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Abstract. For nonnegative matrices A = (aij) ∈ Rn×m , B = (bij) ∈ Rm×n and any t ∈ [0, 1] ,
we present σ(St(A,B)) � σ(A)tσ(B)1−t , in which St(A,B) = (at

ijb
1−t
ji ) and σ(·) denotes the

largest singular value. Using the result obtained, the inequality σ(A◦B) �
√
σ(A ◦ A)σ(B ◦ B)

for matrices A = (aij) and B = (bij) ∈ Cn×m is established. Here, A ◦ B = (aijb̄ij) , and b̄ij
denotes the complex conjugate of bij . Finally, some inequalities for the spectral radius are also
studied.

1. Introduction and notation

If all entries of matrix A are nonnegative (positive), we say that A is nonnegative
(positive). By Perron-Frobenius theory [10], a nonnegative matrix has an eigenvalue
equal to its spectral radius, i.e., the Perron root. We denote by C

n×m and R
n×m
+ the

n × m matrices and the n × m nonnegative matrices, respectively, and by AT , AH ,
tr(A) , σ(A) and ρ(A) the transpose, the conjugate transpose, the trace, the largest
singular value and the spectral radius of the matrix A , respectively. For A = (aij) and
B = (bij) ∈ Cn×m , we write A � B if A − B is nonnegative, and define |A| := (|aij|)
and A◦B := (aijb̄ij) , where b̄ij is the complex conjugate of bij . For A = (aij) ∈ R

n×m
+

and B = (bij) ∈ R
m×n
+ , we define

St(A, B) := (at
ijb

1−t
ji ), t ∈ [0, 1],

and, in particular, if n = m , we define

St(A) := St(A, A), t ∈ [0, 1].

The matrix C ∈ Cn×n is said to be reducible if either (a) n = 1 and C is a zero matrix;

or (b) n � 2 , there exists an n×n permutationmatrix P such that PTCP =
(

B E
0 D

)
,

where B ∈ C
k×k, 1 � k � n− 1 ; Otherwise, we say that C is irreducible; see [2, p.18,
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Definition 1.15]. The irreducible matrix A ∈ R
n×n
+ is said to be primitive if A has only

one eigenvalue with modulus ρ(A) ; see [2, p.40, Definition 2.10].
The directed graph of the matrix A = (aij) ∈ Cn×n , denoted by D(A) , is the

directed graph on n nodes v1, v2, · · · , vn such that there is a directed arc in D(A) from
vi to vj , denoted by vi → vj , if and only if aij �= 0 ; see [1,2]. Let W = vi1vi2 · · · vik be
a sequence arising in n nodes. Then we define

W−1 := vikvik−1
· · · vi1 , wA(W) := ai1i2ai2i3 · · · aik−1ik .

If vi1 → vi2 , vi2 → vi3 , · · · , vik−1
→ vik exist, then W is said to be a directed path in

D(A) . A cycle W = vi1vi2 · · · vik vi1 is a closed path with its k nodes distinct. γ (A)
denotes the set of cycles in D(A) .

The research on matrix singular values and spectral radius plays an important role
in matrix theory and numerical algebra; see, e.g., [1, 3, 4, 6, 7, 9]. We shall present
some new and interesting inequalities for matrix singular values in Section 2. In Section
3, several inequalities for the spectral radius will be also studied.

2. Inequalities for the largest singular value

We begin with two lemmas.

LEMMA 2.1. [5, Theorem 2.8.3]. Let aij (i = 1, 2, · · · , n; j = 1, 2, · · · , m) be

nonnegative numbers, and α1,α2, · · · ,αm be positive numbers with
m∑

k=1

1
αk

� 1 . Then

n∑
i=1

ai1ai2 · · · aim � (
n∑

i=1

aα1
i1 )

1
α1 (

n∑
i=1

aα2
i2 )

1
α2 · · · (

n∑
i=1

aαm
im )

1
αm .

LEMMA 2.2. [10, p.28, Theorem 1.11]. Let A ∈ R
n×n
+ , and let x be a positive

vector. If there exists a real number α such that αx � Ax , then ρ(A) � α .

Based on the two lemmas above, we give our main result as follows.

THEOREM 2.1. Let A = (aij) ∈ R
n×m
+ and B = (bij) ∈ R

m×n
+ . Then, for any

t ∈ [0, 1] ,

σ(St(A, B)) � σ(A)tσ(B)1−t.

Proof. Trivial for t = 0, 1 .
Assume that t ∈ (0, 1) . Then we first show that the inequality holds for positive

matrices A and B . By the Perron-Frobenius theory, there exist positive eigenvectors
x = (x1, x2, · · · , xn)T and y = (y1, y2, · · · , yn)T such that

AATx = ρ(AAT)x, BTBy = ρ(BTB)y.



SEVERAL INEQUALITIES FOR THE LARGEST SINGULAR VALUE . . . 715

Taking z := (xt
1y

1−t
1 , xt

2y
1−t
2 , · · · , xt

ny
1−t
n )T and C := St(A, B) , by Lemma 2.1 we have,

for any 1 � i � n ,
n∑

j=1
(CCT)ijzj =

n∑
j=1

(
m∑

k=1
CikCjk

)
zj

=
n∑

j=1

(
m∑

k=1
at

ikb
1−t
ki at

jkb
1−t
kj

)
zj

=
n∑

j=1

(
m∑

k=1
(aikajk)t(bkibkj)1−t

)
zj

�
n∑

j=1

(
m∑

k=1
aikajk

)t ( m∑
k=1

bkibkj

)1−t

zj

=
n∑

j=1

(
(AAT)ijxj

)t ((BTB)ijyj

)1−t

�
(

n∑
j=1

(AAT)ijxj

)t(
n∑

j=1
(BTB)ijyj

)1−t

=
(
ρ(AAT)xi

)t (ρ(BTB)yi
)1−t

= ρ(AAT)tρ(BTB)1−tzi,

which, by Lemma 2.2, implies

ρ(CCT) � ρ(AAT)tρ(BTB)1−t.

Thus,

σ(St(A, B)) =
√
ρ(CCT) �

√
ρ(AAT)tρ(BTB)1−t = σ(A)tσ(B)1−t.

Secondly, we show that the inequality holds for all nonnegative matrices. For each
ε > 0 , set A(ε) := (aij + ε) and B(ε) := (bij + ε) . It follows from the result obtained
above that

σ(St(A(ε), B(ε))) � σ(A(ε))tσ(B(ε))1−t.

By the continuity of eigenvalues, we get

σ(St(A, B)) = lim
ε→0

σ(St(A(ε), B(ε)))
� lim

ε→0
σ(A(ε))tσ(B(ε))1−t = σ(A)tσ(B)1−t.

This completes the proof of Theorem 2.1. �

REMARK 2.1. By Theorem 2.1 and the weighted arithmetic-geometric mean in-
equality [8, Appendix B], it is easy to get, for any t ∈ [0, 1] ,

σ(St(A, B)) � σ(A)tσ(B)1−t

� tσ(A) + (1 − t)σ(B) � max{σ(A),σ(B)}.
So max{σ(A),σ(B)} is the upper bound of the function

ϕ(t) := σ(St(A, B)), t ∈ [0, 1].

Using σ(B) = σ(BT) and Theorem 2.1, it is not difficult to get the following
results.
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COROLLARY 2.1. Let A and B ∈ R
m×n
+ . Then, for any t ∈ [0, 1] ,

σ(St(A, BT)) � σ(A)tσ(B)1−t.

COROLLARY 2.2. Let A and B ∈ R
n×n
+ . Then

σ(S 1
2
(A, B)) �

√
σ(A)σ(B), σ(S 1

2
(A, BT)) �

√
σ(A)σ(B).

THEOREM 2.2. Let A ∈ R
n×n
+ . Then, for any t ∈ [0, 1] ,

σ(S 1
2
(A)) � σ(St(A)) � σ(A).

Proof. It is trivial by the equality S 1
2
(A) = S 1

2
(St(A), St(A)) and Theorem2.1. �

REMARK 2.2. Since S 1
2
(A) is symmetric, we get ρ(S 1

2
(A)) = σ(S 1

2
(A)) . Thus,

Theorem2.2 shows that ρ(S 1
2
(A)) and σ(A) are lower and upper bounds for σ(St(A)), t ∈

[0, 1] , respectively.

The following is the monotonicity property of the function

f (t) := σ(St(A)), t ∈ [0, 1].

THEOREM 2.3. Let A ∈ R
n×n
+ . Then f (t) is decreasing in [0, 0.5] and increasing

in [0.5, 1] .

Proof. Assume that 0 � t1 < t2 � 0.5 . Then we set α = t1+t2−1
2t1−1 , and then have

0 � α < 1 . A direct computation yields that

at2
ij a

1−t2
ji = (at1

ij a
1−t1
ji )α(at1

ji a
1−t1
ij )1−α ,

which, together with Theorem 2.1, leads to

f (t2) = σ(St2(A)) = σ(Sα(St1(A), St1(A)))
� σ(St1(A)) = f (t1).

Hence, f (t) is decreasing in [0, 0.5] . Likewise, assume that 0.5 � t1 < t2 � 1 and
α = t1+t2−1

2t2−1 . Then 0 � α < 1 , and

at1
ij a

1−t1
ji = (at2

ij a
1−t2
ji )α(at2

ji a
1−t2
ij )1−α ,

which, by Theorem 2.1, implies

f (t1) = σ(St1(A)) = σ(Sα(St2(A), St2(A)))
� σ(St2(A)) = f (t2).

So, f (t) is increasing in [0.5,1]. �
As an application of Theorem 2.1, some inequalities for the largest singular values

of complex matrices are derived as follows.
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THEOREM 2.4. Let A and B ∈ Cn×m . Then

σ(A ◦ B) �
√
σ(A ◦ A)σ(B ◦ B).

Proof. Clearly,

|(A ◦ B)(A ◦ B)H| � |(A ◦ B)||(A ◦ B)H | = (|A| ◦ |B|)(|A| ◦ |B|)T .

By the equality |A| ◦ |B| = S 1
2
(|A| ◦ |A|, (|B| ◦ |B|)T) , [9, p.38, Corollary 2.1] and

Corollary 2.2, we get

σ(A ◦ B) � σ(|A| ◦ |B|)
�
√
σ(|A| ◦ |A|)σ(|B| ◦ |B|) =

√
σ(A ◦ A)σ(B ◦ B).

The proof is completed. �

From σ(B) = σ(BH) and Theorem 2.4, the following results are immediate.

COROLLARY 2.3. Let A ∈ C
n×m and B ∈ C

m×n . Then

σ(A ◦ BH) �
√
σ(A ◦ A)σ(B ◦ B).

COROLLARY 2.4. Let A ∈ Cn×n . Then σ(A ◦ AH) � σ(A ◦ A) .

COROLLARY 2.5. Let A ∈ Cn×n , and let P be an n×n permutation matrix. Then

σ(A ◦ (PTAP)) � σ(A ◦ A), σ(A ◦ (PTAHP)) � σ(A ◦ A).

Proof. By Theorem 2.4, it is easy to get

σ(A ◦ (PTAP)) �
√
σ(A ◦ A)σ((PTAP) ◦ (PTAP))

=
√
σ(A ◦ A)σ(PT(A ◦ A)P) = σ(A ◦ A).

Analogously, σ(A ◦ (PTAHP)) � σ(A ◦ A) can be obtained. �

Using Lemma 2.1 and the proof of Theorem 2.1, we present the following theorem
generalizing Theorem 2.1.

THEOREM 2.5. Let A1 = (a1
ij), A2 = (a2

ij), · · · , Al = (al
ij) ∈ R

n×m
+ ,

∑l
k=1 αk = 1

with αk � 0 (k = 1, 2, · · · , l) and

Sα1···αl(A1, · · · , Al) = ((a1
ij)

α1(a2
ij)

α2 · · · (al
ij)

αl).

Then

σ(Sα1···αl(A1, · · · , Al)) � σ(A1)α1σ(A2)α2 · · ·σ(Al)αl .
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3. Inequalities for the spectral radius

Let A1 = (a1
ij), A2 = (a2

ij), · · · , Am = (am
ij ) ∈ R

n×n
+ and

∑m
k=1 αk � 1, where

αk > 0, k = 1, 2, · · · , m . Then define C := (cij) with

cij = (a1
ij)

α1(a2
ij)

α2 · · · (am
ij )

αm , i, j = 1, 2, · · · , n.

Elsner, Hershkowitz and Pinkus [6] proved

ρ(C) � ρ(A1)α1ρ(A2)α2 · · ·ρ(Am)αm .

Especially, setting A1 = A, A2 = BT ,α1 = t,α2 = 1 − t, t ∈ (0, 1) , we derive
C = St(A, B) = (at

ijb
1−t
ji ) , and then

ρ(St(A, B)) � ρ(A)tρ(B)1−t.

In this section, we shall study further this inequality. New proof method, sufficient
condition for equality and some interesting results are obtained. We begin with the
following lemmas.

LEMMA 3.1. [2, p. 46, Theorem 2.18]. Let A ∈ R
n×n
+ . Then A is primitive if and

only if there exists some positive integer m such that Am is positive.

LEMMA 3.2. [2, p. 49, Exercise 6]. Let A ∈ R
n×n
+ be primitive. Then

lim
m→∞(tr(Am))

1
m = ρ(A).

LEMMA 3.3. Let A and B ∈ R
n×n
+ , and let St(A, B) be primitive for some t ∈

(0, 1) . Then A and B are both primitive.

Proof. Since St(A, B) is primitive, by Lemma 3.1, there exists a positive integer
m such that St(A, B)m is positive. For any 1 � i, j � n , by Lemma 2.1 we obtain

0 < (St(A, B)m)ij

=
n∑

i1=1

n∑
i2=1

· · ·
n∑

im−1=1
at

ii1b
1−t
i1i at

i1i2b
1−t
i2i1 · · · at

im−1j
b1−t

jim−1

=
n∑

i1=1

n∑
i2=1

· · ·
n∑

im−1=1
(aii1ai1i2 · · · aim−1j)

t(bi1ibi2i1 · · · bjim−1
)1−t

� (
n∑

i1=1

n∑
i2=1

· · ·
n∑

im−1=1
aii1ai1i2 · · · aim−1j)

t(
n∑

i1=1

n∑
i2=1

· · ·
n∑

im−1=1
bi1ibi2i1 · · · bjim−1

)1−t

= ((Am)ij)t((Bm)ji)1−t.

Thus, Am and Bm are both positive, and then A and B are both primitive. �
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THEOREM 3.1. Let A = (aij) and B = (bij) ∈ R
n×n
+ . Then, for any t ∈ [0, 1] ,

ρ(St(A, B)) � ρ(A)tρ(B)1−t. (1)

If St(A, B) is primitive for some t ∈ (0, 1) , D(A) = D(BT) and wA(W) = wB(W−1)
for any W ∈ γ (A) , then equality in (1) holds.

Proof. Assume that t = 0 or t = 1 . Then (1) holds clearly. Assume that
t ∈ (0, 1) . Then we first show that (1) holds for primitive matrix St(A, B) . It follows
from Lemma 3.3 that A and B are both primitive. For any positive integer k , by
Lemma 2.1 we have

tr(St(A, B)k) =
n∑

i=1

n∑
i1=1

· · ·
n∑

ik−1=1
at

ii1b
1−t
i1i at

i1i2b
1−t
i2i1 · · · at

ik−1i
b1−t

iik−1

=
n∑

i=1

n∑
i1=1

· · ·
n∑

ik−1=1
(aii1ai1i2 · · · aik−1i)

t(bi1ibi2i1 · · · biik−1
)1−t

� (
n∑

i=1

n∑
i1=1

· · ·
n∑

ik−1=1
aii1ai1i2 · · · aik−1i)

t

×(
n∑

i=1

n∑
i1=1

· · ·
n∑

ik−1=1
bi1ibi2i1 · · · biik−1

)1−t

= (tr(Ak))t(tr(Bk))1−t,

and then, from Lemma 3.2,

ρ(St(A, B)) = lim
k→∞

(tr(St(A, B)k))
1
k

� lim
k→∞

(tr(Ak))
t
k (tr(Bk))

1−t
k

= ρ(A)tρ(B)1−t.

Secondly, we show that (1) holds for the nonnegative matrix St(A, B) . Define

A(ε) := (aij + ε), B(ε) := (bij + ε) for any ε > 0.

It is easy to find that A(ε), B(ε) and St(A(ε), B(ε)) are all primitive. By the result
derived above, we have

ρ(St(A(ε), B(ε))) � ρ(A(ε))tρ(B(ε))1−t.

By the continuity of eigenvalues, it deduces that

ρ(St(A, B)) = lim
ε→0

ρ(St(A(ε), B(ε)))
� lim

ε→0
ρ(A(ε))tρ(B(ε))1−t = ρ(A)tρ(B)1−t.

Thus, the inequality (1) holds for any t ∈ [0, 1] .
Let St(A, B) be primitive for some t ∈ (0, 1) , D(A) = D(BT) and wA(W) =

wB(W−1) for any W ∈ γ (A) . We first show that

wA(W ′) = wB(W ′−1) for any path W ′ = vi0vi1 · · · vik (vi0 = vik). (2)

Consider the following cases:
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Case (i): W ′ ∈ γ (A) . Clearly, wA(W ′) = wB(W ′−1) .
Case (ii): W ′ /∈ γ (A) , there exist indices ij−1, ij such that aij−1ij = 0 . By

D(A) = D(BT) it is obvious that bijij−1
= 0 , and then 0 = wA(W ′) = wB(W ′−1).

Case (iii): W ′ /∈ γ (A) , there don’t exist indices ij−1, ij such that aij−1ij = 0 . In
this case, W ′ must have repeated nodes. If vil = vim , l �= m , then W ′ can be split
into W ′

1 = vi0vi1 · · · vilvim+1 · · · vik and W ′
2 = vilvil+1

· · · vim . If W ′
1 and W ′

2 both belong
to γ (A) , then, by Case (i),

wA(W ′) = wA(W ′
1)wA(W ′

2) = wB(W ′−1
1 )wB(W ′−1

2 ) = wB(W ′−1).

Otherwise, W ′
1 or W ′

2 can be split inductively. Finally, we can get that W ′
1, W

′
2, · · · , W ′

h
belong to γ (A) , and thus

wA(W ′) = wA(W ′
1) · · ·wA(W ′

h) = wB(W ′−1
1 ) · · ·wB(W ′−1

h ) = wB(W ′−1).

Secondly, from (2) it follows that

tr(St(A, B)k) =
n∑

i=1

n∑
i1=1

· · ·
n∑

ik−1=1
wA(vivi1 · · · vik−1

vi)twB(vivik−1
· · · vi1vi)1−t

= (
n∑

i=1

n∑
i1=1

· · ·
n∑

ik−1=1
wA(vivi1 · · · vik−1

vi))t

×(
n∑

i=1

n∑
i1=1

· · ·
n∑

ik−1=1
wB(vivik−1

· · · vi1vi))1−t

= (tr(Ak))t(tr(Bk))1−t,

which, by Lemmas 3.2 - 3.3, implies

ρ(St(A, B)) = lim
k→∞

(tr(St(A, B)k))
1
k

= lim
k→∞

(tr(Ak))
t
k (tr(Bk))

1−t
k

= ρ(A)tρ(B)1−t.

Thus, the equality in (1) holds. The proof is completed. �

From ρ(B) = ρ(BH) , Theorem3.1 and the proof of Theorems2.2 - 2.4, Corollaries
2.1 - 2.5, we can derive the following results analogously.

COROLLARY 3.1. Let A and B ∈ R
n×n
+ . Then, for any t ∈ [0, 1] ,

ρ(St(A, BT)) � ρ(A)tρ(B)1−t.

COROLLARY 3.2. Let A and B ∈ R
n×n
+ . Then

ρ(S 1
2
(A, B)) �

√
ρ(A)ρ(B), ρ(S 1

2
(A, BT)) �

√
ρ(A)ρ(B).
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THEOREM 3.2. Let A ∈ R
n×n
+ . Then, for any t ∈ [0, 1] ,

ρ(S 1
2
(A)) � ρ(St(A)) � ρ(A). (3)

If there exists a positive diagonal matrix D such that DAD−1 has a symmetric irre-
ducible component [3] with maximum spectral radius, the equalities in (3) hold.

Proof. The proof of (3) is similar to the proof of Theorem 2.2. If there exists a
positive diagonal matrix D such that DAD−1 has a symmetric irreducible component
with maximum spectral radius, then it follows from [3, Theorem 1] that ρ(S 1

2
(A)) =

ρ(A) , and then ρ(S 1
2
(A)) = ρ(St(A)) = ρ(A) . �

REMARK3.1. Similar toRemarks 2.1 – 2.2,Theorem3.1 shows that max{ρ(A), ρ(B)}
is the upper bound for ψ(t) := ρ(St(A, B)) , t ∈ [0, 1] . From Theorem 3.2, it follows
that ρ(A) and ρ(S 1

2
(A)) are upper and lower bounds for ρ(St(A)), t ∈ [0, 1] , respec-

tively.

THEOREM 3.3. Let A ∈ R
n×n
+ . Then the function g(t) := ρ(St(A)) is decreasing

in [0, 0.5] and increasing in [0.5, 1].

As an application of Theorem 3.1, inequalities for the spectral radius of complex
matrices are also derived.

THEOREM 3.4. Let A and B ∈ Cn×n . Then

ρ(A ◦ B) �
√
ρ(A ◦ A)ρ(B ◦ B), ρ(A ◦ BH) �

√
ρ(A ◦ A)ρ(B ◦ B).

COROLLARY 3.3. Let A ∈ Cn×n . Then ρ(A ◦ AH) � ρ(A ◦ A) .

COROLLARY 3.4. Let A ∈ C
n×n , and let P be a permutation matrix. Then

ρ(A ◦ (PTAP)) � ρ(A ◦ A), ρ(A ◦ (PTAHP)) � ρ(A ◦ A).

REMARK 3.2. Similar to Theorem 2.5, Theorem 3.1 can also be generalized. We
omit it here.

Acknowledgments. We are grateful to the referee, whose helpful suggestions have
substantially improved this paper.
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