| dzdy

� Ch||f α||∞
∞∑
j=3

2j+1

(2j − 2)2h2

1
2j+1

∫
Ij

|b(z) − bJ |α−1(z) dz
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� C||f α||∞
∞∑
j=3

2j+1

(2j − 2)2

(
1

2j+1h

∫
Ij

|b(z) − bIj |α−1(z) dz

+
1

2j+1h

∫
Ij

|bIj − bJ|α−1(z) dz

)

= C||f α||∞
∞∑
j=3

2j+1

(2j − 2)2
(IV(x) + V(x)) .

(2.9)

By Hölder’s inequality and Lemma 2.3,

IV(x) � C

(
1

2jh

∫
Ij

|b − bIj |rα−r

)1/r

� Cβ−1(x) . (2.10)

On the other hand, using Lemma 2.2,

V(x) � |bIj − bJ | 1
2j+1h

∫
Ij

α−1 � C
2j(1−δ)

|Jj−1|
∫

Jj−1

ν
1

2j+1h

∫
Ij

α−1 .

Since α−1 ∈ A1 ⊂ A−
1 , observe that,

1
2j+1h

∫
Ij

α−1 � Cα−1(y) ,

for almost all y ∈ Jj−1 . Therefore, using again that β−1 ∈ A−
1 ,

V(x) � C
2j(1−δ)

|Jj−1|
∫

Jj−1

να−1 � C2j(1−δ)β−1(x) . (2.11)

Put together inequalities (2.9), (2.10) and (2.11) to get,

M+
2 f (x) � C||f α||∞

∞∑
j=3

2j+1

(2j − 2)2
(β−1(x) + 2j(1−δ)β−1(x))

� Cβ−1(x)||f α||∞
∞∑
j=3

(
1
2j

+
1
2jδ

)

� Cβ−1(x)||f α||∞ .

As before,
||βM+

2 f ||∞ � C||f α||∞ .

So, by Theorem 1.1,
||M+

2 f ||Lp(w) � C||f ||Lp(v) (2.12)

holds, whenever w ∈ A+
p and v = νpw ∈ Ap . Going back to (2.3) and collecting (2.6),

(2.7), (2.8) and (2.12), get
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∫
R

|M+
ϕ,bf |pw � C

∫
R

|(M+
ϕ,bf )#,+|pw

� C
∫
R

(M+
1 f + M+

2 f + M+
3 (M+

ϕ f ))pw

� C
(||f ||Lp(v) + ||f ||Lp(v) + ||M+

ϕ f ||Lp(v)
)

� C||f ||Lp(v) . �

Proof of Theorem 2.2 . Fix b ∈ BMOν and λ ∈ R . Then, as in (2.4),

I+
γ ,bf (x) = I+

γ ((b − λ )f )(x) + (b(x) − λ )I+
γ f (x) .

If b ∈ L∞ and f is bounded with compact support, then I+
γ ,bf ∈ Lq(βq) , and by

theorem 4 in [13],∫
R

|I+
γ ,bf |qβq � C

∫
R

|M+(I+
γ ,bf )|qβq � C

∫
R

|(I+
γ ,bf )#,+|qβq. (2.13)

To prove the theorem for any b ∈ BMOν proceed as in [7].
Let us bound (I+

γ ,bf )#,+ pointwise. Fix x ∈ R and h > 0 . Set J = [x, x + 8h)
and write f = f 1 + f 2 , where f 1 = f χJ . Then, with λ = bJ ,

1
h

∫ x+2h

x

∣∣∣I+
γ ,bf (y) − I+

γ ((b − bJ)f 2)(x + 2h)
∣∣∣ dy

� 1
h

∫ x+2h

x
|I+
γ ((b − bJ)f 1)(y)|dy

+
1
h

∫ x+2h

x

∣∣I+
γ ((b − bJ)f 2)(y) − I+

γ ((b − bJ)f 2)(x + 2h)
∣∣ dy

+
1
h

∫ x+2h

x
|b(y) − bJ ||I+

γ f (y)|dy

= I(x) + II(x) + III(x).

(2.14)

It is clear that
III(x) � M+

3 (I+
γ f )(x),

where M+
3 is as in the proof of Theorem 2.1. We already know that M+

3 is bounded
from Lp(α) to Lp(β) , whenever β ∈ A+

p and α = νpβ ∈ Ap , 1 < p < ∞ . Since
w ∈ A+(p, q) and v ∈ A(p, q) , then wq ∈ A+

q and vq = νqwq ∈ Aq , by [2]. So

||M+
3 (I+

γ f )||Lq(wq) � C||I+
γ f ||Lq(vq) � C||f ||Lp(vp) ,

for all f ∈ C∞c (R) .
To control I(x) let us define

M+
4 f (x) = sup

h>0

1
h

∫ x+2h

x
|I+
γ ((b − bJ)f χJ)(y)|dy,
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where, for each x ∈ R and h > 0 , J = [x, x + 8h) . Let us prove that M+
4 is bounded

from Lp(vp) to Lq(wq) using Theorem 1.2.

Let β ∈ A+( 1
γ ,∞) and such that α = νβ ∈ A(1/γ ,∞) . Then β

−1
1−γ ∈ A−

1

and α
−1

1−γ = (νβ)
−1

1−γ ∈ A1 . Therefore, there exists t1 > 1 with the properties that

α
−t1
1−γ ∈ A1 , s = t1

1−γ > 1 and Lemma 2.3 holds for such s . Let r be such that
1/r − 1/s = γ . Then, using Hölder’s inequality, the fact that I+

γ is bounded from
Lr(R) to Ls(R) and Lemma 2.3,

1
h

∫ x+2h

x
|I+
γ ((b − bJ)f χJ)(y)|dy

�
(

1
h

∫ x+2h

x
|I+
γ ((b − bJ)f χJ)(y)|sdy

)1/s

� Chγ
(

1
h

∫ x+8h

x
|(b(y) − bJ)f (y)|rαrα−rdy

)1/r

� Chγ
(

1
h

∫ x+8h

x
|b − bJ|r s

r α−r s
r

) 1
s
(

1
h

∫ x+8h

x
|f | 1

γ α
1
γ

)γ

� C||f α|| 1
γ
β−1(x) .

(2.15)

As a consequence,

||βM+
4 f ||∞ � C||f α|| 1

γ
.

Then, by Theorem 1.2,

||M+
4 f ||Lq(wq) � C||f ||Lp(vp),

whenever w ∈ A+(p, q) , v = νw ∈ A(p, q) , 1
p − 1

q = γ and f ∈ C∞c (R) .
Finally, let estimate

II(x) =
1
h

∫ x+2h

x

∣∣∣∣
∫ ∞

x+8h
σ(t, y)dt

∣∣∣∣ dy,

where

σ(t, y) = (b(t) − bJ)f (t)
(

1
(t − y)1−γ − 1

(t − (x + 2h))1−γ

)
.

Consider the following sublinear operator in C∞c (R) :

M+
5 f (x) = sup

h>0

1
h

∫ x+2h

x

∣∣∣∣
∫ ∞

x+8h
σ(t, y)dt

∣∣∣∣ dy.

For each j ∈ N , set Ij = [x + 2jh, x + 2j+1h) and Jj = [x, x + 2j+1h) . Then, by the
mean value theorem,
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1
h

∫ x+2h

x

∣∣∣∣
∫ ∞

x+8h
σ(t, y)dt

∣∣∣∣ dy � 1
h

∫ x+2h

x

∞∑
j=3

∫
Ij

|σ(t, y)| dtdy

� C
∞∑
j=3

∫
Ij

|b(t) − bJ||f (t)| 2h
(h(2j − 2))2−γ dt

� C
∞∑
j=3

hγ

(2j−1)1−γ

(
2

2j−1h

∫
Ij

|b(t)−bJ||f (t)|dt

)

� C
∞∑
j=3

hγ

(2j−1)1−γ

(
2

2j−1h

∫
Ij

|b(t)−bIj ||f (t)|dt

)

+ C
∞∑
j=3

hγ

(2j−1)1−γ

(
2

2j−1h

∫
Ij

|bIj−bJ||f (t)|dt

)

� C
∞∑
j=3

hγ

(2j−1)1−γ (IV(x) + V(x)) .

(2.16)

Let β ∈ A+( 1
γ ,∞) and such that α = νβ ∈ A( 1

γ ,∞) . Then α
−1

1−γ ∈ A1 which

implies that α−1 ∈ A1 . Choose r > 1− γ such that Lemma 2.3 holds for r
1−γ . Then,

by Hölder’s inequality,

IV(x) �
(

2
2j−1h

∫
Ij

|f | 1
γ α

1
γ

)γ (
2

2j−1h

∫
Ij

|b(t) − bIj |
1

1−γ α
−1

1−γ

)1−γ

� C(2jh)−γ ||f α|| 1
γ

(
1

2jh

∫
Ij

|b(t) − bIj |
r

1−γ α
−r

1−γ

) 1−γ
r

� C(2jh)−γ ||f α|| 1
γ
β−1(x) .

(2.17)

Using again Lemma 2.2 and Hölder’s inequality,

V(x) � 1
2jh

|bIj − bJ|
∫

Ij

|f (t)|dt

� C
2j(1−δ)

|Jj−1|
∫

Jj−1

ν

(
1

2jh

∫
Ij

|f | 1
γ α

1
γ

)γ (
1

2jh

∫
Ij

α
−1

1−γ

)1−γ

� C2j(1−δ)(2jh)−γ ||f α|| 1
γ

1
|Jj−1|

∫
Jj−1

ν

(
1

2jh

∫
Ij

α
−1

1−γ

)1−γ

.

Since α
−1

1−γ ∈ A1 ⊂ A−
1 ,

1
2jh

∫
Ij

α
−1

1−γ � Cα
−1

1−γ (y) ,
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for all y ∈ Jj−1 . Then, using now that β−1 ∈ A−
1 ,

V(x) � C2j(1−δ)(2jh)−γ ||f α|| 1
γ

1
|Jj−1|

∫
Jj−1

να−1

� C2j(1−δ)(2jh)−γ ||f α|| 1
γ
β−1(x) .

(2.18)

Put together inequalities (2.16), (2.17) and (2.18), to get

1
h

∫ x+2h

x

∣∣∣∣
∫ ∞

x+8h
σ(t, y)dt

∣∣∣∣ dy

� C||f α|| 1
γ
β−1(x)

∞∑
j=3

hγ

(2j−1)1−γ

(
(2jh)−γ + 2j(1−δ)(2jh)−γ

)

� C||f α|| 1
γ
β−1(x)

∞∑
j=3

(
1
2j

+
1
2jδ

)

� C||f α|| 1
γ
β−1(x) .

Taking supremum first on h > 0 and then on x ∈ R , get,

||βM+
5 f ||∞ � C||f α|| 1

γ
,

So, by Theorem 1.2,
||M+

5 f ||Lq(wq) � C||f ||Lp(vp) ,

whenever w ∈ A+(p, q) and v = νw ∈ A(p, q) , 1
p − 1

q = γ and f ∈ C∞c (R) . �
The proof of Theorem 2.3 follows the same pattern as Theorem 2.2, so we omit it.

3. Proof of the extrapolation theorems

To prove our results on extrapolation, we need the following lemma (see [16] and
[18]).

LEMMA 3.1. Let μ be a weight, and let 1 < r < ∞ . Let W ∈ A−
r , such that

μrW ∈ Ar . Then, for all u ∈ Lr′(W) , there exists U ∈ Lr′(W) such that
(i) u(x) � U(x) , a.e.
(ii) ||U||Lr′ (W) � C||u||Lr′ (W) ,

(iii) UW ∈ A−
1 and UμW ∈ A1 .

Proof. Define first the following operator

S(h) = W−1M+(Wh) + (μW)−1M(μWh) .

We claim that this operator is bounded from Lr′(W) to Lr′(W) . Indeed, observe that
W ∈ A−

r if, and only if, W1−r′ ∈ A+
r′ . Then M+ is bounded from Lr′(W1−r′) to

Lr′(W1−r′) . Also, μrW ∈ Ar implies that (μrW)1−r′ = μ−r′W1−r′ ∈ Ar′ . Therefore
M is bounded from Lr′(μ−r′W1−r′) to Lr′(μ−r′W1−r′) . As a consequence,
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∫
(S(h))r′W � C

∫
W−r′(M+(Wh))r′W + C

∫
(μW)−r′(M(μWh))r′W

= C
∫

(M+(Wh))r′W1−r′ + C
∫

(M(μWh))r′μ−r′W1−r′

� C
∫

(Wh)r′W1−r′ + C
∫

(μWh)r′μ−r′W1−r′

= C
∫

|h|r′W .

Then, by lemma 5.1 in [4], given u ∈ Lr′(W) , there exists U ∈ Lr′(W) such that
||U||Lr′ (W) � 2||u||Lr′ (W) , U(x) � u(x) and S(U)(x) � CU(x) a.e. x ∈ R . Then

W−1M+(WU)(x) � CU(x) and (μW)−1M+(νWU)(x) � CU(x),

a.e. x ∈ R . In other words, WU ∈ A−
1 and μWU ∈ A1 . �

Proof of Theorem 1.1 . Fix w ∈ A+
p , such that v = νpw ∈ Ap . Let f ∈ Lp(v) and

consider

g(x) =

⎧⎪⎨
⎪⎩

w
− 1−p′

p (x)|f (x)|ν(x)w1/p(x)
||f ||Lp(v)

, if f (x) 	= 0 ,

w− 1−p′
p (x)e−

πx2

p , if f (x) = 0 .

Observe that g ∈ Lp(w1−p′) and ||g||Lp(w1−p′ ) � 2 . On the other hand, w1−p′ ∈ A−
p′

and ν−p′w1−p′ ∈ Ap′ . Then, by Lemma 3.1, there exists G ∈ Lp(w1−p′) , such that
(i) g(x) � G(x) , a.e.
(ii) ||G||Lp(w1−p′ ) � C||g||Lp(w1−p′) ,

(iii) Gw1−p′ ∈ A−
1 and Gν−1w1−p′ ∈ A1 .

Let β = (Gw1−p′)−1 . Then β−1 ∈ A−
1 and, defining α = νβ , we also have

α−1 = (νβ)−1 ∈ A1 and
||βTf ||∞ � C||f α||∞.

So,

||f ||Lp(v) = ||g−1w− 1−p′
p |f |v 1

p ||∞
� ||G−1w− 1−p′

p |f |νw
1
p ||∞

= ||(Gw1−p′ )−1ν|f | ||∞ = ||f α||∞
� C||βTf ||∞ = C||G−1wp′−1Tf ||∞

� C

(∫
Gpw1−p′

)1/p

||G−1wp′−1Tf ||∞

� C

(∫
G−pwp(p′−1)|Tf |pGpw1−p′

)1/p

= C||Tf ||Lp(w) . �
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Proof of Theorem 1.2 . Fix 1 < p < p0 , q such that 1
p− 1

q = 1
p0

and w ∈ A+(p, q)
such that v = νw ∈ A(p, q) . Observe that, for r = 1 + q/p′ and s = 1 + p′/q
( s′ = q/p′0 ), we have that wq ∈ A+

r , vq ∈ Ar , w−p′ ∈ A−
s and v−p′ = ν−p′w−p′ ∈ As .

Let f ∈ Lp(vp) and consider

h(x) =

(
|f (x)|ν(x)wp′ (x)

|| f ||Lp(vp)

) pp′0
q

.

Observe that h ∈ Ls′(w−p′) . In fact ||h||Ls′ (w−p′) = 1 . Therefore, by Lemma 3.1, there

exists H ∈ Ls′(w−p′) such that
(i ) h(x) � H(x) , a.e.
(ii) ||H||Ls′ (w−p′) � C||h||Ls′ (w−p′ ) = 1 ,

(iii) Hw−p′ ∈ A−
1 and Hν

−p′
s w−p′ ∈ A1 .

Let β = (Hw−p′)
− 1

p′
0 and consider α = νβ . Then β ∈ A+(p0,∞) and α ∈

A(p0,∞) . As a consequence,

||f ||Lp(vp) =
(∫

|f |p0

(
h−1/p′0νwp′/p′0

)p0
)1/p0

�
(∫

|f |p0

(
H−1/p′0νwp′/p′0

)p0
)1/p0

= ||f ||Lp0 (αp0 ) � C||βTf ||∞
= C||Tf H−1/p′0wp′/p′0 ||∞

� C||Tf H−1/p′0wp′/p′0 ||∞
(∫

Hq/p′0w−p′
)1/q

� C

(∫
|Tf |qH−q/p′0wqp′/p′0Hq/p′0w−p′

)1/q

= C||Tf ||Lq(wq). �
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