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INEQUALITIES FOR THE INCENTER SIMPLICES

MA TONGY, ZHAO LINGZHI AND YUAN JUN

(communicated by V. Volenec)

Abstract. Let Ii(i = 0, 1, 2, ..., n) denote the incenter of facet Fi of an n -dimensional simplex
ΩA and we call ΩI = conv{I0, I1, ..., In} the incenter simplex of ΩA . In [3], L. H. Tang and
G. S. Leng conjectured

V(ΩI) � 1
nn V(ΩA),

with equality if and only if ΩA is a regular simplex. In this paper, we give a positive answer of
the conjecture. Further, we improve the condition of the equality holds.

1. Introduction

The setting for this paper is n -dimensional Euclidean space E
n . Let ΩA =

conv{A0, A1, ..., An} denote an n -dimensional simplex in En(n � 3) with vertices
A0, A1, ..., An , and V(ΩA) the n -dimensional volume of ΩA . Let Fi denote the
(n−1) -dimensional facet spanned by the vertex set {A0, A1, ..., Ai−1, Ai+1, ..., An} and
Ii the incenter of the (n − 1) -dimensional facet Fi(i = 0, 1, 2, ..., n) . Let ρij be the
length of edge AiAj . It is easy to get ρij = ρji, ρii = 0, and the matrix (ρij) is a n × n
positive definite matrix.

Let P be an interior point of ΩA and Hi the foot of the perpendicular drawn
from P to the facet Fi(i = 0, 1, 2, ..., n) . We call ΩH = conv{H0, H1, ..., Hn} the
orthocentric simplex for P and ΩA . In [2], H. M. Su conjectured that

V(ΩH) � 1
nn

V(ΩA),

with equality if and only if P is the circumcenter of simplex ΩA .
In [7], Y. Zhang gave a positive answer of the conjecture and improved the condition

of the equality holds. He proved the following theorem.

THEOREM 1. Let P be an interior point of an n-dimensionalsimplex ΩA and Hi

the foot of the perpendicular drawn from P to the facet Fi(i = 0, 1, 2, ..., n) . Then

V(ΩH) � 1
nn

V(ΩA). (1.1)
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Let (λ0, λ1, ..., λn) be the gauge barycenter coordinate of P about ΩA and θij

the internal dihedral angle between facets Fi and Fj of ΩA . The equality in (1.1)
holds if and only if

λk =
cosθij

n(cos θij + cosθik cos θkj)
,

where i, j, k = 0, 1, · · · , n and i �= j, i �= k, j �= k, .

Specially, when P is the incenter of simplex ΩA in Theorem 1, then Hi(i =
1, 2..., n) become the tangent points of ΩA with its inscribe ball. We call simplex ΩH

the tangent points simplex for P and ΩA , and obtain the following result.

COROLLARY1. ([1]) Let Ti(i = 1, 2..., n) be the tangent points of an n-dimensional
simplex ΩA with its inscribe ball and ΩT = conv{T0, T1, ..., Tn} . Then

V(ΩT) � 1
nn

V(ΩA). (1.2)

with equality if and only if ΩA is a regular simplex.

When P is the circumcenter of simplex ΩA in Theorem 1, then Hi(i = 1, 2..., n)
become the circumcenter of Fi(i = 1, 2, ..., n) . We call ΩH the circumcenter simplex
of ΩA , and get the following result.

COROLLARY 2. Let Oi(i = 1, 2..., n) the circumcenter of facet Fi of an n-
dimensional simplex ΩA and ΩO = conv{O0, O1, ..., On} . Then

V(ΩO) � 1
nn

V(ΩA), (1.3)

with equality if and only if ΩA is a regular simplex.

Let Ii be the incenter of Fi(i = 0, 1, ..., n) . We call ΩI = conv{I0, I1, ..., In} the
incenter simplex of ΩA . It is easy to see that it is not the special case of Theorem 1. A
natural question is that for the incenter simplex, whether exists inequality analogous to
(1.1).

In [3], L. H. Tang and G. S. Leng conjectured that

V(ΩI) � 1
nn

V(ΩA),

holds, with equality if and only if ΩA is a regular simplex. They proved the conjecture
is positive in E3 .

In this paper, we give a positive answer of the conjecture in En . Further, we
improve the condition of the equality holds. Our result is the following theorem.

THEOREM 2. Let ΩI be the incenter simplex of ΩA . Then

V(ΩI) � 1
nn

V(ΩA), (1.4)

with equality if and only if there exist μk � 0(k = 0, 1, 2, ..., n) such that ρij = μiμj(0 �
i < j � n) .
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2. Some lemmas

To prove Theorem 2, we need some lemmas.
LEMMA 1. ([2]) Let ΩA be the coordinate simplex and ΩB = conv{B0, B1, ..., Bn}

be an arbitrary simplex in En . Let (λi0, λi1, ..., λin) be the gauge barycenter coordinate
of Bi(i = 0, 1, ..., n) about ΩA . Then

V(ΩB)
V(ΩA)

= | det(λij)|. (2.1)

LEMMA 2. Let Fi ∩ Fj(i < j, i, j = 0, 1, ..., n) be the (n − 2) -dimensional sub-
simplex of simplex ΩA and Vij be the (n − 2) -dimensional volume of Fi ∩ Fj . Then
the barycenter coordinate of Ii is

(Vi0 : Vi1 : ... : Vi,i−1 : 0 : Vi,i+1 : ... : Vij : ... : Vin).

Proof. By the definition of barycenter coordinate, we can get the barycenter coor-
dinate of I0 is

(0 : VA0I0A2...An : VA0A1I0A3...An : ... : VA0A1...An−1I0),

where VA0A1...Ai−1I0Ai+1...An denotes the volumeof n -dimensional simplex conv{A0, A1, ...,
Ai−1, I0, Ai+1, ..., An}.

Since I0 is the interior point of F0 = conv{A1, A2, ..., An} , we know that the
distances of A0 to conv{I0, A2, ..., An} and conv{A1, I0, A3, ..., An} are equal, let h0

denote the distance.
Let r0 be the distance of I0 to the boundary of F0 ( (n − 2) -dimensional sub-

simplex). Then

V(n−1)
I0A2...An

=
1

n − 1
V(n−2)

A2A3...An
· r0,

V(n−1)
A1I0A3...An

=
1

n − 1
V(n−2)

A2A3...An
· r0,

where V(k) denotes the volume of k -dimensional simplex.
So

VA0I0A2...An : VA0A1I0A3...An =
1
n
V(n−1)

I0A2A3...An
h0 :

1
n
V(n−1)

A1I0A3...An
h0

= V(n−1)
I0A2A3...An

: V(n−1)
A1I0A3...An

=
1

n − 1
V(n−2)

A2A3...An
r0 :

1
n − 1

V(n−2)
A1A3...An

r0

= V(n−2)
A2A3...An

r0 : V(n−2)
A1A3...An

r0

= V01 : V02.

Then we get the barycenter coordinate of I0 is

(0 : V01 : V02 : ... : V0n).
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Similarly, we have the barycenter coordinate of Ii(i = 0, 1, ..., n) is

(Vi0 : Vi1 : ... : Vi,i−1 : 0 : Vi,i+1 : ... : Vi,j : ... : Vin). �

LEMMA 3. ([4]) Let ρij be the length of edge AiAj(i, j = 0, 1, ..., n) of simplex ΩA

and R(ΩA) the circumradius of ΩA . Then

R2(ΩA) =
1

(n!V(ΩA))2
·
∣∣∣∣det(−1

2
ρ2

ij)
∣∣∣∣ . (2.2)

LEMMA 4. ([4]) Let ρij be the length of edge AiAj(i, j = 0, 1, ..., n) of simplex
ΩA . Then ∣∣∣∣det(−1

2
ρ2

ij)
∣∣∣∣ � n

2n+1

∏
0�i<j�n

ρ
4
n
ij , (2.3)

with equality if and only if all
ρij

ρ0iρ0j
(i �= j, i, j = 0, 1, ..., n) are equal.

LEMMA 5. ([5]) Let ρij be the length of edge AiAj(i, j = 0, 1, ..., n) of simplex ΩA

and R(ΩA) the circumradius of ΩA . Then

∏
0�i<j�n

ρ
2
n
ij � (n!)

(
2n+1

n

) 1
2

R(ΩA)V(ΩA), (2.4)

with equality if and only if exist μk(μk � 0, k = 0, 1, ..., n) such that ρij = μiμj(i �=
j, i, j = 0, 1, ..., n) .

LEMMA 6. ([6]) Let ΩP = conv{P0, P1, ..., Pm} be a m -dimensional simplex, ρij

denote the length of edge PiPj(i, j = 0, 1, ..., m) . Then

V2(ΩP) =
(−1)m+1

2m(m!)2
D(P0, P1, ..., Pm), (2.5)

where D(P0, P1, ..., Pm) denotes the (m + 2) -rank Cauchy-Mengv determinant, i.e.

D(P0, P1, ..., Pm) =

∣∣∣∣∣∣∣∣∣

0 1 · · · 1
1
... ρ2

ij

1

∣∣∣∣∣∣∣∣∣
.

3. Proof of the Theorem

We keep the notations of the previous two sections.

Proof of Theorem 2 . Let ΩA be the coordinate simplex in En . According to
Lemma 2, we can get the gauge barycenter coordinate of Ii(i = 0, 1, ..., n)

Ii(λi0, λi1, ..., λin),
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applying Lemma 1, we find

V(ΩI)
V(ΩA)

= | det(λij)| =
1

n∏
i=0

n∑
j=0
i �=j

Vij

|det(Vij)| . (3.1)

By Lemma 3, we know∣∣det
(
ρ2

ij

)∣∣ = 2n+1(n!)2 (R(ΩA)V(ΩA))2
, (3.2)

then we have

| det(
√

mi
√

mjρ2
ij)| = 2n+1(n!)2m0m1...mn(R(ΩA)V(ΩA))2. (3.3)

Let
√

mi
√

mj = Vij/ρ2
ij(i, j = 0, 1, ..., n) , then

m0m1...mn =
1

ρ
4
n
ij

·
∏

0�i<j�n

V
2
n
ij ,

so

| det(Vij)| = 2n+1(n!)2 ·

∏
0�i<j�n

V
2
n
ij

ρ
4
n
ij

· (R(ΩA)V(ΩA))2. (3.4)

Substituting (3.4) into (3.1) and applying arithmetic-geometric inequality, we get

V(ΩI)
V(ΩA)

=
2n+1(n!)2

n∏
i=0

n∑
j=0
i �=j

Vij

·

∏
0�i<j�n

V
2
n
ij

ρ
4
n
ij

· (R(ΩA)V(ΩA))2

� 2n+1(n!)2

nn+1
∏

0�i<j�n
V

2
n
ij

·

∏
0�i<j�n

V
2
n
ij

ρ
4
n
ij

· (R(ΩA)V(ΩA))2

=
1

nn+1ρ
4
n
ij

· 2n+1(n!)2(R(ΩA)V(ΩA))2.

(3.5)

Applying Lemma 5 to (3.5) yields (1.4).
By arithmetic-geometric inequality and Lemma 5, we obtain that equality in (1.4)

holds if and only if both of the following conditions hold:
(I) All Vij(0 � i < j � n) are equal;
(II) There exist μk � 0(k = 0, 1, ..., n) , such that ρij = μiμj, 0 � i < j � n.
Now we prove that (I) and (II) are equivalent.
In fact, when all Vij(0 � i < j � n) are equal, let

Vij = Vn−2, δij =

{
0 i = j,

1 i �= j.
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Since
| det(Vij)| = Vn+1

n−2 · det(δij) = Vn+1
n−2|(−1)nn| = nVn+1

n−2.

Using (3.4), we get

nVn+1
n−2 = 2n+1(n!)2

(
V

2
n
n−2

)C2
n+1 · (R(ΩA)V(ΩA))2∏

0�i<j�n
ρ

4
n
ij

,

then ∏
0�i<j�n

ρ
2
n
ij = (n!)

(
2n+1

n

) 1
2

R(ΩA)V(ΩA). (3.6)

By the equality condition of Lemma 5, we know that there exist μk � 0(k =
0, 1, 2, ..., n) , such that

ρij = μiμj, (0 � i < j � n). (3.7)

On the other hand, if (3.7) holds, (3.6) holds too. Substituting (3.6) into (3.4)
yields

| det(Vij)| = n
∏

0�i<j�n

V
2
n
ij . (3.8)

From Lemma 4, we obtain that there exist mk(k = 0, 1, ..., n) , such that∣∣det
(√

mi
√

mjρ2
ij

)∣∣ � n(m0m1...mn)
∏

0�i<j�n

ρ
4
n
ij .

Let
√

mi
√

mj = Vij/ρ2
ij(i, j = 0, 1, ..., n) , then

| det(Vij)| = n
∏

0�i<j�n

V
2
n
ij . (3.9)

Combining (3.8) and (3.9), and noticing the equality condition in Lemma 4, we
get that ρij/ρ0iρ0j(i �= j, i, j = 0, 1, ..., n) are all equal.

Specially, let ρij be all equal, applying Lemma 6, we know that all Vij are equal.
So equality holds if and only if there exist μk � 0(k = 0, 1, 2, ..., n) , such that

ρij = μiμj(0 � i < j � n).

The proof is complete. �
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