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TWO EXTRAPOLATION THEOREMS FOR
RELATED WEIGHTS AND APPLICATIONS

M. LORENTE AND M. S. RIVEROS

(communicated by L. Pick)

Abstract. In this paper we prove two extrapolation theorems for related weights. The theorems
proved by C. Segovia and J. L. Torrea in [C. Segovia and J. L. Torrea, Weighted inequalities for
commutators of fractional and singular integrals, Publ. Mat. 35, (1991), 209-235] are adapted
for one-sided weights. We apply these extrapolation theorems to improve weighted inequalities
for commutators (with symbol b depending on the related weights) of several one-sided operators
such as the Weyl and the Riemann-Liouville fractional integrals, or one-sided maximal operators
given by the convolution with a smooth function. We also characterize the symbols b for which
the commutators of these one-sided operators are bounded.

1. Introduction

Extrapolation theorems have been a very useful tool in Harmonic Analysis. Rubio
de Francia developed extrapolation technics for the A, Muckenhoupt classes of weights
in 1984 ([16]). Several authors had obtained generalizations of these results or had
adapted his technics to solve a great kind of problems referring to weighted inequalities
(see [5], [6] [11], [18], [9], [3]).

In this paper we prove two extrapolation theorems for related weights. Before
stating the results we need some definitions. Throughout this paper the letter C will
be a positive constant, not necessarily the same at each occurrence and M will be the

Hardy-Littlewood maximal function, Mf (x) = sup,., = f;f: Ifl. If 1 <p < oo,
then its conjugate exponent will be denoted by p’. By a weight we understand a
nonnegative locally integrable function, and A, will be the classical Muckenhoupt
class of weights (see [14]). Also, given an interval I = (x,x + &), h > 0, we will

denote by I = (x + h,x+2h) and I~ = (x — h,x).

DEFINITION 1.1. The one-sided Hardy-Littlewood maximal operators M* and
M~ are defined for locally integrable functions f by

1 x-+h 1 X
M*f(x):sup—/ If|, and M_f(x):sup—/ If]-
w0 )y h>0 B Jy_p
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The good weights for these operators are the one-sided weights, A;r and A, :

1 /b (/C . /)Pl
sup —— [ o o r <o, l<p<oo, Af
a<b<c (C - a)P a b ( P )

M~ o(x) < Co(x) ae., (A])
and
AL =Upi4,. (AL)
The classes A, are defined in a similar way. Itis interesting to note that A, = A;; NA S,
A, CAS and A, ¢ A . Also w € A if and only if wi=r' e A, 1 <p<oo. (See
[17], [10], [11], [12] for more definitions and results.)

DEFINITION 1.2. The one-sided maximal fractional operator M;r ,0<y<l1,is
defined, for locally integrable functions f , by

1 X+h
Mip ) = swp e [y

It is proved in [2] that [|M}f [|zawa)y < C|If [|r(we) if and only if w € A*(p,q),
for l<p<l/y,1/p—1/q=y, where

1 X 1/‘] 1 x+h S l/p/
(—/ co‘f) (—/ w”) <G, (A" (p,q))
h x—h h X

1/p’

1 X+h ,
lotensll< (3 [ 07) <c (A" (p, 0))

forall # > 0 and x € R. The classes A~ (p,q) are defined in a similar way and also
Alp,q) =A"(p,g) NA~(p,q),forall 1 <p<ooand 1< gq<o0.
Now we are ready to state the extrapolation results.

THEOREM 1.1. Let v be a weight and T a sublinear operator defined in C°(R)
(the set of C*° functions with compact support) and satisfying

IBTf |loc < CIIf otl|so,

forall B and o, suchthat oo = v, B~' € A] and a~' € A;.
Then, for 1 < p < oo,

T |r vy < ClIf (|22 (v)s

holds whenever w € A[f and v = VPw € A,.
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THEOREM 1.2. Let v be a weight, po > 1 and T be a sublinear operator defined
in C°(R) such that
IBTS [loo < CIIf oty

forall B, o, such that B € A" (py,00) and oo = v € A(pg, ).

Then, if 1 < p < po and q is such that 117 - % = pio , the inequality

TF oy < CIIf lr o)
holds whenever w € A" (p,q) and v=vw € A(p,q) .

In section 2 we state and prove several applications for these theorems, and in
section 3 we give the proof of the extrapolation results.

2. Applications

First we give some definitions.

DEFINITION 2.1. For b € L'(R) and v € A, , we say that b € BMO, if
[ellao, = sup o= [16=by] < o
where I denotes any bounded interval and b; = ﬁ flb. (For v = 1 we get the
classical BMO space.)
Observe that b € BMO,, if and only if sup, ﬁ fl |b—by+| < oo, orequivalently,
sup; %1) S 1b=br| < oo

DEFINITION 2.2. Let f be a locally integrable function. The one-sided sharp
maximal function is defined by

| | 2 +
far(x) = i‘ilg E/x (f(y) 7 /Hh f) dy.

It is proved in [13] that

1 X+h 1 X+2h
fost) <spint 5 [ 0) - dya g [ a-ronta

h>0a€R h x+h
< Cllf |lsmo-

DEFINITION 2.3. Let 0 < ¥ < 1. The Weyl fractional integral is defined by
ey [T fO)
ny(x) - /( (y_x)l_ydy
and, for appropriate b, the commutator of the Weyl fractional integral is defined by
e = [ ) — b)) L0
L@ = [0 —b0) 5t

We shall also use for our purposes the following variant of the one-sided Hardy-
Littlewood maximal operator:
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DEFINITION 2.4. For ¢ € C*(—00,0], @ > 0 and nondecreasing in
(—00,0], let @:(x) = ¢ 'p(e"'x) for € > 0. The maximal operator associated

to ¢ is defined as
M f (x) = sup @e  |f |(x).

>0

It is not difficult to see that M f is pointwise equivalentto M*f .

DEFINITION 2.5. Let ¢ be as in definition 2.4. For appropriate b we define the
operators

Mot () = sup [ " 1b(x) — bl e(x — V) dy
and

x+h
M} f (x) = sup ~ / () — BO)IIF ) dy

w0 h
Now we will give the definition of another maximal fractional operator.

DEFINITION 2.6. Let 0 < y < 1. Suppose @, € C®((—00,0]), @, > 0,
nondecreasing in (—oo, 0] and such that |@, (x — y) — @, (x)| < Cly||x|"~2, forall x,y
such that |x| > 2|y|. The maximal operator associated to ¢, is defined by

Mg f (x) = SUp @y.c * |f | (x)-

DEFINITION 2.7. Let ¢, as in definition 2.6. For appropriate b we define the
operators

Moy (9= sup [ 1b(3) = B0 el =)l 0]

and

x+h
My ) = sup e [ b~ b O]

Now we are ready to state the boundedness results for the operators just defined.
The proofs are based on the extrapolation theorems of section 1.
In the next theorem we get a boundedness result for M(: b

THEOREM 2.1. Let @ be as in definition 2.4. Assume that 1 < p < oo, v € A,,
wE A;r are such that v = (%)1/[7 € A . Then, for b € BMO,, there exists C > 0

such that
[grrwsc [,
R ’ R

for all bounded f with compact support.

In the following theorem we get a boundedness result for the commutator of the
one-sided fractional integral.
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THEOREM 2.2. Let ¥, p, q be suchthat 0 <y <1, 1 <p < % and%—i =7.

Assume that v € A(p,q), w € A% (p,q) are such that v = L € Ay,. Then, for
b € BMO,,, there exists C > 0 such that

/ I, f 9wt < C / I
R R

for all bounded f with compact support.

Finally we state the result for M, .
z

THEOREM 2.3. Let v, p, q besuchthat 0 <y <1, 1 <p < % and%—i =7.

Assume that v € A(p,q), w € A™(p,q) and v = X € Ay,. Then, for b € BMO,,
there exists C > 0 such that

[ g <c [y
R R
for all bounded f with compact support.

REMARK 1. Observe that the results in [8] are absolutely different. In [8] we dealt
with only one weight (this allowed us to give results for commutators of higher order).
On the other hand, we can not obtain the results in [8] (for order k = 1) from the
present Theorems since we can not take w = v.

REMARK 2. The results of Theorems 2.1, 2.2 and 2.3 for two-sided operators and
related A, weights are due to Segovia and Torrea (see [18] and [19]). The improvement
in our theorems for the corresponding one-sided operators is that we take into consid-
eration a wider class of weights. By taking w € A} (or w € A™(p, q) ), one improves
not only on the left hand side of the inequality, but also on the right hand side. Notice
the fact that v = v'w (or v = vw) gives

Liev=[irvrw or [y = [irvpwe).

An example showing that our class of weights is wider can be seen in [7].

REMARK 3. Theorems 2.1 and 2.2 in [7], i.e., the same result of Theorem 2.1, for
one-sided singular integrals and for the one-sided discrete square function instead of
M$ , can be obtained applying the extrapolation Theorem 1.1 and following the same
pattern as in the proof of our Theorem 2.1.

REMARK 4. Condition b € BMO, is the natural one. Given v € A, and
assuming that there exists w € A; with v = Vw € A, , then, by factorization, it can be
proved that v € A; (see [11] and [20]). This fact, together with the doubling property
for v, easily gives that v € A, . It can be proved that b € BMO,, is necessary to obtain
the boundedness of M, and M;ﬁ »» 0 <y < 1. We shall state and prove this claim for
M, . In a similar way the same result can be obtained for M, .



648 M. LORENTE AND M. S. RIVEROS

THEOREM 2.4. Let v € Ay and b € L} (R). The following conditions are
equivalent:
(i) My is bounded from IV () to IP(B), forall 1 <p < oo, o € Ay, B €AS
1/p
such that (%) =v.
(ii) M, is bounded from L*(v) to L*(v™").
(iii) b€ BMO,.

Proof. (iii) = (i) Itis a consequence of Theorem 2.1.
(i) = (ii) Itis direct, by taking p =2, a =veE A and B =v~ ! €A, CAJ.
(if) = (iii) Recall that b € BMO, is equivalent to prove that there exists C such

that
a
—— [b=br| < C
v(l) J;
for any bounded interval 1. Fixed I, let ¢ be the right extreme of I . Then
o [160) = bilay = < [ | [ 60 = by
- y Yy = Iy y) —olx))ax
v(l) Ji V(D) J; I+
1 1
< / b(s) bl dxdy

v() Ji It

dy

Observe that, for y € 1,

77 1w = p0lax= i [ b0l ()
CMbXﬁ )

Therefore, by Holder’s inequality, (i) and the fact that v is doubling,

o 10 = by < e (Mo

<o (v <y>|2v1<y>dy)l/2 (/) "

To prove the above theorems we also need the following lemmas. The first one
can be found in [10].

LEMMA 2.1. Let w be a weight such that wl e Ay . Then, there exists € > 0
such that, forall 1 <r<1l+4¢€, w" €A CA; and w €Al .
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LEMMA 2.2. Assume b € BMO,, x € R and h > 0. For each k € 7Z, set
I = [x + 2%h,x + 2¥h), and Ji = [x,x + 2**'h). Then for each | € Z there exists
0 > 0 such that,
2k(175)

‘bJI,I 7blk| < C v,

Vi1l Jy,_,
forall k> 1.

Proof. Fix | € Z and set I = J;_; for simplicity. First of all observe that
k—1
by — by, | < |br — by| + Z by, — by,
=l
Since b € BMO, we get

1
m%wﬂ—/meMx
1),

1 1
< —/|b(x) — byl dx < C&).
17 Ji 1]
Then, using that v € A, there exists § > 0 such that
1) |Ji— 1
‘bl—b1,|<c V() ‘ k 1‘ Vv

V(1) M Vel Sy

5
<C( 1] ) 1| 1 v
|Jk—1] Il k-1l Jy,_,
1-5
Ji— 1
= C(' k 1|) \%
1] V-1l Jy,_

2\
Vi1l Jy,_,

2k(175)

<Cc-.____
Sl Sy

V.

In the same way,
k—1

k—1 V([)
Sy by <03
=t

=t
k—1 1-6
Ji_ 1
<C2<k1> )
2\ Ty

Vi1l Jy,_,
k-1 »
(Zlﬁ)k]/
—cS T [y
JZ_,: Vi1l Sy
K(1-5)

<Cc— v
S el Jy
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LEMMA 2.3. Let V € Ax. Assume that B and o = v are such that f~' € A
and a~' € A|. Let b € BMO,. Then, there exists € > 0 such that, for all
Il<r<l+e,

1 1/r
<7| z‘b — b[ra") g CB*I(X) . ae x c IUI+

Proof. Since B! € A] and o~! € Ay, there exists € > 0 such that =" € A]
and =" € Ay, forall 1 <r <14 ¢€.Lets > 1 besuchthat =" € RHy (see [12]
and [15] for definition). Then, by Holder’s and John-Nirenberg’s inequalities (see Prop.
6, Chap. Il in [21]), we have that

1 1
1 1 s 01 AN
—/\bfbl\roc’r < —/\bfbl\” —/a’”
1) 1)y 11 )y 2.)
oYY 1 [a
se\Umr) ma

Using now that v € Ao, C AL, a™" € A; C A, C Af and " € A, Holder’s
inequality gives,

n\" 1 1 "1
(e G o)
1) 1l 1l Jr 1l Ji
1 / )— 1 1 / -
<|l=[a) = B "= [a" (22)
<1| I e 1
B <Cp (),
\II I
for almost every x € I U I". Putting together inequalities (2.1) and (2.2) we get the
desired result. [

We now pass to prove the theorems of this section.

Proof of Theorem 2.1. For b € L*° and f bounded of compact support we have
that M ,f € L7(w). Using theorem 4 in [13],

[ <c [ o nee<c [0 @3

To prove the theorem for any b € BMO, we proceed in the same way as in [7].
Let A be an arbitrary constant. Then b(x) — b(y) = (b(x) — A) — (b(y) — A) and

Mt 09 =sup [ 1) = bO)loutx =) )]

e>0

< sup [b(x) M/ 00— VI ()] dy

e>0

(2.4)
+Sup/ A = b)|oc(x — I )] dy

e>0 Jx

= |b(x) = A[Myf (x) + My (A = b)f )(x).
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We will control (M(;bf )#+ by sum of several one-sided maximal operators, which
using Theorem 1.1, we shall prove that they are bounded from L”(v) to L”(w). Fix
x€Rand h > 0. Set J = [x,x + 8h), A = by and write f = f1 + f», where
fl :f)CJ Then

1 X+2h
b M ) = M (0~ br)f2) G+ 20

X+2h
<i | M -sela
i 1 X+2h
by [ MG = b)) ~ M (0~ balfa) e+ 20) dy

1 x+2h
by [0~ ealMar )] ay

= I(x) + I(x) + II(x).

Observe that

x+2h X+ o — y
/ /+8h =Gt on P —billf @)ldzdy,(235)

by the conditions imposed on ¢ .
Consider the following sublinear operators:

x+2h
Mif () = sup / M (b — b)f 20) )] .

x+2h
+2h—y
MEf( / / al b(z) — b dzdy,
o f (x =supy O P x+2h>)2\ (2) = bsllf (2)| dzdy

and

x+2h
My g(x) = iligh/ |b(y) — bs|g(y)| dy

where, for each 7 > 0, J is the interval [x,x + 8h).
The above inequalities and definitions give that

(Mg of )i+ (x) < € (M{f (x) + M f (x) + My (Mo f ) (x)) - (2:6)
Boundedness of M, :

Let f € C°(R). Let B be a weight such that f~! € A] and, defining o = v,
then o' € A;. Using Holder’s inequality, the fact that M$ is bounded from L'(R)
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to L"(R) (forall 1 < r < co) and Lemma 2.3 we obtain,

x+2h x+2h 1/r
i/ M$<<b—bf>ij><y>|dy<<% / M$<<b—bf>ij><y>|’dy>

1 x+8h
<c 5/ b= byl I dy
1 1/r
< Clif all (E/'b - bJ|ra—rdy)
J

< Clf ol () -

1/r

That is,
IBM{ f | < ClIf &t -
So, by Theorem 1.1,
M f Nl o) < ClIF [p ) (2.7)
holds, whenever w € A; and v = VVw € A,
Boundedness of Mj :
Let g € C°(R). Let B be a weight such that $7! € A", and such that defining
o = vf,then a~! € A;. By Holder’s inequality and Lemma 2.3,

1 X+2h 1 x+8h .
B[ o) = bills)ldy < Cllsallag; [ 1b0)— brlo 0y

1 x+8h B
< Cllgal|oo (871/ |b(y) — by|" ’(y)dy>

< Cllgorl[oc B~ (x) -

1
7

That is,
1BM3 gl < Cllgar]]oo -
By Theorem 1.1,
[1M3 gl o) < Cllgllre) (2.8)
provided that w € AJ and v = V' € A,.
Boundedness of M; :
Let f € C°(R). Let B be a weight such that B~ € A, and such that defining
a = vf, then o=! € A;. Foreach j € N, write [; = [x + 2h,x + 2*!h) and
J; = [x,x+2"1h). Then

xX+2h X+ 2h— y
/ /+8h (z—( x+2h))2‘b() by|If (z)| dzdy

X420 b1|
<C- h
| Z/ 17 @) dady

e 2j+1 B
<Ch|{fa\|oozmﬁ/l\b(z)—bj|a '(2)dz
=3 j
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= ol 1 B
< CWaHoo;m (m/@ |b(z) — by|ox '(2)dz
+ ﬁ/,'blf b1|a1(z)dz> (2.9)
s it 1
=l alloe 3 s (V) + V()
=3

By Holder’s inequality and Lemma 2.3,

1/r
IV(x) < C (ﬁ /1 = b1j|’oc"> <CB'(x) . (2.10)

On the other hand, using Lemma 2.2,

{ a9 1 B
y =1l iy, y

Since o € A; C A, observe that,

1 —1 ~1
m/lja < Ca™(y),

for almost all y € J;_; . Therefore, using again that B~ le Al
2i(1-8)

Vix) < C

<C—— vol < 2B (x) . (2.11)
i1l Ji_,

Put together inequalities (2.9), (2.10) and (2.11) to get,

e j+1 )
M) < Clfalle S ﬁ(ﬁ—l(x) L0951 ())
=3
<cpwirale Y (5 + 35

< CBW)|If ol os -
As before,
IBM; f []oe < ClIf ot]|oo -
So, by Theorem 1.1,
M3 F 1) < ClIf [l v) (2.12)

holds, whenever w € A" and v = v’w € A, . Going back to (2.3) and collecting (2.6),
(2.7), (2.8) and (2.12), get
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/ M Pw < / (2, Yo P
<C / (M{f + M3f + M35 (Myf))’w
R

C (I ey + W ) + IMpf o)

<
< CHfHU’(V)' O

Proof of Theorem 2.2. Fix b € BMO, and A € R. Then, as in (2.4),
Lyf (x) = I, (b = A)f ) (x) + (b(x) — A)IJf (x) -

If b € L™ and f is bounded with compact support, then I;r’ of € L1(B?), and by
theorem 4 in [13],

/R I f 1B < C / M ()19 < / e 9Be. (213)

To prove the theorem for any b € BMO, proceed as in [7].
Let us bound (I ,f )4+ pointwise. Fix x € R and & > 0. Set J = [x,x + 8h)
and write f = f| + f2, where f1 = f ;. Then, with A = by,

x+2h
! / [150f () = 1} (b = ba)f2) (x + 2h) | dy

h
X+2h
s %/ ‘Iﬂ(b —by)f1)(y)ldy
X420
+ %/ (b — b)f2)(v) — I (b — by)f2) (x + 2h)| dy (2.14)

X+2h
o [ b0 bl )y

= I(x) + II(x) + HI(x).
It is clear that
HI(x) < M3 (I;f) (%),
where M7 is as in the proof of Theorem 2.1. We already know that M; is bounded

from L7 (a) to LP(B), whenever B € A; and o = V' € A,, 1 < p < co. Since
w € AT (p,q) and v € A(p, q), then w? € A} and v/ = viw? € A, by [2]. So

1M (L f )| away < CIE HLaqay < CUIF [y 5
forall f € C°(R).

To control I(x) let us define

x+2h
M{f(x) = sup + / (b — b 1)) dy.

w0 1
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where, for each x € R and & > 0, J = [x,x + 8h). Let us prove that M, is bounded
from L”(v*) to LY(w9) using Theorem 1.2.
Let B € A*(L,00) and such that & = vf € A(1/y,00). Then BT € A}
and o7 = (vﬁ)% € A;. Therefore, there exists #; > 1 with the properties that
s

—1I
5]

a’=v € A, s = = > 1 and Lemma 2.3 holds for such s. Let r be such that

1/r — 1/s = y. Then, using Holder’s inequality, the fact that I;r is bounded from
L'(R) to L*(R) and Lemma 2.3,

X+2h
e

X420
< (% / |1;<<b—bj>fx,><y>fdy>

x+8h 1r
<cn (% AR b1>f<y>|fafafdy> (219

| s . S% s 4
< ChY E/ lb— by E/ |7 o7

< Clfall B (x) -

1/s

As a consequence,
1BMf oo < Cllf erl]1 -
Then, by Theorem 1.2,
M flLaqay < ClIf e
=y and f € C°(R).

whenever w € A*(p,q), v =vw € A(p,q),
Finally, let estimate

1 x+2h 0o
I(x) = E/ / . o(t,y)dt
X X+

ot = 00 -0/ 0 (=7 ~ i )

Consider the following sublinear operator in C2°(R):

1 x+2h [e%s)
M (x) = sup - / / oty
X+

w0 I
For each j € N, set I; = [x + 2h,x + 2'h) and J; = [x,x + 2"'h). Then, by the
mean value theorem,

1 _
q

dy,

where

dy.
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| e x+2h 00
Z/ /8h o(t,y)dt|dy < / /\th|dtdy
X X+

CZ/|b —by|lf (¢ \#m
o (2,21,1 | b(r)—bf|v<t>dr>
e (2,2% | b(r)—bz,vmut)

<C

(2.16)
<C

LMs 1M8

JrC,; (2J—hly)1—v (2/‘31}; /1, blijW(t)dt>
<C) #(W(}C) +V(x)) .

<
Il
w

Let B € A*(5,00) and such that o = v € A(,00). Then a7 € A, which
implies that &= € A;. Choose r > 1 — i~ . Then,
by Holder’s inequality,

2 ) AN
1 1 1 =1

=y

o\ T (2.17)
c@n)If el (2/h/b — by |7 VOCW>

< C@n) el B x) -

Using again Lemma 2.2 and Holder’s inequality,

Vv —-b 1)|dt

0 < gy =i | 170
2/(1=9) 1/ 1o 1

<C v | — Yar — |«
T 7, i

1
< Y9 (2/n)~ V|ya\|l—/ % —./alf
|]/ 1‘ j*l 2/h I

Since o ;Y €A CA,

~|=

)
)

o~

=y
1=y

|
AR,

<&

1 —1

1 =L =L
57 | @7 S CatT(y),

2h

_—
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forall y € Ji_;. Then, using now that ! € A",
, , 1
V(x) < C2U=9 Q)7 |f ol vo!

"Ml g (2.18)
< Czj(l_ﬁ)(zjh)_y\lfaﬂ¢[3_1(x) -

Put together inequalities (2.16), (2.17) and (2.18), to get

1 x+2h e}
- / / o(t,y)dt| dy
h x x+8h
< cllfally 6703 Gy (@07 + 2070 @) )
]:3
< cllrall, B }j(z Zﬁ)
j=3

<cllfell b7
Taking supremum first on 2 > 0 and then on x € R, get,
1BMsf o < Cllf atl]1
So, by Theorem 1.2,

M5 £ oo <C\lf|\m w)
whenever w € AT (p,q) and v = vw € A(p, q) 4— 2 —y and f € C°(R). O

The proof of Theorem 2.3 follows the same pattern as Theorem 2.2, so we omit it.

3. Proof of the extrapolation theorems

To prove our results on extrapolation, we need the following lemma (see [16] and
[18]).

LEMMA 3.1. Let u be a weight, and let 1 < r < co. Let W € A, such that
WW € A,. Then, forall u e L" (W), there exists U € L' (W) such that

(i) u(x) <Ux),ae

(ii) HUHLV’(W) < CH“HLV’(W)

(iii) UW € A] and UuW € A;.

Proof. Define first the following operator

S(h) = WM (Wh) 4+ (uW) " 'M(uWh) .

We claim that this operator is bounded from L’ (W) to L” (W) . Indeed, observe that
W € A; if, and only if, W'=" € A%;. Then M is bounded from L” (W'~"") to
L' (W'=""). Also, u'W € A, implies that (u"W)'=" = u="W'=" € A, . Therefore
M is bounded from L” (u="W'="") to L’ (u=""W'~""). As a consequence,
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/ (Sw)Y'w < ¢ / W (M (Wh)Y' W+ C / (W)~ (M(uWh))' W
= C/(M*(Wh))"wl—” + C/(M(uWh))"u—"Wl—"

< c/(Wh)"Wl—” + c/(uWh)"u—"Wl—”

- c/ "W .

Then, by lemma 5.1 in [4], given u € L (W), there exists U € L (W) such that
HUHL,/(W) < 2|\u|\L,/(W>, U(x) > u(x) and S(U)(x) < CU(x) a.e. x € R. Then

WM (WU)(x) < CU(x) and (uW)™'M*(vWU)(x) < CU(x),

a.e. x € R. In other words, WU € A| and uWU € A;. O

Proof of Theorem 1.1. Fix w € AY ,suchthat v = V'w € A,. Let f € I’(v) and
consider

17/

P
WP @@ e 0
g(x) _ “fHU’(v) ’ f(x) # )

7TX2
wo TP (x)e P, if f(x)=0.
Observe that g € I7(w!™?") and |lgllp(1—»y < 2. On the other hand, wir' e Ay

and v"'wl P ¢ A, . Then, by Lemma 3.1, there exists G € Lp(wl_l’l) , such that
(i) g(x) <Gx), ae.

(ii) HGHLD(Wlf,D’) < CHgHLv(Wlfp’) >
(i) Gw'™P €A

/
| and Gv~iwl=P € A;.

Let B = (Gw'™)~!. Then ' € A; and, defining @ = v, we also have
a~!=(vB)~! €A, and

1BTf oo < ClIf l]sc.
So,
o= 1
1) = g™ w™ 7 [ V7|
17)’
> 1G7 W | v o

= [[(GW" )"V |[|oe = [If |0
> C||BTf |le = CIIG'W 7' Tf |

/ l/p /
>C (/ G'w'™P ) [1G™'W ~1Tf || oo

, N P
>C (/ GPw V| T PGPw! P )
= CHTfHU’(w) : O
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Proofof Theorem 1.2. Fix 1 < p < pg, q suchthat %—é = i and w € AT (p, q)
such that v = vw € A(p,q). Observe that, for r = 1 + ¢g/p’ and s = 1 +p'/q
(s" = q/p(), wehavethat wi € A, vI € A,, = A7 and v =y Py e As.
Let f € L/(v) and consider

vy

"=\ T e

Observe that h € L (w™") . In fact ||h| |LS/<W,I,/) = 1. Therefore, by Lemma 3.1, there

exists H € L (w™"") such that
(i) h(x) < H(x),ae.
(ii) HHHLS’ (w=r") < CHhHLS/(W,,,/) =1,

—p

(iiiy Hw™ € A] and Hv = w™ €A,.
1

Let f = (HW_P/)_”_('] and consider o¢ = vf. Then f € AT (py,0) and o €
A(po,o0). As a consequence,

]y = (/ If [P0 (hl/p(l)v‘/‘)p//p(/))le)
( / I (H—I/Pé\,wp'/pé)p°>

= [[f 7o a0y = ClIBTf [l
= C||Tf H™V/Pow?' vo]| o,

1/q
2 CHTfH—l/pL/)Wp//pL/)HOO (/Hq/p(l)w_pl)

1/po

1/po

WV

1/q
>C </ |Tf|qHq/Péwqp'/PéHq/péwp'>

:CHTfHUI(w‘i) O
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