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Abstract. In this paper, we consider a generalizedmixed set-valued variational inequality problem
which includes many important known variational inequality problems and equilibrium problem,
and its related some auxiliary variational inequality problems. We prove the existence of solutions
of the auxiliary variational inequality problems and suggest a two-step iterative algorithm and
an inertial proximal iterative algorithm. Further, we discuss the convergence analysis of iterative
algorithms. The theorems presented in this paper improve and generalize many known results
for solving equilibrium problems, variational inequality and complementarity problems in the
literature.

1. Introduction

Variational inequality theory has emerged as elegant and fascinating branch of
applicable mathematics in recent years, because it describes a broad spectrum of inter-
esting and important developments involving a link amongvarious fields ofmathematics,
physics, economics, engineering, mechanics, etc. In last three decade, variational in-
equality theory has been extended and generalized in several directions, using new and
powerfulmethods, to study a wide class of problems in a unified and general framework,
see for example [7-9,12].

Equilibrium problems provide us with a unified, natural, innovative, and general
framework to study a wide class of problems arising in finance, economics, transporta-
tion, and optimization. This theory has witnessed an explosive growth in theoretical
advances and applications across all disciplines of pure and applied sciences. As a
result of this interaction, we have a variety of techniques to study existence results for
equilibrium problems, see for example [6-8,11].

One of the most important and interesting problems in the theories of variational
inequality and equilibrium problems is to develop the methods which give efficient and
implementable algorithms for solving variational inequalities and equilibriumproblems.
These methods include projection method and its variant forms, linear approximation,
descent, and Newton’s methods, and the method based on auxiliary principle technique.
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It is well known that the projection method and its variants can not be extended
for mixed variational inequalities involving non-differentiable term. To overcome this
drawback, one uses usually the auxiliary principle technique. This technique deals with
finding a suitable auxiliary principle and prove that the solution of an auxiliary problem
is the solution of the original problem by using the fixed-point approach. Glowinski,
Lions and Tremolieres [9] used this technique to study the existence of a solution of
mixed variational inequalities. Noor [14-20], Huang and Deng [10], Chidume et al.
[4] extended this technique to suggest and analyze a number of iterative methods for
solving various classes of variational inequalities and equilibrium problems.

Recently, Alvarez [1] and Alvarez and Attouch [2] have considered and studied
inertial proximal methods for maximal monotone operators associated with the dis-
cretization of second order differential equations in time. Later, Noor [19,20] and
Noor et al. [21] further extended this method for variational inequality and equilibrium
problems using auxiliary principle technique.

Motivated by recent work going in this direction, we consider a generalized mixed
set-valued variational inequality problem (in short, GMSVIP) which includes many
important known variational inequality problems and equilibrium problem, and its re-
lated auxiliary variational inequality problems. By using the KKM-Fan lemma and the
fixed point theorem, we prove the existence of solutions for these auxiliary problems.
Further, these auxiliary problems enable us to suggest and analyze two-step iterative
algorithm and inertial proximal iterative algorithm for finding the approximate solu-
tions for GMSVIP. Furthermore, we discuss the convergence analysis of these iterative
algorithms. The theorems presented in this paper, improve and generalize many known
results for solving equilibrium problems, variational inequality and complementarity
problems, see [14-21].

2. Preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted by 〈 ·, ·〉
and ‖ · ‖ , respectively. Let CB(H) be a family of all non-empty closed and bounded
subsets of H , M(·, ·) is the Hausdorff metric on CB(H) defined by

M(C, D) = max{sup
x∈C

inf
y∈D

d(x, y), sup
y∈D

inf
x∈C

d(x, y)}, C, D ∈ CB(H),

and K ⊂ H be nonempty, closed and convex set. For given nonlinear non-differentiable
bifunction b : H × H → R ∪ {+∞} , nonlinear bifunction F : H × H → R, nonlinear
mapping N : H × H → H and three set-valued mappings T, A, B : H → CB(H) , we
consider the following generalized mixed set-valued variational inequality problem (in
short, GMSVIP):

Find u ∈ K, x ∈ T(u), y ∈ A(u), z ∈ B(u) such that

F(x, v) + 〈N(y, z), v − u〉 + b(v, u) − b(u, u) � 0, ∀ v ∈ K. (2.1)
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Some special cases of GMSVIP (2.1)
(I) If F(x, v) ≡ 0, ∀u, v ∈ K, then GMSVIP (2.1) is reduced to a problem of

finding u ∈ K, y ∈ A(u), z ∈ B(u) such that

〈N(y, z), v − u〉 + b(v, u) − b(u, u) � 0, ∀v ∈ K,

similar to the problem studied by Chidume et al. [4] in the setting of Banach spaces.
(II) If N(y, z) ≡ 0, ∀y, z ∈ H , then GMSVIP (2.1) is reduced to a problem of

finding u ∈ K, x ∈ T(u) such that

F(x, v) + b(v, u) − b(u, u) � 0, ∀v ∈ K,

which appears to be new.
(III) If T ≡ I , the identity mapping and N(y, z) ≡ 0, ∀y, z ∈ H , then GMSVIP

(2.1) is reduced to a problem of finding u ∈ K such that

F(u, v) + b(v, u) − b(u, u) � 0, ∀v ∈ K,

which has been studied by Noor [20].
(IV) If T ≡ I , N(y, z) ≡ 0, ∀y, z ∈ H , and b(v, u) ≡ δK(u), ∀u, v ∈ H where

δK(u) =

{
0, if u ∈ K,

+ ∞, otherwise

is the indicator function of K , then GMSVIP (2.1) is reduced to a problem of finding
u ∈ K such that

F(u, v) � 0, ∀v ∈ K,

which is the classical equilibrium problem studied by Blum and Oettli [3].
Moreover, if

F(u, v) ≡ 〈Tu, v − u〉 , ∀u, v ∈ K,

then classical equilibrium problem is reduced to a problem of finding u ∈ K such that

〈Tu, v − u〉 � 0, ∀ v ∈ K,

which is the classical variational inequality studied by Stampacchia [22].
Now, we give the following concepts and known results.

DEFINITION 2.1. Let b : H × H → R
⋃{+∞} , F : H × H → R , N : H × H →

H, T, A, B : H → CB(H) . Then, for all u, v, z ∈ H, x1 ∈ T(u), x2 ∈ T(v),
y1 ∈ A(u), y2 ∈ A(v) z1 ∈ B(u), z2 ∈ B(v) ,

(i) N is said to be mixed monotone with respect to A and B , if

〈N(y1, z1) − N(y2, z2), z − v〉 � 0,

(ii) N is said to be a -partially relaxed strongly mixed monotone with respect to
A and B , if there exists a > 0 such that

〈N(y1, z1) − N(y2, z2), z − v〉 � −a‖z − u‖2,

(iii) F is said to be monotone with respect to A , if

F(x1, v) + F(x2, u) � 0,
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(iv) F is said to be α -partially relaxed strongly monotone with respect to T , if
there exists α > 0 such that

F(x1, v) + F(x2, z) � α‖z − u‖2,

(v) F is said to be θ -pseudomonotonewith respect to T where θ is a real-valued
multivariable function, if

F(x1, v) + θ � 0 implies − F(x2, u) + θ � 0,

(vi) T is said to be δ -M-Lipschitz continuous, if there exists δ > 0 such that

M(T(u), T(v)) � δ‖u − v‖,
where M(·, ·) is the Hausdorff metric on CB(H),

(vii) b is said to be skew-symmetric, if

b(u, u)− b(u, v) − b(v, u) − b(v, v) � 0, ∀u, v ∈ H,

(viii) F and N are said to be simultaneously hemicontinuous, if for t > 0 , and
xt ∈ T(u + tv), yt ∈ A(u + tv), zt ∈ B(u + tv), there exist x0 ∈ T(u), y0 ∈ A(u),
z0 ∈ B(u), such that, for any p ∈ H,

F(xt, p) + 〈N(yt, zt), p〉 → F(x0, p) + 〈N(y0, z0), p〉
as t → 0+ .

We note that if skew-symmetric bifunction b is bilinear then b(u, u) � 0, ∀u ∈ H .

REMARK 2.1. (i) If z = u , then partially relaxed strongly mixed monotonicity of
N reduces to the mixed monotonicity of N .

(ii) Mixed monotonicity and partially relaxed strongly mixed monotonicity are
the generalization of monotonicity and partially relaxed strongly monotonicity of N ,
respectively.

(iii) If θ ≡ 0 , θ -pseudomonotonicity of F reduces to simply pseudomonotonic-
ity of F .

LEMMA 2.1. For all ū, v̄ ∈ H , we have

2〈 ū, v̄〉 = ‖ū + v̄‖2 − ‖ū‖2 − ‖v̄‖2. (2.2)

LEMMA 2.2. (KKM-Fan Lemma [5]) Let E be a subset of topological vector
space X . Let F : E → 2E be a set-valued mapping such that F(u) is closed for each
u ∈ E , and compact for atleast one u ∈ E . If the convex hull of every finite subset
{u1, u2, ........, un} of E is contained in the corresponding union

⋃n
i=1 F(ui) , then⋂

u∈E

F(u) �= ∅.

REMARK 2.2. F : E → 2E is KKM mapping if and only if convex finite subset
{u1, u2, ........, un} of E is contained in the corresponding union

⋃n
i=1 F(ui) .
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THEOREM 2.1. ([23]) Let K be a nonempty and convex subset of Hausd ö rff
topological vector space X and let S : K → 2K be a set-valued mapping such that

(i) For each u ∈ K S(u) is a nonempty convex subset of K ,
(ii) For each v ∈ K , S−1(v) := {u ∈ K : v ∈ S(u)} contains a relatively open

subset Ov of K , where Ov may be empty for some v ∈ K ,
(iii)

⋃
v∈K

Ov = K ,

(iv) K contains a nonempty subset K0 contained in a compact convex subset of
K1 of K such that the set D =

⋃
v∈K0

Oc
v is compact. (D may be nonempty and Oc

v

denotes the complement of Ov in K) .
Then there exists u0 ∈ K such that u0 ∈ S(u0) .

3. Two-step iterative algorithm and results

In this section, we consider the following auxiliary variational inequality problem
(in short, AVIP) related to GMSVIP (2.1):

(AVIP): For given u ∈ K, x ∈ T(u), y ∈ A(u), z ∈ B(u) , find w ∈ K such that

ρF(x, v) + 〈 ρN(y, z) + w − u, v− w〉 + ρb(v, w) − ρb(w, w) � 0, ∀ v ∈ K, (3.1)

where ρ > 0 is a constant.

REMARK 3.1. We note that if w = u , then clearly w is a solution of GMSVIP
(2.1).

Next, we prove the following existence theorem for AVIP (3.1)

THEOREM 3.1. Let T, A, B : H → CB(H) , N : H × H → H , F : H × H → R
and b : H × H → R

⋃{+∞} be nonlinear mappings. Assume that
(i) F is convex is second argument,
(ii) b is convex and continuous in first argument,
(iii) If there exist a non-empty compact subset D of H and w0 ∈ D ∩ K such

that for any w ∈ K \ D, we have

ρF(x, w0) + 〈 ρN(y, z) + w − u, w0 − w〉 + ρb(w0, w) − ρb(w, w) < 0

for given u ∈ K, x ∈ T(u), y ∈ A(u), z ∈ B(u) .
Then AVIP (3.1) has a solution.

Proof. For given u ∈ K, x ∈ T(u), y ∈ A(u), z ∈ B(u) , define a set-valued
mapping G : K → 2K by

G(v)={w ∈ K : ρF(x, v)+〈 ρN(y, z)+w−u, v−w〉+ρb(v, w)−ρb(w, w) � 0} (3.2)

for v ∈ K.
We claim that G is a KKM-mapping. Indeed, let {w1, w2, ·, ·, ·, wm} be a finite

subset of K and let αi � 0, 1 � i � m with
∑m

i=1 αi = 1 . Suppose that w =∑m
i=1 αiwi �∈

⋃m
i=1 G(wi) . Then
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ρF(x, wi) + 〈 ρN(y, z) + w − u, wi − w〉 + ρb(wi, w) − ρb(w, w) < 0, ∀i.

Let, for given u ∈ K, x ∈ T(u), y ∈ A(u), z ∈ B(u) ,

V := {p ∈ K : ρF(x, p) + 〈 ρN(y, z) + w − u, p − w〉 + ρb(p, w) − ρb(w, w) < 0},
for fixed w ∈ K . Let p1, p2 ∈ V , we have

ρF(x, pi)+〈 ρN(y, z)+w−u, pi−w〉 +ρb(pi, w)−ρb(w, w) < 0, for i = 1, 2. (3.3)

Since K is convex, pλ := λp1 + (1 − λ )p2 ∈ K, ∀λ ∈ [0, 1] . Also, since F and b
are convex in second and first argument respectively, then we have

ρF(x, pλ ) + 〈 ρN(y, z) + w − u, pλ − w〉 + ρb(pλ , w) − ρb(w, w)
�λ [ρF(x, p1) + 〈 ρN(y, z) + w − u, p1 − w〉 + ρb(p1, w) − ρb(w, w)]

+ (1 − λ )[ρF(x, p2) + 〈 ρN(y, z) + w − u, p2 − w〉 + ρb(p2, w) − ρb(w, w)]
<0,

where we have used (3.3).
The preceding inequality implies that V is convex. Hence, we have, for given

u ∈ K, x ∈ T(u), y ∈ A(u), z ∈ B(u) ,

ρF(x,
m∑

i=1

αiwi)+〈 ρN(y, z)+w−u,
m∑

i=1

αiwi−w〉+ρb(
m∑

i=1

αiwi, w)−ρb(w, w) < 0

=⇒ ρF(x, w) < 0,

which leads to a contradiction to the fact that, if we take v = w in (3.1), we have
ρF(x, w) � 0 . Thus w ∈ ⋃m

i=1 G(wi) . Since w was an arbitrary element of
Conv{w1, w2, ..., wm} , hence Conv{w1, w2, ..., wm} ⊂ ⋃m

i=1 G(wi) , and our claim is
then verified.

Next, the continuity of b implies the closedness of the set G(v) for each v ∈ K .
Finally, we claim that, for w0 ∈ D ∩ K, G(w0) is compact. Indeed, suppose that

there exists w̄ ∈ G(w0) such that w̄ �∈ D . Since w0 ∈ D ∩ K and w̄ ∈ G(w0) , we
have

ρF(x, w0) + 〈 ρN(y, z) + w̄ − u, w0 − w̄〉 + ρb(w0, w̄) − ρb(w̄, w̄) � 0. (3.4)

Since w̄ �∈ D , by hypothesis (iii) , we have

ρF(x, w0) + 〈 ρN(y, z) + w̄ − u, w0 − w̄〉 + ρb(w0, w̄) − ρb(w̄, w̄) < 0,

which is a contradiction to (3.4). Hence G(w0) ⊂ D . Since D is compact and G(w0)
is closed, G(w0) is compact. By Lemma 2.2, it follows that⋂

v∈K

G(v) �= ∅.

Thus, there exists w ∈ K such that, for given u ∈ K, x ∈ T(u), y ∈ A(u), z ∈ B(u) ,
we have
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ρF(x, v) + 〈 ρN(y, z) + w − u, v − w〉 + ρb(v, w) − ρb(w, w) � 0, ∀ v ∈ K,

i.e., w ∈ K is a solution of AVIP (3.1) and this complete the proof.

Based on Remark 3.1, Theorem 3.1 and Nadler’s technique [13], we suggest and
analyze the following two-step iterative algorithm for finding the approximate solution
of GMSVIP (2.1).

Iterative algorithm 3.1. Let T, A, B : H → CB(H) , N : H × H → H , F :
H ×H → R and b : H ×H → R

⋃{+∞} be given. For a given u0 ∈ H , x0 ∈ T(u0),
y0 ∈ A(u0), z0 ∈ B(u0) , compute the approximate solution (un, xn, yn, zn) by the
iterative schemes:

ρF(xn, v) + 〈 ρN(yn, zn) + un+1 − wn, v − un+1〉
+ ρb(v, un+1) − ρb(un+1, un+1) � 0, ∀v ∈ K,

(3.5)

xn ∈ T(wn) : ‖xn+1 − xn‖ � (1 + (1 + n)−1)M(T(wn+1), T(wn)),

yn ∈ A(wn) : ‖yn+1 − yn‖ � (1 + (1 + n)−1)M(A(wn+1), A(wn)),

zn ∈ B(wn) : ‖zn+1 − zn‖ � (1 + (1 + n)−1)M(B(wn+1), B(wn)),

βF(ξn, v) + 〈 βN(ηn, γn) + wn − un, v − wn〉
+ βb(v, wn) − βb(wn, wn) � 0, ∀v ∈ K,

(3.6)

ξn ∈ T(wn) : ‖ξn+1 − ξn‖ � (1 + (1 + n)−1)M(T(un+1), T(un)),

ηn ∈ A(un) : ‖ηn+1 − ηn‖ � (1 + (1 + n)−1)M(A(un+1), A(un)),

γn ∈ B(un) : ‖γn+1 − γn‖ � (1 + (1 + n)−1)M(B(un+1), B(un)),
where n = 1, 2, 3, ..... and ρ > 0, β > 0 are constants.

Before discussing the convergence analysis of Iterative algorithm 3.1, we prove
the following theorem:

THEOREM 3.2. Let (u, x, y, z) , where u ∈ K, x ∈ T(u), y ∈ A(u), z ∈ B(u) be a
solution of GMSVIP (2.1) and let ( un, ξn,ηn, γn ) be an approximate solution obtained
by Iterative algorithm 3.1 . Let N is a -partially relaxed strongly mixed monotone with
respect to A and B , let F is α -partially relaxed strongly monotone with respect to T ,
and let b be skew-symmetric. If conditions (i) − (iii) of Theorem 3.1 hold, then

‖un+1 − u‖2 � ‖wn − u‖2 − (1 − 2ρ(α + a))‖un+1 − wn‖2, (3.7)

‖wn − u‖2 � ‖un − u‖2 − (1 − 2β(α + a))‖wn − un‖2, (3.8)

where ρ > 0 and β > 0 are constants.

Proof. By assumption, (u, x, y, z) satisfies

ρF(x, v) + 〈 ρN(y, z), v − u〉 + ρb(v, u)− ρb(u, u) � 0, ∀ v ∈ K, (3.9)

βF(x, v) + 〈 βN(y, z), v − u〉 + βb(v, u) − βb(u, u) � 0, ∀ v ∈ K, (3.10)

where ρ > 0, β > 0 are constants.
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Now, taking v = un+1 in (3.9) and v = u in (3.5), and then adding the resultant
inequalities, we have

〈 un+1−wn, u−un+1〉 � −ρ[F(xn, u)+F(x, un+1)]+ρ〈N(yn, zn)−N(y, z), un+1−u〉
+ ρ[b(u, u)− b(un+1, u) − b(u, un+1) + b(un+1, un+1)].

(3.11)
Since F is α -partially relaxed strongly monotone with respect to T , N is a -partially
relaxed strongly mixed monotone with respect to A ans B and b is skew-symmetric,
then (3.11) reduces to

〈 un+1 − wn, u − un+1〉 � −ρ(α + a)‖un+1 − wn‖2. (3.12)

Now, Setting ū = u − un+1, v̄ = un+1 − wn in (2.2), we obtain

〈 un+1 − wn, u − un+1〉 =
1
2
{‖u − wn‖2 − ‖un+1 − wn‖2 − ‖u − un+1‖2}. (3.13)

Combining (3.12) and (3.13), we have

‖un+1 − u‖2 � ‖wn − u‖2 − (1 − 2ρ(α + a))‖un+1 − wn‖2,

the requried (3.7).
Similarly, taking v = wn in (3.10) and v = u in (3.6) we have

βF(x, wn) + 〈 βN(y, z), wn − u〉 + βb(wn, u) − βb(u, u) � 0, (3.14)

βF(ξn, u) + 〈 βN(ηn, γn) + wn − un, u − wn〉 + βb(u, wn) − βb(wn, wn) � 0. (3.15)

From (3.14), (3.15), and the arguments used for obtaining (3.12), we have

〈wn − un, u − wn〉 � −β(α + a)‖un − wn‖2. (3.16)

Finally, taking v̄ = wn − un and ū = u − wn in (2.2), then from resultant and
(3.16), we have

‖wn − u‖2 � ‖un − u‖2 − (1 − 2β(α + a))‖wn − un‖2,

the requried (3.8). This complete the proof.

THEOREM 3.3. Let H be finite dimensional space and let K ⊆ H be a non-empty,
closed and convex set. Let the mappings F , N , b satisfy the conditions of Theorem
3.2 , F , N be continuous and T, A, B be M -Lipschitz continuous with constants
l1, l2, l3 > 0, respectively, and (u,x,y,z), where u ∈ K, x ∈ T(u), y ∈ A(u), z ∈ B(u) ,
be a solution of GMSVIP (2.1) . If 0 < ρ < 1

2(α+a) , 0 < β < 1
2(α+a) and the conditions

(i)− (iii) of Theorem 3.1 hold, then the sequences {un}, {ξn}, {ηn}, {γn} generated
by Iterative algorithm 3.1 converge strongly to u, x, y, z, respectively.

Proof. Since 0 < ρ, β < 1
2(α+a) , it follows from (3.7) and (3.8) that the sequences

{‖wn − u‖} and {‖u− un‖} are nonincreasing, and consequently, {un} and {wn} are
bounded. Furthermore, we have
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∞∑
n=0

(1 − 2ρ(α + a))‖un+1 − wn‖2 � ‖w0 − u‖2,

∞∑
n=0

(1 − 2β(α + a))‖wn − un‖2 � ‖u0 − u‖2,

which implies that
lim

n→∞ ‖un+1 − wn‖ = 0

and
lim

n→∞ ‖wn − un‖ = 0.

Thus

lim
n→∞ ‖un+1 − un‖ � lim

n→∞ ‖un+1 − wn‖ + lim
n→∞ ‖wn − un‖ = 0. (3.17)

Let ũ be a limit point of bounded sequence {un} , there exists a subsequence {unj}
of {un} such that unj → ũ as nj → ∞ , consequently, {unj} is a Cauchy sequence
in H . Next, from Iterative algorithm 3.1 and Lipschitz continuity of T, A, B , we have
that {ξnj} , {ηnj} and {γnj} are Cauchy sequences in H . Let ξnj → x̃, ηnj → ỹ and
γnj → z̃ . Since

d(x̃, T(ũ)) � ‖x̃ − ξnj‖ + M(T(unj), T(ũ))

� ‖x̃ − ξnj‖ + l1‖unj − x̃‖
→ 0 as nj → ∞,

(3.18)

where d(x̃, T(ũ)) = inf{‖x̃− z‖ : z ∈ T(ũ)} . Hence, (3.18) implies that x̃ ∈ T(ũ) .
Similary, we can obtain ỹ ∈ A(ũ) and z̃ ∈ B(ũ) . Now, replacing wn by unj in

(3.5) and (3.6), and taking limit nj → ∞ , then using (3.17), and the continuity of
F, N, T, A, B, b , we have

F(x̃, v) + 〈N(ỹ, z̃), v − ũ〉 + b(v, ũ) − b(ũ, ũ) � 0, ∀ v ∈ K,

i.e. (ũ, x̃, ỹ, z̃) is a solution of GMSVIP (2.1), and

‖un+1 − ũ‖2 � ‖un − ũ‖2.

Thus, it follows from the preceding inequality that the sequence {un} has exactly
one limit point ũ and

lim
n→∞ un = ũ.

This completes the proof.

4. Inertial proximal iterative algorithm and results

First, we prove the following Minty-type lemma for GMSVIP (2.1).

LEMMA 4.1. Let the bifunction F be θ -pseudomonotone with respect to θ where
θ is defined as

θ(u, y, z, v) = 〈N(y, z), v − u〉 + b(v, u)− b(u, u), ∀u, v, y, z ∈ H,
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F(x, v) � 0, ∀v ∈ K, x ∈ T(v) , and convex in the second argument. Let F and N
be simultaneously hemicontinuous, let N be mixed monotone with respect to A and B
and let b be convex in the first argument. Then GMSVIP (2.1) is equivalent to finding
u ∈ K such that, for each v ∈ K , there exist x1 ∈ T(v) , y1 ∈ A(v) , z1 ∈ B(v) such
that

−F(x1, u) + 〈N(y1, z1), v − u〉 + b(v, u) − b(u, u) � 0. (4.1)

Proof. Let (u, y, z, v) be a solution of GMSVIP (2.1), then

F(x, v) + 〈N(y, z), v − u〉 + b(v, u) − b(u, u) � 0, ∀ v ∈ K.

Since F is θ -pseudomonotone and N is mixed monotone, preceding inequality
implies that for each v ∈ K , there exist x1 ∈ T(v), y1 ∈ A(v), z1 ∈ B(v) such that

−F(x1, u) + b(v, u) − b(u, u) � −〈N(y, z), v − u〉
� −〈N(y1, z1), v − u〉 .

Conversely, let problem (4.1) has a solution. Since K is convex, for any t ∈ (0, 1] ,
vt := u + t(v − u) ∈ K . Hence there exist xt ∈ T(vt), yt ∈ A(vt), zt ∈ B(vt) such that

−F(xt, u) + 〈N(yt, zt), vt − u〉 + b(vt, u) − b(u, u) � 0.

F(xt, u) − 〈N(yt, zt), vt − u〉 � tb(v, u) + (1 − t)b(u, u) − b(u, u)
= t[b(v, u) − b(u, u)].

(4.2)

Now, using (4.2), we have

0 � F(xt, vt) − 〈N(yt, zt), vt − ut〉
� tF(xt, v)+(1−t)F(xt, u)−t〈N(yt, zt), vt−v〉−(1−t)〈N(yt, zt), vt−u〉
� tF(xt, v) − t〈N(yt, zt), vt − v〉 + t(1 − t)[b(v, u) − b(u, u)].

Dividing preceding inequality by t > 0 and taking the limit as t → 0+ , then there exist
x0 ∈ T(u), y0 ∈ A(u), z0 ∈ B(u) such that

F(x0, v) + 〈N(y0, z0), v − u〉 + b(v, u) − b(u, u) � 0, ∀v ∈ K,

where we have used simultaneously hemicontinuity of F and N . This complete the
proof.

REMARK 4.1. From Lemma 4.1, we observe that GMSVIP (2.1) and problem
(4.1) both have the same solution set. Problem (4.1) is called dual generalized mixed
set-valued variational inequality problem (in short, DGMSVIP). We can easily observe
that the solution set of DGMSVIP (4.1) is closed and convex.

Next, we consider the following auxiliary variational inequality problem (AVIP)
related to GMSVIP (2.1):

(AVIP): For given u ∈ K, find w ∈ K, x1 ∈ T(w), y1 ∈ A(w), z1 ∈ B(w) such
that

ρF(x1, v) + 〈 ρN(y1, z1) + w− u, v−w〉 + ρb(v, w)− ρb(w, w) � 0, ∀ v ∈ K. (4.3)
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REMARK 4.2. If w = v, clearly w is a solution of GMSVIP (2.1).

The following theorem ensures the existence of solution of AVIP (4.3).

THEOREM 4.1. Let K be a nonempty, closed and convex subset of Hilbert space H
and let F : H×H → R , b : H×H → R∪{+∞}, N : H×H → H , T, A, B : H → 2H .
Assume that

(i) F is continuous and convex in the second argument and θ -pseudomonotone
with respect to θ , where θ is defined as θ(v, y, z, w, u) = 〈N(y, z) + ρ−1(v− u), w−
v〉 + b(w, v) − b(v, v), ∀u, v, w, y, z ∈ H, F(x, v) � 0, ∀v ∈ K, x ∈ T(v) ,

(ii) N is mixed monotone with respect to A and B ,
(iii) b is convex in first argument and continuous,
(iv) For given u ∈ K , there exists w ∈ K such that x1 ∈ T(w), y1 ∈ A(w) ,

z1 ∈ B(w) and

−ρF(x1, v) + 〈 ρN(y1, z1) + v − u, w − v〉 + ρb(w, v) − ρb(v, v) < 0,

(v) There exists a nonempty set K0 contained in a compact and convex subset K1

of K such that

D =
⋂

w∈K0

⋂
x1∈T(w)

⋂
y1∈A(w)

⋂
z1∈B(w)

{v ∈ K : −ρF(x1, v) + 〈 ρN(y1, z1)
+ v − u, w − v〉 + ρb(w, v) − ρb(v, v) � 0}

is either empty or compact.
Then AVIP (4.3) has a solution.

Proof. We establish the proof by an indirect method of showing a contradiction.
Assume that AVIP (4.3) has no solution, then for each w ∈ K there exist x1 ∈ T(w) ,
y1 ∈ A(w), z1 ∈ B(w) , v ∈ K such that

ρF(x1, v) + 〈 ρN(y1, z1) + w − u, v − w〉 + ρb(v, w) − ρb(w, w) < 0.

Clearly, for given u ∈ K , the set

G(w) := {v ∈ K : ρF(x1, v) + 〈 ρN(y1, z1) + w − u, v − w〉
+ ρb(v, w) − ρb(w, w) < 0}, x1 ∈ T(w), y1 ∈ A(w), z1 ∈ B(w),

is nonempty. Since F is convex in second argument and b is convex in first argument,
the set G(w) is convex for each w ∈ K . Thus, G : K → 2K is a set-valued mapping
such that for each w ∈ K , G(w) is nonempty and convex.

Now, for each w ∈ K ,

G−1(w) := {v ∈ K, w ∈ G(v)}
= {v ∈ K : there exist x2 ∈ T(v), y2 ∈ A(v), z2 ∈ B(v),

ρF(x2, w) + 〈 ρN(y2, z2) + v − u, w − v〉 + ρb(w, v) − ρb(v, v) < 0}.
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Using θ -pseudomonotonicity of F and mixed monotonicity of N , for each w ∈
K , the complement of G−1(w) is in K , that is,

[G−1(w)]c = {v ∈ K, w �∈ G(v)}
= {v ∈ K : there exist x2 ∈ T(v), y2 ∈ A(v), z2 ∈ B(v),

ρF(x2, w) + 〈 ρN(y2, z2) + v − u, w − v〉 + ρb(w, v) − ρb(v, v) � 0}
⊆ {v ∈ K : there exist x1 ∈ T(w), y1 ∈ A(w), z1 ∈ B(w),

ρF(x2, w) + 〈 ρN(y1, z1) + v − u, w − v〉 + ρb(w, v) − ρb(v, v) � 0}
=: S(w) ⊂ K.

Evidently, the continuity of F and b yield the relativity closedness of S(w) .
Hence, for each w ∈ K, Ow := [S(w)]c is a relatively open subset of K . Now, by
assumption (iv) , it follows that

⋃
w∈K Ow = K . Indeed, if v ∈ K , by assumption (iv) ,

there exist w ∈ K, x1 ∈ T(w), y1 ∈ A(w), z1 ∈ B(w) such that v ∈ [S(w)]c = Ow .
Thus, v ∈ ⋃

w∈K Ow . Finally,

D :=
⋂
w∈K

⋂
x1∈T(w)

⋂
y1∈A(w)

⋂
z1∈B(w)

S(w) =
⋂
w∈K

⋂
x1∈T(w)

⋂
y1∈A(w)

⋂
z1∈B(w)

Oc
w

is compact or empty by assumption (v) .
Hence, from Theorem 2.1, there exists w ∈ K such that w ∈ G(w) , which implies

F(x1, w) < 0, a contradiction to our assumption. Hence, AVIP (4.3) admits a solution.
This completes the proof.

Based on Remark 4.2, Theorem 4.1 and Nadler’s technique [13], we suggest and
analyze the following inertial proximal iterative algorithm for GMSVIP (2.1).

Iterative algorithm 4.1. Let F : H × H → R , b : H × H → R ∪ {+∞} ,
N : H × H → H , T, A, B, : H → CB(H) . For u0 ∈ K , x0 ∈ T(u0) , y0 ∈ A(u0) , z0 ∈
B(u0) , compute the approximate solution (un, xn, yn, zn) by the iterative scheme:

ρF(xn+1, v) + 〈 ρN(yn+1, zn+1) + un+1 − un − αn(un − un−1), v − un+1〉
+ ρb(v, un+1) − ρb(un+1, un+1) � 0, ∀v ∈ K,

(4.4)

xn ∈ T(un) : ‖xn+1 − xn‖ � (1 + (1 + n)−1)M(T(un+1), T(un)),

yn ∈ A(un) : ‖yn+1 − yn‖ � (1 + (1 + n)−1)M(A(un+1), A(un)),

zn ∈ B(un) : ‖zn+1 − zn‖ � (1 + (1 + n)−1)M(B(un+1), B(un)),
where n = 0, 1, 2, ...., u−1 ≡ u0, α0 ∈ [0, 1), 0 � αn < α0 ∀n ∈ N , and ρ > 0 is a
constant.

If αn → 0 as n → ∞ , Iterative algorithm 4.1 reduces to the following iterative
algorithm:

Iterative algorithm 4.2. Let F : H × H → R , b : H × H → R ∪ {+∞} ,
N : H × H → H , T, A, B, : H → CB(H) . For u0 ∈ K , x0 ∈ T(u0) , y0 ∈ A(u0) ,
z0 ∈ B(u0) , compute the approximate solution (un, xn, yn, zn) by the iterative scheme:

ρF(xn+1, v) + 〈 ρN(yn+1, zn+1) + un+1 − un, v − un+1〉
+ ρb(v, un+1) − ρb(un+1, un+1) � 0, ∀v ∈ K,

(4.5)
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xn ∈ T(un) : ‖xn+1 − xn‖ � (1 + (1 + n)−1)M(T(un+1), T(un)),

yn ∈ A(un) : ‖yn+1 − yn‖ � (1 + (1 + n)−1)M(A(un+1), A(un)),

zn ∈ B(un) : ‖zn+1 − zn‖ � (1 + (1 + n)−1)M(B(un+1), B(un)),
where n = 1, 2, 3, ........ and ρ > 0 .

Iterative algorithm 4.2 is known as the proximal method for solving GMSVIP
(2.1). This includes as special cases, a number of new and known proximal methods
for solving various classes of variational inequality and equilibrium problems, see for
example [10,18,19] and the relevant references cited therein.

Now, we prove the following theorem, which is useful for discussing convergence
analysis for Iterative algorithms 4.1-4.2.

THEOREM 4.2. Let F : H ×H → R , b : H ×H → R∪ {+∞} , N : H ×H → H ,
T, A, B, : H → CB(H) . Let the conditions of Lemma 4.1 and Theorem 4.1 hold and let
b be skew-symmetric. If (u, x, y, z) is a solution of GMSVIP (2.1) and (un, xn, yn, zn)
is an approximate solution obtained from Iterative algorithm 4.1 , then

‖un+1 − u‖2 � ‖un − u‖2 − ‖un+1 − un − αn(un − un−1)‖2

+ αn{‖un − u‖2 − ‖un−1 − u‖2 + 2‖un − un−1‖2}. (4.6)

Proof. By assumption, (u, x, y, z) satisfies

F(x, v) + 〈N(y, z), v − u〉 + b(v, u) − b(u, u) � 0, ∀ v ∈ K.

Since F is θ -pseudomonotone and N is mixed monotone with respect to A and B ,
then preceding inequality implies that for v ∈ K , there exist x1 ∈ T(v), y1 ∈ A(v),
z1 ∈ B(v) such that

−F(x1, u) + 〈N(y1, z1), v − u〉 + b(v, u) − b(u, u) � 0. (4.7)

Taking v = un+1 in (4.7) and v = u in (4.4), and then adding the resultant
inequalities, we have

〈 un+1 − un − αn(un − un−1), u − un+1〉
� −ρF(xn+1, u) − 〈N(yn+1, zn+1), u − un+1〉
� ρ[b(u, u)− b(un+1, u) − b(u, un+1) + b(un+1, un+1)]
� 0,

(4.8)

since b is skew-symmetric. The desired inequality (4.6) follows by making use of
Lemma 2.1 and rearranging the terms in (4.8). This complete the proof.

Finally, we discuss the convergence analysis for Iterative algorithm 4.1.

THEOREM 4.3. Let H be a finite dimensional Hilbert space and let the conditions
of Theorem 4.2 hold. Let F, N be continuous and T, A, B, be M -Lipschitz continuous
with constants l1 , l2 , l3 > 0, respectively. Let (u, x, y, z) be a solution of GMSVIP
(2.1) and let (un, xn, yn, zn) be an approximate solution obtained by Iterative algorithm
4.1 . If

∑∞
n=1 ‖un+1 − un‖2 � ∞ , then (un, xn, yn, zn) converge strongly to (u, x, y, z) .
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Proof. First, we consider the case αn = 0 ∀n . In this case, it follows from (4.6)
that the sequence {‖un − u‖} is nonincreasing and hence {un} is bounded and

∞∑
n=0

‖un+1 − un‖2 � ‖u0 − u‖2,

which implies that
lim

n→∞ ‖un+1 − un‖ = 0.

Using the same arguments used in the proof of Theorem 3.3, we can easily shown that
(un, xn, yn, zn) converge strongly to (ũ, x̃, ỹ, z̃) a solution of GMSVIP (2.1).

Now, we consider the case 0 � αn � α0 ∈ [0, 1) . From (4.6) and hypothesis, it
follows that

∞∑
n=1

‖un+1−un−αn(un−un−1)‖2 � ‖u0−u‖2+
∞∑
n=1

{α0‖un−u‖2+2‖un−un−1‖2}

� ∞,

which implies that

lim
n→∞ ‖un+1 − un − αn(un − un−1)‖2 = 0.

Replacing the above argument as in the case αn = 0 , we get the desired result. This
complete the proof.

REMARK 4.3. (i) Theorems 3.2-3.3 and Theorems 4.2-4.3 generalize and improve
the corresponding results of [16, 20].

(ii) In [15-21], authors have not established the existence of solution for auxiliary
problems. They developed iterative algorithms without proving the existence of solu-
tions of auxiliary problems. In this paper, we have also proved the existence of solutions
for auxiliary problems which are essential for developing the iterative algorithms.
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