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BESSEL POTENTIAL SPACES WITH VARIABLE EXPONENT

PETR GURKA, PETTERI HARJULEHTO AND ALEŠ NEKVINDA

(communicated by B. Opic)

Abstract. We show that a variable exponent Bessel potential space coincides with the variable
exponent Sobolev space if the Hardy-Littlewood maximal operator is bounded on the underlying
variable exponent Lebesgue space. Moreover, we study the Hölder type quasi-continuity of
Bessel potentials of the first order.

1. Introduction

The (classical) Bessel potential space Lα,p(Rn) , 1 < p < ∞ , consists of all
functions u ,

u = gα ∗ f , where f ∈ Lp(Rn).
Here gα is the Bessel kernel of the order α � 0 . It is well know that when α is a

natural number the space Lα,p(Rn) (with the normof u defined as ‖f ‖Lp(Rn) ) coincides
with the Sobolev space Wα,p(Rn) and the corresponding norms are equivalent. The
aim of this paper is to study this question in variable exponent case, that is, when the
exponent p is a measurable function p: Rn → [p∗, p∗] , 1 < p∗ � p∗ < ∞ .

If the variable exponent Lebesgue space Lp(·)(Rn) is defined (see the next section),
the variable exponent Sobolev space Wk,p(·)(Rn) consists of all measurable functions
u ∈ Lp(·)(Rn) whose distributional derivatives up to the order k belong to Lp(·)(Rn) .
These spaces have attracted steadily increasing interest over the past five years. The
research was motivated by the differential equations with non-standard growth and
coercivity conditions arising from modeling certain fluids called electrorheological
(cf. [21]).

We define the variable exponent Bessel potential space Lα,p(·)(Rn) as in the clas-
sical situation. Assuming that the Hardy-Littlewood maximal operator M is bounded
on the variable exponent Lebesgue space Lp(·)(Rn) we show that the variable exponent
Bessel potential space Lk,p(·)(Rn) and the Sobolev space Wk,p(·)(Rn) , k ∈ N , coincide
and their norms are equivalent.

As an application we study the Hölder type quasi-continuity of Bessel potentials
of the first order. More precisely, we show that each function u ∈ L1,p(·)(Rn) coincides
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pointwise outside a small set (measured by theBessel capacity)with aHölder continuous
function w ∈ L1,p(·)(Rn) and the norm of the difference u − w in L1,p(·)(Rn) is small.

2. Variable exponent spaces

Let G be a measurable subset of R
n (with respect to n -dimensional Lebesgue

measure), by |G| we mean its n -volume, and χG will represent the characteristic
function of G . For r ∈ (0,∞) and x ∈ R

n let B(x, r) denote the open ball in R
n of

radius r and center x .
By the symbol P(Rn) we denote the family of all measurable functions p(·) :

R
n → [1,∞] . For p(·) ∈ P(Rn) put

p∗ := ess inf
x∈Rn

p(x), p∗ := ess sup
x∈Rn

p(x).

Furthermore, we introduce a class B(Rn) by

B(Rn) := {p ∈ P(Rn); 1 < p∗ � p∗ < ∞}.
Let p(·) ∈ B(Rn) . Consider the functional

�p(·)(f ) :=
∫

Rn
|f (x)|p(x) dx

on all measurable functions f on R
n . The Lebesgue space with variable exponent

Lp(·)(Rn) is defined as the set of all measurable functions f on R
n such that, for some

λ > 0 ,
�p(·)(f /λ ) < ∞,

equipped with the norm

‖f ‖p(·) = inf
{
λ > 0; �p(·)(f /λ ) � 1

}
. (2.1)

Recall that (cf. [14, (2.9) and (2.10)]),

�p(·)(f /‖f ‖p(·)) = 1 for every f with 0 < ‖f ‖p(·) < ∞ , (2.2)

if ‖f ‖p(·) � 1 then �p(·)(f ) � ‖f ‖p(·) , (2.3)

�p(·)(f ) � 1 if and only if ‖f ‖p(·) � 1, (2.4)

�p(·)(f ) → 0 if and only if ‖f ‖p(·) → 0. (2.5)

The Hardy-Littlewood maximal operator M is defined on locally integrable func-
tions f on R

n by the formula

Mf (x) = sup
r>0

1
|B(x, r)|

∫
B(x,r)

|f (y)| dy. (2.6)

DEFINITION 2.1. By M(Rn) denote the class of all functions p ∈ B(Rn) forwhich
the operator M is bounded on Lp(·)(Rn) , that is,

‖Mf ‖p(·) � C‖f ‖p(·) (2.7)
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with a positive constant C independent of f .

REMARK 2.2. For example, p(·) ∈ M(Rn) if the following two conditions are
satisfied:

|p(x) − p(y)| � c
− log(|x − y|) , |x − y| � 1/2,

|p(x) − p(y)| � c
log(e + |x|) , |y| > |x|.

(2.8)

For more details see [2], [3], [5], [15], [17] and [18] where various sufficient
conditions for p(·) ∈ M(Rn) can be found.

Let p(·) ∈ B(Rn) and k ∈ N . We define the Sobolev space with variable exponent
Wk,p(·)(Rn) by

Wk,p(·)(Rn) := {u; Dβu ∈ Lp(·)(Rn) if |β | � k },
equipped with the norm

‖u‖Wk,p(·) =
∑
|β|�k

‖Dβu‖p(·),

where β ∈ N
n
0 is a multi-index, |β | = β1 + · · · + βn and Dβ =

∂|β|

∂xβ1

1 . . . ∂xβn
n

.
The Bessel kernel gα of order α , α > 0 , is defined by

gα(x) = πn/2

Γ(α/2)

∞∫
0

e−s−(π2|x|2)/s s(α−n)/2 ds
s

, x ∈ R
n. (2.9)

Let p(·) ∈ B(Rn) and α � 0 . The Bessel potential space with variable exponent
Lα,p(·)(Rn) is, for α > 0 , defined by

Lα,p(·)(Rn) := {u = gα ∗ f ; f ∈ Lp(·)(Rn)},
and is equipped with the norm

‖u‖α;p(·) := ‖f ‖p(·). (2.10)

If α = 0 we put g0 ∗ f := f and L0,p(·)(Rn) := Lp(·)(Rn) (normed by (2.1)).
We write A�B (or A�B ) if A � cB (or cA � B ) for some positive constant c

independent of appropriate quantities involved in the expressions A and B , and A ≈ B
if A�B and A�B .

3. Relationship between Sobolev and Bessel potential spaces

The main result of this section is the following theorem.

THEOREM 3.1. Let p ∈ M(Rn) and let k ∈ N . Then

Lk,p(·)(Rn) = Wk,p(·)(Rn)

and the corresponding norms are equivalent.

Before we prove the main theorem we shall need some auxiliary results. First we
introduce some notation.
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If f belongs to the Schwartz class S , the Fourier transform of f is the function
Ff or f̂ defined by

Ff (x) = f̂ (x) =
∫

Rn
f (y) e−2πix·y dy.

Let us summarize the basic properties of the Bessel kernel gα , α > 0 :

gα is nonnegative, radially decreasing and
∫

Rn
gα(y) dy = 1, (3.1)

ĝα(ξ) = (1 + |ξ |2)−α/2, ξ ∈ R
n, (3.2)

gα ∗ gβ = gα+β , α, β > 0.

Let δ0 denotes the Dirac delta measure at zero. For α > 0 we define the measure
μα on measurable sets E ⊂ R

n by

μα(E) = δ0(E) +
∞∑
k=1

b(α, k)
∫

E
g2k(y) dy, (3.3)

where b(α, k) = (−1)k
(α/2

k

)
= (−1)k

k!

∏k−1
j=0 ((α/2) − j) , k = 1, 2, . . . . Since

∞∑
k=1

|b(α, k)| < ∞, (3.4)

the measure μα is a finite signed Borel measure on R
n . For α = 0 we set μ0 = δ0 .

This construction uses the Taylor expansion of the function t 	→ (1 − t)α/2 , α > 0 ,
t ∈ (0, 1] , to give

|x|α
(1 + |x|2)α/2

=
(
1 − 1

1 + |x|2
)α/2

= 1 +
∞∑
k=1

b(α, k) (1 + |x|2)−2k/2, x ∈ R
n,

which implies that (for α > 0 )

μ̂α(x) =
|x|α

(1 + |x|2)α/2
. (3.5)

Obviously, (3.5) holds for α = 0 , too. (For more details see [19, p. 32] and [23,
p. 134].)

We define the Riesz transform Rj f , j = 1, . . . , n , of a function f ∈ S by the
formula

Rj f (x) =
(Γ((n+1)/2)

π(n+1)/2

)
lim
ε→0+

∫
|y|>ε

yj

|y|n+1
f (x − y) dy.

Recall that (cf. [23]),

F(Rj f )(x) =
−ixj

|x| f̂ (x).

Let β = (β1, . . . , βn) ∈ N
n
0 be a multi-index. Then the multi-Riesz transform Rβ

is defined as
Rβ f = Rβ1

1 ◦ · · · ◦Rβn
n f . (3.6)
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Let f ∈ S . Then it is easy to verify (cf. [19]) that

F(Rβ f )(x) =
(−ix1

|x|
)β1

. . .
(−ixn

|x|
)βn

f̂ (x), (3.7)

F(Rβ (Dβ f ))(x) =
(−2πx2

1

|x|
)β1

. . .
(−2πx2

n

|x|
)βn

f̂ (x), (3.8)

F(Dβ f )(x) = (−2πi)|β| xβ f̂ (x) (3.9)

( xβ := xβ1

1 . . . xβn
n ).

LEMMA 3.2. Let p(·) ∈ M(Rn) . Then there exists a positive constant C such
that, for any α � 0 and f ∈ Lp(·)(Rn) ,

‖gα ∗ f ‖p(·) � C‖f ‖p(·). (3.10)

Proof. Using (3.1) and putting ε = 1 and gα = ϕ = ψ in Theorem 2(a) on
page 62 of [23] we obtain a point-wise estimate

(gα ∗ f )(x) � Mf (x), x ∈ R
n (α � 0).

Hence, by (2.7) the inequality (3.10) follows. �

LEMMA 3.3. Let p(·) ∈ M(Rn) , α � 0 and β ∈ N
n
0 . Then there exists a

positive constant C such that, for any f ∈ Lp(·)(Rn) ,

‖μα ∗ f ‖p(·) � C‖f ‖p(·), (3.11)

‖Rβ f ‖p(·) � C‖f ‖p(·). (3.12)

Proof. It is easy to calculate

(μα ∗ f )(x) = f (x) +
∞∑
k=1

b(α, k) (g2k ∗ f )(x).

Then, by (3.10) and (3.4),

‖μα∗f ‖p(·) � ‖f ‖p(·)+
∞∑
k=1

|b(α, k)| ‖g2k∗f ‖p(·) � ‖f ‖p(·)
(
1+C

∞∑
k=1

|b(α, k)|
)

�‖f ‖p(·)

which proves (3.11).
To prove (3.12) we use the results of L. Diening and M. Růžička [8, Prop. 4.3]

and L. Diening [6, Thm. 8.14] that under the assumption p(·) ∈ M(Rn) there exists a
positive constant c such that, for any f ∈ Lp(·)(Rn) ,

‖Rj f ‖p(·) � c‖f ‖p(·), j = 1, . . . , n.

Applying (3.6) and iterating this inequality we obtain (3.12) with C = c|β| . �

LEMMA 3.4. Let p(·) ∈ M(Rn) . Then
(i) C∞

0 (Rn) is dense in Wk,p(·)(Rn) , k ∈ N ;
(ii) the Schwartz class S is dense in Lα,p(·)(Rn) , α � 0 .
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Proof. The density in (i) follows from the assumption p(·) ∈ M(Rn) by [7,
Cor. 2.5].

Let us prove (ii) . If α = 0 , the result follows from density of C∞
0 (Rn) in

Lp(·)(Rn) (cf. [14, Thm. 2.11]). Let α > 0 and u ∈ Lα,p(·)(Rn) . Then there is a
function f ∈ Lp(·)(Rn) such that u = gα ∗ f . By density of C∞

0 (Rn) in Lp(·)(Rn) we
can find a sequence (f j)∞j=1 ⊂ C∞

0 (Rn) ⊂ S converging to f in Lp(·)(Rn) . Since the
mapping f 	→ gα ∗ f maps S onto S (cf. [23]), the functions uj := gα ∗ f j , j ∈ N ,
belong to S . Moreover,

‖u − uj‖α;p(·) = ‖f − f j‖p(·) → 0 as j → ∞
and the assertion follows. �

LEMMA 3.5. Let f ∈ S and k ∈ N . Then

f = gk ∗
k∑

m=0

( k
m

)
gk−m ∗ μm ∗ (−2π)−m

∑
|β|=m

(m
β
)
Rβ (Dβ f ),

where
(m
β
)

= m!
β1!β2!...βn! .

Proof. (Cf. [19, Lemma 5.15]) Let f ∈ S . Using the Binomial Theorem we have

1 =

∑k
m=0

(k
m

)∑
|β|=m

(m
β
)
x2β1
1 . . . x2βn

n(
1 + |x|2)2k/2

= 1(
1+|x|2

) k
2

k∑
m=0

(
k
m

)
1(

1+|x|2
) k−m

2

|x|m(
1+|x|2

)m
2

(−2π)−m
∑
|β|=m

(m
β
) (−2πx2

1
|x|
)β1

. . .
(−2πx2

n
|x|
)βn

.

Consequently, by (3.8), (3.5) and (3.2), we obtain

f̂ (x) = ĝk(x)
k∑

m=0

( k
m

)
ĝk−m(x) μ̂m(x) (−2π)−m

∑
|β|=m

(m
β
)
F(Rβ(Dβ f ))(x).

The result then follows by applying the inverse Fourier transform. �

LEMMA 3.6. Let f ∈ S , k ∈ N and β ∈ N
n
0 , |β | � k . Then

Dβ(gk ∗ f ) = (2π)|β| gk−|β| ∗ μ|β| ∗Rβ f .

Proof. (Cf. [19, Lemma 5.17]) Let f ∈ S . By (3.9), (3.2) and (3.5),

F(Dβ(gk ∗ f ))(x) =(−2πi)|β| xβ ĝk(x) f̂ (x)

=(2π)|β| 1(
1+|x|2

)(k−|β|)/2

|x||β|(
1+|x|2

)|β|/2

(−ix1
|x|
)β1

. . .
(−ixn

|x|
)βn f̂ (x)

=(2π)|β| ĝk−|β|(x) μ̂|β|(x)F(Rβ(f ))(x).

The result now follows by applying the inverse Fourier transform. �
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Proof of Theorem 3.1 . (i) Let f ∈ Lk,p(·)(Rn) . In view of Lemma 3.4 we can
assume that f ∈ S . Then there is a function h ∈ S such that f = gα ∗ h . By (2.10),
Lemma 3.5, Lemma 3.2 and Lemma 3.3

‖f ‖Wk,p(·) =
∑
|β|�k

‖Dβ f ‖p(·) =
∑
|β|�k

∥∥Dβ(gk ∗ h)
∥∥

p(·)

=
∑
|β|�k

∥∥(2π)|β| gk−|β| ∗ μ|β| ∗Rβ h
∥∥

p(·) � c ‖h‖p(·) = c ‖f ‖k;p(·),

where c > 0 is a suitable constant independent of f .
(ii) We prove the reverse inequality. Let f ∈ Wk,p(·)(Rn) . Again, by Lemma 3.4,

we can assume that f ∈ S . Then, by Lemma 3.5, Lemma 3.2 and Lemma 3.3

‖f ‖k;p(·) =
∥∥∥ k∑

m=0

gk−m ∗ μm ∗ (−2π)−m
∑
|β|=m

(m
β
)
Rβ (Dβ f )

∥∥∥
p(·)

� c
∑
|β|�k

‖Dβ f ‖p(·) = c ‖f ‖Wk,p(·)

with a suitable constant c > 0 independent of f . �

4. Capacity

Let E ⊂ R
n , α > 0 and p(·) ∈ B(Rn) . Define a capacity in Lα,p(·)(Rn) by

Capα,p(·)(E) = inf �p(·)(f ),

where the infimum is taken over all f ∈ Lp(·)(Rn) with gα ∗ f � 1 on E . Since gα is
non-negative (cf. (3.1)) we can assume that f � 0 .

LEMMA 4.1. Let p(·) ∈ B(Rn) . The capacity Capα,p(·) is an outer measure.
That is,

(i) Capα,p(·)(∅) = 0;
(ii) if E1 ⊂ E2 , then Capα,p(·)(E1) � Capα,p(·)(E2);
(iii) if Ei ⊂ R

n , i = 1, 2, . . . , then

Capα,p(·)
( ∞⋃

i=1

Ei

)
�

∞∑
i=1

Capα,p(·)(Ei).

Proof. The property (i) immediately follows on putting f ≡ 0 . The property (ii)
follows from the fact that every test function of E2 is also a test function of E1 .

Next we prove (iii) , following [13]. We may assume that
∑∞

i=1 Capα,p(·)(Ei) <

∞ . Let ε > 0 be fixed. For every i ∈ N choose f i ∈ Lp(·)(Rn) such that gα ∗ f i � 1
on Ei and ∫

Rn
|f i(x)|p(x) dx � Capα,p(·)(Ei) +

ε
2i

.
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Put f := supi f i and E := ∪∞
i=1Ei . If x ∈ E then x ∈ Ei for some i ∈ N and

(gα ∗ f )(x) � (gα ∗ f i)(x) � 1 . Thus, f is a test function for E . Set hk = max1�i�k f i

and define Xi = {x ∈ R
n; hk(x) = f i(x)} . Consequently, R

n = ∪k
i=1Xi and∫

Rn
|hk(x)|p(x) dx �

k∑
i=1

∫
Xi

|f i(x)|p(x) dx �
k∑

i=1

∫
Rn

|f i(x)|p(x) dx

�
k∑

i=1

Capα,p(·)(Ei) + ε �
∞∑
i=1

Capα,p(·)(Ei) + ε.

Since hk ↗ f , by the Monotone Convergence Theorem we have∫
Rn

|f (x)|p(x) dx �
∞∑
i=1

Capα,p(·)(Ei) + ε.

Letting ε → 0 we obtain the assertion. �

The ordinary Sobolev capacity is defined by

Cp(·)(E) = inf �W1,p(·) (u)

where

�W1,p(·) (u) :=
∫

Rn

( |u(x)|p(x) + |∇u(x)|p(x) ) dx

and the infimum is taken over all u ∈ W1,p(·)(Rn) for which there is an open set G ⊃ E
such that u � 1 a. e. on G .

It is possible to show that if p ∈ B(Rn) then Cp(·) is an outer measure and an
Choquet capacity [12, Corollaries 3.3 and 3.4]. Relationship between the capacities
Cap1,p(·) and Cp(·) is formulated in the next lemma.

LEMMA 4.2. Assume that p(·) ∈ M(Rn) and E ⊂ R
n . Then

Cap1,p(·)(E) � c max{Cp(·)(E)
p∗
p∗ , Cp(·)(E)

p∗
p∗ }

and

Cp(·)(E) � C max{Capp(·)(E)
p∗
p∗ , Capp(·)(E)

p∗
p∗ }.

Here c and C are positive constants independent of E .

Proof. Let u ∈ W1,p(·)(Rn) , u � 1 on an open neighborhood of E , be a test
function for Cp(·)(E) . By Theorem 3.1 there exists f ∈ Lp(·)(Rn) so that u = g1 ∗ f ,
and

‖u‖W1,p(·) ≈ ‖f ‖p(·). (4.1)

Obviously, f is a test function for Capp(·)(E) and

Capp(·)(E) �
∫

Rn
|f (x)|p(x) dx. (4.2)
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By (2.2) it is easy to see that for a function g ∈ Lp(·)(Rn) ,∫
Rn

|g(x)|p(x) dx � max
{‖g‖p∗

p(·), ‖g‖p∗
p(·)
}

(4.3)

and

‖g‖p(·) � max

{(∫
Rn

|g(x)|p(x) dx
)1/p∗

,
(∫

Rn
|g(x)|p(x) dx

)1/p∗
}

. (4.4)

Applying (4.2), (4.3), (4.1) and (4.4), we arrive at

Capp(·)(E) �
∫

Rn
|f (x)|p(x)dx � max

{‖f ‖p∗
p(·), ‖f ‖p∗

p(·)
}

� max
{‖u‖p∗

W1,p(·), ‖u‖p∗
W1,p(·)

}
� max

{
�W1,p(·) (u)p∗/p∗ , �W1,p(·) (u)p∗/p∗},

and the first inequality follows.
Let ε > 0 . Take f � 0, f ∈ Lp(·)(Rn) , such that g1 ∗ f � 1 on E and

�p(·)(f ) � Cap1,p(·)(E) + ε.

Since f � 0 , the function g1 ∗ f is lower semi-continuous and so, the set
Eε = {x ∈ R

n; g1∗f
1−ε > 1} is open and contains E . Thus,

Cp(·)(E) � �W1,p(·)
( g1∗f

1−ε
)

� (1 − ε)−p∗�W1,p(·) (g1 ∗ f ).

Letting ε → 0+ , we obtain

Cp(·)(E) � �W1,p(·) (g1 ∗ f ).

Now, by Theorem 3.1, we have

Cp(·)(E) � �W1,p(·) (g1 ∗ f ) � max
{‖g1 ∗ f ‖p∗

W1,p(·) , ‖g1 ∗ f ‖p∗
W1,p(·)

}
� max

{‖g1 ∗ f ‖p∗
1;p(·), ‖g1 ∗ f ‖p∗

1;p(·)
}

= max
{‖f ‖p∗

p(·), ‖f ‖p∗
p(·)
}

� max{�p(·)(f )p∗/p∗ , �p(·)(f )p∗/p∗}
which completes the proof. �

5. Hölder type quasi-continuity

In this section we study point-wise behavior of functions from L1,p(·)(Rn) . First
we investigate a quasi-continuity of such functions.

PROPOSITION 5.1. Let p(·) ∈ M(Rn) . Every u ∈ L1,p(·)(Rn) is quasi-
continuous. That is, for every ε > 0 , there exists a set F ⊂ R

n , Cap1,p(·)(F) � ε , so
that u restricted to R

n \ F is continuous.
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Proof. Let u = g1 ∗ f ∈ L1,p(·)(Rn) . Then, by Lemma 3.4, there is a sequence
ui = g1 ∗ f i ∈ S converging to u in L1,p(·)(Rn) . We may assume without loss of
generality, by considering a subsequence if necessary, that

‖ui − ui+1‖1;p(·) � 4−i, i = 1, 2, . . .. (5.1)

Put

Ei = {x ∈ R
n; |ui(x) − ui+1(x)| > 2−i}, i = 1, 2, . . ., and Fj =

∞⋃
i=j

Ei.

Continuity of the functions ui implies that the sets Ei , Fj , i, j = 1, 2 . . . , are
open. By Theorem 2.2 of [12], the functions |ui − ui+1| belong to W1,p(·)(Rn) if
ui ∈ W1,p(·)(Rn) , i = 1, 2, . . . , and so, using Theorem 3.1, we have that 2i|ui −ui+1| ∈
L1,p(·)(Rn) . Hence, for every i = 1, 2, . . . , there is a function hi ∈ Lp(·)(Rn) such that
2i|ui − ui+1| = g1 ∗ hi . Using (5.1), (2.3) and definition of the norm (2.10), we obtain

Cap1,p(·)(Ei) �
∫

Rn
hi(x)p(x) dx � ‖hi‖p(·) = 2i‖ui − ui+1‖1;p(·) � 2−i, i = 1, 2, . . . .

Given ε > 0 , choose j ∈ N so that 21−j < ε . Now, Lemma 4.1 (iii) implies that

Cap1,p(·)(Fj) �
∞∑
i=j

Cap1,p(·)(Ei) �
∞∑
i=j

2−i � 21−j < ε.

Moreover, for every x ∈ R
n \ Fj and every k, l ∈ N , k > l � j ,

|ul(x) − uk(x)| �
k−1∑
i=l

|ui(x) − ui+1(x)| �
k−1∑
i=l

2−i < 21−l.

Hence, the sequence {ui}i is uniformly convergent in R
n \ Fj which implies that

the function v := limi→∞ ui restricted to R
n \ Fj is continuous. Put

G := {x ∈ R
n; |u(x) − v(x)| > 0}, F := Fj ∪ G.

Obviously, the function u restricted to R
n \ F is continuous, and so, it remains to

prove that
Cap1,p(·)(G \ Fj) = 0. (5.2)

Given k ∈ N , by the uniform convergence of {ui}i to v on R
n\Fj we find i0 ∈ N

such that, for any i � i0 ,

{x ∈ R
n \ Fj ; |u(x) − v(x)| > 2/k} ⊂ {x ∈ R

n \ Fj ; |u(x) − ui(x)| > 1/k}.
Moreover, for any i � i0 ,

{x ∈ R
n \ Fj ; |u(x) − ui(x)| > 1/k} ⊂ {x ∈ R

n \ Fj ; g1 ∗ |k(f − f i)|(x) > 1}.
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Consequently, using (ii) of Lemma 4.1 and the definition of capacity Cap1,p(·) ,
we obtain, for any i � i0 ,

Cap1,p(·)
({x ∈ R

n \ Fj ; |u(x) − v(x)| > 2/k})
� Cap1,p(·)

({x ∈ R
n \ Fj ; g1 ∗ |k(f − f i)|(x) > 1})

� �p(·)(k|f − f i|).
Letting i → ∞ , we obtain, in view of the fact that ‖f − f i‖p(·) = ‖u−ui‖1;p(·) → 0

and (2.5), that

Cap1,p(·)
({x ∈ R

n \ Fj ; |u(x) − v(x)| > 2/k}) = 0.

Since k ∈ N was arbitrary, the assertion (5.2)now followsby (iii) ofLemma4.1. �
Our second aim is to generalize the result of J. Malý [16] on Hölder type quasi-

continuity. The idea of the proof of Malý can be applied in spaces L1,p(·)(Rn) , too.

DEFINITION 5.2. Let Ω be a bounded domain in R
n . Say that u : Ω → R is an

α -Hölder-continuous function on Ω if

sup
x,y∈Ω
x �=y

|u(x) − u(y)|
|x − y|α < ∞.

First, let us formulate the result.

THEOREM 5.3. Let p ∈ M(Rn) and let p∗ � n . Suppose that

0 < α < β
p∗(p∗ − ε0)
p∗(p∗ − ε0)

, (5.3)

where 0 < ε0 < p∗ − 1 and 0 < β < ε0/p∗ . If u ∈ L1,p(·)(Rn) then, for any ε > 0 ,
there exists an α -Hölder continuous function w on R

n such that

‖u − w‖1;p(·) � ε, Cap1,p(·)−ε0

({x ∈ R
n; w(x) �= u(x)}) � ε.

Before proving Theorem 5.3 we need some preliminary results. The following
embedding theorem can be found in [24, Section 2.7.1].

LEMMA 5.4. Let r > n and let u ∈ L1,r(Rn) . Then there is a positive constant
c = c(n, r) such that

|u(x) − u(y)| � c ‖u‖1;r |x − y|1−n/r and |u(x)| � c ‖u‖1;r (5.4)

for all x, y ∈ R
n .

LEMMA 5.5. Assume that p(·) ∈ M(Rn) , p∗ � n , 0 < ε0 < p∗ − 1 and
0 < β < ε0/p∗ . Let u ∈ L1,p(·)(Rn) with ‖u‖1;p(·) � 1 and u = g1 ∗ f . Then there
exist bounded functions uR ∈ L1,p(·)(Rn) , 0 < R < 1 , uR = g1 ∗ f R , so that

lim
R→0+

‖u − uR‖1;p(·) = 0, (5.5)
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�p(·)−ε0(f − f R) � cRβp∗(p∗−ε0)/p∗ , (5.6)

and
|uR(x) − uR(y)| � C|x − y|β if |x − y| � R. (5.7)

Proof. Given u = g1 ∗ f ∈ L1,p(·)(Rn) , where f ∈ Lp(·)(Rn) , ‖u‖1;p(·) =
‖f ‖p(·) � 1 . Let R ∈ (0, 1) and λR = R−β(p∗−ε0)/ε0 . Put

MR = {x ∈ R
n; |f (x)| � λR}.

Clearly, (2.3) yields

|MR| � �p(·)(f /λR) � λ−p∗
R . (5.8)

We set

f R(x) :=
{

0 if x ∈ MR

f (x) if x ∈ R
n \ MR

and uR := g1 ∗ f R.

Obviously, the functions uR are bounded and belong to L1,p(·)(Rn) . Since |MR| →
0 as R → 0+ (cf. (5.8)), we have by (2.5)

‖u − uR‖1;p(·) = ‖f − f R‖p(·) = ‖f χMR‖p(·) → 0 as R → 0+ .

By the Hölder inequality (cf. [14, Thm. 2.1]), (2.4) and 0 < ε0 < p∗−1 we arrive
at

�p(·)−ε0(f −f R) =
∫

MR

|f (x)|p(x)−ε0 dx�‖|f (x)|p(x)−ε0‖p(·)/(p(·)−ε0) ‖χMR‖p(·)/ε0 � |MR|ε0/p∗ .

Hence and from (5.8) we obtain (5.6).
It remains to prove (5.7). Put

r =
nε0 − βp∗(p∗ − ε0)

ε0 − βp∗
.

Since 0 < β < ε0/p∗ and p∗ � p∗ � n we find that r > n and r − p(x) � 0 ,
x ∈ R

n . As the functions |f R| are bounded by λR and �p(·)(f R) � �p(·)(f ) � ‖f ‖p(·) �
1 , it implies

�r(f R) =
∫

Rn
|f R(x)|p(x)|f R(x)|r−p(x) dx � λ r−p∗

R �p(·)(f R) � λ r−p∗
R ,

that is, uR ∈ L1,r(Rn) and ‖uR‖1,r � λ (r−p∗)/r
R for all R ∈ (0, 1) . Consequently, using

(5.4), we obtain, for |x − y| � R ,

|uR(x) − uR(y)| � c|x − y|1−n/r‖uR‖1,r � c|x − y|1−n/rλ (r−p∗)/r
R

� c|x − y|1−n/rR−β(p∗−ε0)(r−p∗)/(rε0) � c|x − y|1−n/r−β(p∗−ε0)(r−p∗)/(rε0)

= c|x − y|β

and (5.7) is verified. �
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Similarly as in the classical case, the space W1,p(·)(Rn) is also closed under
truncation.

LEMMA 5.6. Let u ∈ W1,p(·)(Rn) and let τ � 0 . Then the function v :=
max

{− τ, min{τ, u}} belongs to W1,p(·)(Rn) and satisfies ‖u− v‖W1,p(·) � ‖u‖W1,p(·) .

Proof. The assertions immediately follow from the fact that the space W1,p(·)(Rn)
is a lattice (see [12, Thm. 2.2]). �

Proof of Theorem 5.3 . Fix u ∈ L1,p(·)(Rn) and ε > 0 . We may assume that
‖u‖1;p(·) � 1 . Let uR = g1 ∗ f R have the same meaning as in Lemma 5.5 and let α be a
number from (5.3). Denote uj := uRj and f j := f Rj , where the sequence {Rj} ⊂ (0, 1]
is chosen so that

R0 = 1, Rα
j+1 � 1

2Rα
j , j = 0, 1, . . . , (5.9)

and (cf. (5.5))
∞∑
j=1

‖uj+1 − uj‖1;p(·) < ∞. (5.10)

For j ∈ N put

Ej = {x ∈ R
n; |uj+1(x) − uj(x)| > Rα

j }.
Then, using the inequality

g1∗(R−α
j |f j+1−f j|)(x) � R−α

j

∣∣g1∗(f j+1−f j)(x)
∣∣ = R−α

j |uj+1(x)−uj(x)| > 1, x ∈ Ej,

and (5.6), we get

Cap1,p(·)−ε0
(Ej) � �p(·)−ε0(R

−α
j |f j+1 − f j|) � R−α(p∗−ε0)

j �p(·)−ε0(|f − f j| + |f j+1 − f |)
� 2p∗−1 2 c R−α(p∗−ε0)

j Rβp∗(p∗−ε0)/p∗
j = c2p∗Rβp∗(p∗−ε0)/p∗−α(p∗−ε0)

j .

Since the exponent on Rj is positive, we can find by (5.9) a number j0 ∈ N such
that ∞∑

j=j0

Cap1,p(·)−ε0
(Ej) < ε (5.11)

and (cf. (5.5) and (5.10))

‖u − uj0‖1;p(·) +
∞∑
j=j0

‖uj+1 − uj‖1;p(·) � ε. (5.12)

For j ∈ N define the functions

vj = max
{− Rα

j , min{Rα
j , uj+1 − uj}

}
.

The functions vj belong (by Lemma 5.6 and Theorem 3.1) to L1,p(·)(Rn) and it is
easy to see that

Ej = {x ∈ R
n; vj(x) �= uj+1(x) − uj(x)}, j ∈ N. (5.13)
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Set

w := uj0 +
∞∑
j=j0

vj and E :=
∞⋃
j=j0

Ej.

Then, by (5.13), w = u outside E , that is,

E ⊃ {x ∈ R
n; u(x) �= v(x)}.

Moreover, by (5.11) and Lemma 4.1 (iii) ,

Cap1,p(·)−ε0
(E) � ε.

Concerning the α -Hölder continuity of w , observe that it is enough to estimate
|w(x) − w(y)| for |x − y| � Rj0 as the function w is bounded. Choose x, y ∈ R

n such
that 0 < |x − y| � Rj0 and find k ∈ N , k � j0 , so that

Rk+1 < |x − y| � Rk. (5.14)

By (5.7),
|uj0(x) − uj0(y)| � C|x − y|β .

If j0 � j � k we deduce from (5.7) that

|vj(x) − vj(y)| � C |x − y|β .
If j > k then, by (5.9) and (5.14),

|vj(x) − vj(y)| � |vj(x)| + |vj(y)| � 2Rα
j � 2k−j+2Rα

k+1 � 2k−j+2|x − y|α .

Using (5.9), we obtain

k � α
log 2

log
1
Rk

� α
(β − α) log 2

Rα−β
k � α

(β − α) log 2
|x − y|α−β .

Consequently,

|w(x) − w(y)| � |uj0(x) − uj0(y)| +
k∑

j=j0

|vj(x) − vj(y)| +
∞∑

j=k+1

|vj(x) − vj(y)|

� C(k + 1) |x − y|β +
∞∑

j=k+1

2k−j+2|x − y|α

� |x − y|α
(
1 +

∞∑
j=k+1

2k−j+2
)

� |x − y|α .

Finally, by (5.12),

‖u − w‖1;p(·) � ‖u − uj0‖1;p(·) +
∞∑
j=j0

‖vj‖1;p(·)

� ‖u − uj0‖1;p(·) +
∞∑
j=j0

‖uj+1 − uj‖1;p(·) � ε
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and the assertions are verified. �
REMARK 5.7. The assumption p∗ � n in Theorem 5.3 is quite natural. If p∗ > n

then every Sobolev class has a continuous representative and the classical Morey’s
inequality [10, Theorem 3, on p. 143] together with [14, Theorem 2.8] implies that

|u(y) − u(z)| � Cr1− n
p∗

(∫
B(x,r)

|∇u|p∗dx

) 1
p∗

� C(1 + |B(x, r)|)r1− n
p∗ ‖∇u‖p(·)

for every u ∈ W1,p(·)(Rn) , r > 0 and y, z ∈ B(x, r) . Thus every Sobolev class has a
locally (1 − n

p∗ ) -Hölder continuous representative which, by [11, Theorem 4.7], is

v(x) = lim
r→0

1
|B(x, r)|

∫
B(x,r)

u(y) dy.

The last claim follows by an observation that if two continuous functions coincide
almost everywhere then they actually coincide everywhere.

Related results concerning Sobolev spaces W1,p(·)(Ω) on an open bounded subset
Ω of R

n with p(x) > n for all x ∈ Ω are derived in [9].

REMARK 5.8. One of the referees pointed out to us a recent preprint [1] where the
spaces of Bessel potentials over the spaces Lp(·)(Rn) were investigated. Among other
results the authors independently proved Theorem 3.1 and showed that C∞

0 (Rn) is
dense in Lα,p(·)(Rn) if α � 0 , p(·) satisfies conditions (2.8) and 1 < p∗ � p∗ < n/α
(cf. Lemma 3.4 (ii) ).

Acknowledgement. We are grateful to the referees for their valuable suggestions
and comments.
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