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ON BOUNDS OF MATRIX EIGENVALUES
JINHAI CHEN

(communicated by G. P. H. Styan)

Abstract. In this paper, we give the estimates both of upper and lower bound of eigenvalues of a
simple matrix. The estimates are shaper than the known results.

1. Introduction

As is well known, the eigenvalues of a matrix play an important role in solving
linear systems [1, 3, 5], especially in the perturbation problems [2, 6]. The purpose of
this note is to give a specific estimate of the eigenvalue.

Let A = (a;) bean n x n complex matrix with conjugate transpose A*, A denote
the conjugate, and trA represent the trace of matrix A. Let Ay, Ay, -+, A, be the
eigenvalues of A, then

ZI/H2<HAII2 Zlau\ = w(AA”),

ij=1

where ||A|| denotes the Frobenius norm of A. Let

A+ A*
§RA: 2 )
A—A*
C\‘ pu—
A 2

we call R4 the Hermitian real part and 34 the Hermitian imaginary part of A. Let

[tr(A)]?
= Al? -
n

b

|4A* — A*A]?

Ay = 5
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2. Main theorem

THEOREM 2.1. Suppose A is an eigenvalue of the n X n complex matrix A with
geometric multiplicity t, then

tr(A) n—t n—t , (2n—nt
— < _ - 7 .
’/1 n ‘ SV @en- t)t\/ n AT 9 P @1)

THEOREM 2.2.  Suppose Aw,, Ag, are the eigenvalues of the n x n complex
matrices Ry and 4 with geometric multiplicity t, respectively, then

tr(?RA) n—t
Ap, — —=| < , 2.2
’ R4 0 \/ nt qR, (2.2)
tI'(SA) n—t
Ag, — < Sy- 2.3
A n nt qs, (2.3)

3. Proof of theorem

Before we give the proof of Theorems 2.1 and 2.2, we present some lemmas.

LEMMA 3.1. [4] Let Ay, Az, -+ , Ay be the eigenvalues of A, then

Y < VAT = Aa.

J=1

LEMMA 3.2. Let n x n matrix A, rank(A) represent the rank of A, then

[tr(A) [ < rank(A)V/[|A[[* — Ag.

Proof. Let Ay, Ay, -+ , A, be the eigenvalues of A, A = diag(A1, 2, ,Ay).
Suppose the number of nonzero eigenvalues is k, then without loss of generality, we
canlet A1, A, - -+ , A&t be the nonzero eigenvalues of A. It is easy obtained that

k < rank(A).

Now, let R = A + M is a schur triangular form of A, i.e., A = U*RU, U is
unitary orthogonal, A is diagonal and M is upper triangular. From Lemma 3.1, we
have

>~

Y4 < VAT = Aa.

J=1
Then
k 2 k
@) =>4 ka < rank(A) Y [A[* < rank(4)V/][A][* = Ay
J=1

J=1

This shows the validity of conclusion. [J
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Now we give the proof of Theorem 2.1.

Proof. Let M = AI — A, where I is n X n the identity matrix, A is ¢ multiple
eigenvalue of A, then we have

rank(M) = rank(Al — A) < n —1,
and the following equality

A= A) (AT =A%) — (A=A (AL - A)||
o 2

Ay = As.

From Lemma 3.2, we have
wOP < rank(M)/IM][* — Ay
< (n=0)V|IM|* = Ay < (n— )V || AT — A||* — Aa. (3.1)
In addition, after direct manipulations,
ltr(AI — A)> = tr(AI — A)tr(Al — A¥)
= n*|A]* — nAte(A*) — nAtr(A) + |te(A)|* = no + A}, (3.2)

IAL—A|* = (t(A — A)tr(AL — A)*)?
= (AP = Aw(A*) = Auw(A) + |A|})? = (o + |AIP)?, (33)

where 0 = n|A|? — Atr(A*) — Atr(A).
Eliminating the ¢ from the formulae (3.2) and (3.3), we obtain

" — A2~ ltr 2 2
ar - = (AR ) (3.4

ltr(a) *

2
Lets:’)t—# . qa = ||A|* — =525, then

|tr(AI — A) > = n?s, AL — A||* = (ns 4+ qa)?,
and by reformulating (3.1), we have

n*s < (n—1)v/ (ns+ qa)* — Aq,

2
n—t n—t (2n — 1)t
< i——y YR I
(2n — 1)t ( n * \/qA n? A)

The result follows immediately. [

after direct computations,

_ tr(4)

s—’l

For Theorem 2.2, we note that the following inequality

n—t [n—t (2n — 1)t \/nt
2 _ A <
(2n — t)t\/ n et \/qA n? 4 nt
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and the equality holds if and only if A4 = 0, thatisto say, A isnormal,i.e., AA* = A*A.
Considering R4 and S, are both normal matrices, then from Theorem 2.1, we know
the validity of Theorem 2.2.

REMARK. For the bounds estimate of largest moduli eigenvalue |A|max of matrix
A, in [7, 8], the following inequality was given

|tr(4))| w(a)] a1
= W S — S 0 (3:5)

We can see that the estimates (2.1), (2.2), (2.3) are sharper than (3.5) in some extent.
That is to say, the results presented in this paper improve the known conclusions in
[7, 8] partially, and can be taken as some supplements for known conclusions |5, 7, 8],
especially for the the upper bounds estimate of matrix eigenvalues.
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