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Abstract. The main purpose of this article is to generalize Petty’s affine projection inequality
and monotonicity results related to affine surface area to p -affine surface area.

1. Introduction

During the past two decades the notion of affine surface area (from affine differen-
tial geometry) and the isoperimetric inequalities related to it, have attracted increased
interest. There are a number of reasons for this. First, there are new applications (see,
e.g. the survey of [6]). Another reason is the recently discovered extensions of affine
surface to arbitrary convex bodies (see, e.g. [7-10], [14], [23-24], [26]). These extensions
have led to recent verifications of the conjectured upper-semicontinuity and valuation
property of classical as well as extended affine surface area (see [14], [23-24]). In ad-
dition, various isoperimetric inequalities involving affine surface area are very closely
related to a variety of other important affine isoperimetric inequalities(see, e.g. [11-12],
[18]).

In [14], Lutwak introduced extended affine surface area, and proved that all the
well-known inequalities which involve affine surface (with theirs equality conditions)
hold for arbitrary convex bodies. Some of his results can be stated as follows:

THEOREM A. Let K ∈ Kn . Then

ωn
n−1Ω(K)n+1 � nn+1ωn

nV(ΠK),

with equality if and only if K is an ellipsoid.

THEOREM B. Let K ∈ Kn, L ∈ Wn . If ΠK ⊂ ΠL , then

Ω(K) � Ω(L).

The aim of this article is to generalize above two theorems from affine surface area
to p -affine surface area. Our main results can be stated as follows:
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THEOREM 1.1. Let K ∈ Kn . Then

Ωp(K)n+p � ωn
n nn+pV(ΠpK)p,

with equality if and only if K is an ellipsoid.

THEOREM 1.2. Let K ∈ Kn, L ∈ Wn
p . If ΠpK ⊂ ΠpL , then

Ωp(K) � Ωp(L).

Thus, this work may be seen as presenting addition evidence of the sentence said
by Lutwak [17](there were natural extensions of affine surface areas in the Brunn-
Minkowski-Firey theory).

The ideas and techniques of Lutwak [14] play a critical role throughout this paper.
Please see the next section for above interrelated notations, definitions and their

background materials.

2. Notation and preliminaries

The setting for this paper is n -dimensional Euclidean space R
n . Let Kn denote

the set of convex bodies (compact, convex subsets with non-empty interiors) and Kn
o

denote the subset of Kn that contains the origin in their interiors in R
n . Let Kn

c denote
the set of convex bodies whose centroids lie at the origin. As usual, Sn−1 denotes the
unit sphere, Bn the unit ball, ωn the volume of Bn .

If K ∈ Kn , then the support function of K , hK = h(K, ·) : R
n −→ (0,∞) , is

defined by
h(K, u) = max{u · x : x ∈ K}, u ∈ Sn−1

where u · x denotes the standard inner product of u and x .
For a compact subset L of R

n , which is star-shaped with respect to the origin, we
shall use ρ(L, ·) to denote its radial function; i.e., for u ∈ Sn−1 ,

ρ(L, u) = ρL(u) = max{λ > 0 : λu ∈ L}.
If ρ(L, ·) is continuous and positive, L will be called a star body, and ϕn

o will be used
to denote the class of star bodies in R

n containing the origin in their interiors.
For K ∈ Kn

o , let K∗ denote the polar of K ; i.e.,

K∗ = {x ∈ R
n : x · y � 1, for all y ∈ K}.

It is easy to get that

ρ(K∗, ·) = 1/h(K, ·) and h(K∗, ·) = 1/ρ(K, ·). (1.1)

2.1. Minkowski combination, Firey combination, and mixed volumes

For K, L ∈ Kn and λ ,μ � 0 (not both zero), the Minkowski linear combination
λK + μL ∈ Kn is defined by

h(λK + μL, ·) = λh(K, ·) + μh(L, ·).
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The mixed volume, V1(K, L) , of K, L ∈ Kn is defined by

nV1(K, L) = lim
ε→0

V(K + εL) − V(K)
ε

. (1.2)

Aleksandrov [1], Fenchel and Jessen [3] have shown that for each K ∈ Kn , there is
a positive Borel measure, S(K, ·) on Sn−1 , called the surface area measure of K , such
that

V1(K, Q) =
1
n

∫
Sn−1

h(Q, u)dS(K, u),

for all Q ∈ Kn .
A convex body K ∈ Kn will be said to have a curvature function , f (K, ·) : Sn−1 →

R , if its surface area measure S(K, ·) is absolutely continuous with respect to spherical
Lebesgue measure, S , and

dS(K, ·)
dS

= f (K, ·),
almost everywhere with respect to S . Let Fn,Fn

o,Fn
c denote set of all bodies in

Kn,Kn
o,Kn

c , respectively, that have positive continuous curvature functions.
For real p � 1, K, L ∈ Kn

o , and λ ,μ � 0 (not both zero), the Firey linear
combination λ · K +p μ · L , was defined (see [4]) by

h(λ · K +p μ · L, ·)p = λh(K, ·)p + μh(L, ·)P.

For p � 1 , the p -mixed volume, Vp(K, L) , of K, L ∈ Kn
o , was defined in [16] by

n
p
Vp(K, L) = lim

ε→0

V(K +p ε · L) − V(K)
ε

. (1.3)

That this limit exists was demonstrated in [16]. Obviously,

Vp(K, K) = V(K). (1.4)

It was shown in [15-16], that for each K ∈ Kn
o , there is a positive Borel measure,

Sp(K, ·) , on Sn−1 such that

Vp(K, Q) =
1
n

∫
Sn−1

h(Q, u)pdSp(K, u), (1.5)

for all Q ∈ Kn
o . It turns out that the measure Sp(K, ·) is absolutely continuous with

respect to the surface area measure S(K, ·) of K , and has Radon-Nikodym derivative

dSp(K, ·)
dS(K, ·) = h(K, ·)1−p.

A convex body K ∈ Kn
o will be said to have a positive continuous p -curvature

function, f p(K, ·) : Sn−1 → R , if Sp(K) is absolutely continuous with respect to
spherical Lebesgue measure, S , and

dSp(K, ·)
dS

= f p(K, ·), (1.6)

almost everywhere with respect to S . For K ∈ Kn
o , L ∈ ϕn

o , and p � 1 , Vp(K, L∗)
was defined by [14]:

Vp(K, L∗) =
1
n

∫
Sn−1

ρ(L, u)−pdSp(K, u). (1.7)



696 YUAN JUN, LV SONGJUN AND LENG GANGSONG

2.2. Affine surface area, extended affine surface area, and p-affine surface area

The affine surface area, Ω(K) , of K ∈ Fn can be defined by:

Ω(K) =
∫

Sn−1

f (K, u)n/(n+1)dS(u).

In [14] (see also [9]), the extended affine surface area, Ω(K) , of K ∈ Kn , was
defined by

n−
1
nΩ(K)

n+1
n = inf{nV1(K, Q∗)V(Q)

1
n : Q ∈ ϕn

o}.
Following, Lutwak [17] defined the p -affine surface area, Ωp(K) , for K ∈ Fn

o by:

Ωp(K) =
∫

Sn−1

f p(K, u)n/(n+p)dS(u). (1.8)

and for K ∈ Kn
o ,

n−
p
nΩp(K)

n+p
n = inf{nVp(K, Q∗)V(Q)

p
n : Q ∈ ϕn

o}. (1.9)

For K ∈ Kn , and L ∈ Fn , the mixed affine surface area of K and L , Ω−1(K, L) ,
was defined in [12-13] by

Ω−1(K, L) =
∫

Sn−1

f (L, u)−1/(n+1)dS(K, u).

Similarly, the p -mixed affine surface, Ωp,−p(K, L) , of K ∈ Kn
o, L ∈ Fn

o , was defined
in [19], by

Ωp,−p(K, L) =
∫

Sn−1

f p(L, u)−p/(n+p)dSp(K, u). (1.10)

From (1.6) and (1.8), it follows that for K ∈ Fn
o ,

Ωp,−p(K, K) = Ωp(K). (1.11)

The following inequality of p -mixed affine surface will be used later. For K ∈
Kn

o, L ∈ Fn
s , if n �= p > 1 , then [19]

Ωp,−p(K, L)n � Ωp(K)n+p Ωp(L)−p. (1.12)

2.3. Projection body, Lp -projection body

For each K ∈ Kn , the projection body, ΠK , of K is the unique origin symmetric
convex body such that(see [5], [25])

hΠK(u) = v(K|u⊥),

for all u ∈ Sn−1 , where u⊥ denotes the hyperplane, through the origin, that is or-
thogonal to u and v(K|u⊥) denotes (n − 1) -dimensional volume of the orthogonal
projection of K onto u⊥ .
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Recently, Lutwak, Yang and Zhang based on the classical projection body, in-
troduced the notion of Lp -projection body(see [15]). That is, for each K ∈ Kn and
for each real number p � 1 , define the Lp -projection body, ΠpK , of K to be the
origin-symmetric convex body whose support function was given by

hp
ΠpK(u) =

1
nωncn−2,p

∫
Sn−1

| u · v |p dSp(K, v), (1.13)

where u, v ∈ Sn−1 , cn,p = ωn+p/ω2ωnωp−1 . We write Π∗
pK , rather than (ΠpK)∗ , for

the polar of ΠpK . Write Πn
p and Π∗n

p for the class of Lp projection bodies and polars
of Lp projection bodies; i.e.,

Πn
p = {ΠpK : K ∈ Kn},

and
Π∗n

p = {Π∗
pK : K ∈ Kn}.

In [17], Lutwak defined the class of bodies, Vn
p

Vn
p = {K ∈ Fn

o : there exists a Q ∈ Kn
c with f p(K, ·) = h(Q, ·)−(n+p)}, (1.14)

and proved that it was a centro-affine invariant class. Similarly, a class of bodies, Wn
p ,

will be defined by

Wn
p = {K ∈ Fn

o : there exists a Q ∈ Πn
p with f p(K, ·) = h(Q, ·)−(n+p)}. (1.15)

For p = 1 , the classes Vn and Wn has been extensively investigated by Petty
[21-22] and Lutwak [14].

2.4. Lp -polar curvature images

In [16], Lutwak gave a weak solution to the Lp -Minkowski problem with even
data: If μ is an even positive Borel measure on Sn−1 , which is not concentrated
on a great sphere of Sn−1 , and p ∈ R such that p > 1 and p �= n , then there
exists a unique centered L , such that Sp(L, ·) = μ. Thus, given a continuous function
f : Sn−1 → (0,∞) , such that f (·)S(·) is an even positive Borel measure on Sn−1 , then
there exists a body L ∈ Fn

s , such that

f p(L, ·) = f (·). (1.16)

Let ϕn
s denote the class of star bodies which are symmetric about the origin, and

Fn
s the class of convex bodies in Fn which are symmetric about the origin.

Lp -polar curvature image: Λ∗
p : ϕn

s → Fn
s was defined in [19] as follows: Suppose

n �= p > 1 , and K ∈ ϕn
s . Let f (·) = ωnρ(K, u)n+p/V(K) , then f (·)S(·) is an

even positive Borel measure on Sn−1 , by (1.16), there exists a unique convex body
Λ∗

pK ∈ Fn
s , such that

f p(Λ∗
pK, ·) =

ωn

V(K)
ρ(K, ·)n+p. (1.17)
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It was shown in [19] that p -affine surface area can be defined from p -mixed affine
surface:Let K ∈ Kn

o and n �= p > 1 . Then

Ωp(K)(n+p)/n = inf{ Ωp,−p(K, L)Ωp(L)p/n : L ∈ Fn
s}. (1.18)

From (1.10) and (1.17), it follows immediately that for n �= p > 1 , K ∈ Kn
o ,

L ∈ ϕn
s ,

ωp
nΩp,−p(K,Λ∗

pL)n+p = nn+pV(L)pVp(K, L∗)n+p. (1.19)

3. Extension of Petty’s affine projection inequality

Petty’s affine projection inequality [20] states that for K ∈ Fn ,

ωn
n−1Ω(K)n+1 � nn+1ωn

nV(ΠK), (2.1)

with equality if and only if K is an ellipsoid.
In [14], Lutwak shown that this inequality holds for all convex bodies. In this

section, we generalize it to p -affine surface area.

THEOREM 3.1. For K ∈ Kn , then

Ωp(K)n+p � nn+pωn
nV(ΠpK)p, (2.2)

with equality if and only if K is an ellipsoid.

To prove Theorem 3.1, the following lemmas will be needed:

LEMMA 3.2. ([15], Lp -Petty projection inequality) Let K ∈ Kn . Then for p > 1 ,

V(K)(n−p)/pV(Π∗
pK) � ωn/p

n , (2.3)

with equality if and only if K is an ellipsoid.

From the integral representation (1.5), definition (1.13), Fubini’s theorem, we have

LEMMA 3.3. Suppose K, L ∈ Kn , then for p > 1

Vp(K,ΠpL) = Vp(L,ΠpK). (2.4)

For p = 1 , the identity of (2.4) was presented in [12,14].

Proof of Theorem 3.1 . From definition (1.9), it follows that for Q ∈ ϕn
o ,

n−pΩp(K)n+p � nnVp(K, Q∗)nV(Q)p.

Suppose L ∈ Kn . Take Π∗
pL for Q , and notice that Q∗∗ = Q , we get

Ωp(K)n+p � nn+pVp(K,ΠpL)nV(Π∗
pL)p. (2.5)

By (2.3) and (2.4),

Ωp(K)n+p � nn+pwn
nVp(L,ΠpK)nV(L)p−n,
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with equality implies that L is an ellipsoid. Now take ΠpK for L , use (1.4), and the
result is the desired inequality (2.2). Note that equality in (2.2) would imply that ΠpK
is an ellipsoid. Suppose equality holds in (2.2):

Ωp(K)n+p = nn+pωn
nV(ΠpK)p.

Hence ΠpK is a centered ellipsoid, and V(ΠpK)V(Π∗
pK) = w2

n . From definition
(1.9), it follows that for all Q ∈ ϕn

o ,

nnωn
nVp(ΠpK) = n−pΩp(K)n+p � nnVn

p (K, Q∗)V(Q)p.

Take K∗ for Q , and get

ωn
nVp(ΠpK) � V(K)nV(K∗)p.

By the Blaschke-Santaló inequality (see [5],[25]), it shows that

ωn
nVp(ΠpK) � ω2p

n V(K)n−p.

But, as noted previously, V(ΠpK) = ω2V(Π∗
pK)−1 . Hence the last inequality is

ωn/p
n � V(K)(n−p)/pV(Π∗

pK).

The equality condition of (2.3) shows that K must be an ellipsoid.

As an application, we establish a connection between p -affine surface area and
Lp -mixed volumes of two Lp -projection bodies.

THEOREM 3.4. For K, L ∈ Kn , then[
Ωp(L)n−pΩp(K)p

]n+p � nn(n+p)ωn2

n Vp(ΠpK,ΠpL)np, (2.6)

with equality if and only if K and L are homothetic ellipsoids.

Proof. As in the proof of Theorem 3.1, by (2.5) and (2.3), we have

V(L)n−pΩp(K)n+p � nn+pωn
nVp(K,ΠpL)n.

Take ΠpL for L and use Lemma 3.3, we have

V(ΠpL)n−pΩp(K)n+p � nn+pωn
nVp(ΠpK,ΠpL)n.

Applying Theorem 3.1, we get[
Ωp(L)n−pΩp(K)p

]n+p � nn(n+p)ωn2

n Vp(ΠpK,ΠpL)np,

with equality if and only if K and L are homothetic ellipsoids.

4. Monotonicity results

Winternitz (see [2]) proved that if K ∈ Fn (actually a more restrictive condition)
and E is an ellipsoid such that

K ⊂ E,

then it follows that
Ω(K) � Ω(E).
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Petty [21] proved the following extension of Winternitz’s monotonicity result. If
K ∈ Fn, L ∈ Vn , and

K ⊂ L,

then
Ω(K) � Ω(L). (3.1)

In [14], Lutwak showed that this is also correct when K is an arbitrary convex body and
proved that: If K ∈ Kn, L ∈ Wn , and

ΠK ⊂ ΠL,

then
Ω(K) � Ω(L). (3.2)

In this section, we generalize (3.1) and (3.2) to p -affine area.

THEOREM 4.1. If K ∈ Kn, L ∈ Vn
p , and

K ⊂ L, (3.3)

then
Ωp(K) � Ωp(L). (3.4)

THEOREM 4.2. If K ∈ Kn, L ∈ Wn
p , and

ΠpK ⊂ ΠpL, (3.5)

then
Ωp(K) � Ωp(L). (3.6)

To prove the inequality (3.4), the following lemma will be needed.

LEMMA 4.3. Λ∗
p (Kn

c) = Vn
p .

Proof. If K ∈ Vn
p , then by the definition (1.14), there exists a Q ∈ Kn

c with
f p(K, ·) = h(Q, ·)−(n+p) . From (1.1), it follows that

f p(K) = ρn+p
Q∗ .

It is now obvious that K is the Lp -polar curvature image of a dilate of Q∗ . This
shows that Vn

p ⊂ Λ∗
p(Kn

c) . That Λ∗
p(Kn

c) ⊂ Vn
p is an easy consequence of definition

(1.17) and (1.1).

In the same way, one easily shows that

Λ∗
p(Π

∗n
p ) = Wn

p. (3.7)

Proof of Theorem 4.1 . Since L ∈ Vn
p . By Lemma 4.3, there exists a Q ∈ Kn

c ,
such that L = Λ∗

pQ . Since Q∗ ∈ Kn , from the monotonicity of Lp -mixed volumes and
(3.3), we have

Vp(K, Q∗) � Vp(L, Q∗).
But from (1.19) and (1.11), we get

nn+pV(Q)pVp(K, Q∗)n+p = ωp
nΩp,−p(K,Λ∗

pQ)n+p = Ωp,−p(K, L)n+p,

and

nn+pV(Q)pVp(L, Q∗)n+p = ωp
nΩp,−p(L,Λ∗

pQ)n+p = Ωp,−p(L, L)n+p = Ωp(L)n+p.
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Hence
Ωp,−p(K, L) � Ωp(L).

The desired result is now seen to be a direct consequence of inequality (1.12).

Proof of Theorem 4.2 . Since L ∈ Wn
p , by (3.7) there exists a Q ∈ Kn , such that

L = Λ∗
pΠ∗

pQ . From (3.5), we have

hΠpK � hΠpL.

Since Sp(K, ·) is a positive measure, it follows from (1.5), that

Vp(Q,ΠpK) � Vp(Q,ΠpL).

Hence, by (2.4),
Vp(K,ΠpQ) � Vp(L,ΠpQ).

As in the proof of Theorem 4.1, rewrite this, by using (1.19), as

Ωp,−p(K,Λ∗
pΠ

∗
pQ) � Ωp,−p(L,Λ∗

pΠ
∗
pQ).

Recall that L = Λ∗
pΠ∗

pQ , use (1.11) and last inequality becomes

Ωp,−p(K, L) � Ωp(L).

Inequality (1.12) immediately gives (3.6).
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