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ON WILKER–TYPE INEQUALITIES

LING ZHU

(communicated by P. Bullen)

Abstract. In this note, two Wilker-type inequalities involving hyperbolic functions are estab-
lished.

1. Introduction

J. B. Wilker [1] proposed two open questions as the following statements:
(a) If 0 < x < π/2 , then( sin x

x

)2
+

tan x
x

> 2. (1)

(b) There exists a largest constant c such that( sin x
x

)2
+

tan x
x

> 2 + cx3 tan x (2)

for 0 < x < π/2 .
J. S. Sumner et al. [2] affirmed the truth of the Problems above and obtained a

further results as follows

THEOREM A. If 0 < x < π/2 , then

16
π4

x3 tan x <
( sin x

x

)2
+

tan x
x

− 2 <
8
45

x3 tan x. (3)

Furthermore, 16/π4 and 8/45 are the best constants in (3) .
B. N. Guo et al. [3] gave new proofs of the inequalities (1) and (2). Recently, the

author of this paper [4] showed a new simple proof of inequality (1); I. Pinelis [5] got
other proof of inequalities (3) by using L’Hospital rules for monotonicity; L. Zhang and
L. Zhu [6] gave a new elementary proof of double inequalities (3).

In this note, we establish two Wilker-type inequalities involving hyperbolic func-
tions in the form of inequalities (1) and (2), and obtain the following results.

THEOREM 1. If x > 0 , then(
sinh x

x

)2

+
tanh x

x
> 2. (4)
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THEOREM 2. If x > 0 , then(
sinh x

x

)2

+
tanh x

x
> 2 +

8
45

x3 tanh x. (5)

Furthermore, 8/45 is the best constant in (5) .

2. Three Lemmas

LEMMA 1. ([7 − 9]) Let f , g : [a, b] → R be two continuous functions which
are differentiable on (a, b) . Further, let g′ �= 0 on (a, b) . If f ′/g′ is increasing (or
decreasing) on (a, b) , then the functions f (x)−f (b)

g(x)−g(b) and f (x)−f (a)
g(x)−g(a) are also increasing

(or decreasing) on (a, b) .

LEMMA 2. ([10−11]) Let ln and mn (n = 1, 2, · · · ) be real numbers, and let the
power series L(x) =

∑∞
n=1 lnxn and M(x) =

∑∞
n=1 mnxn be convergent for |x| < R .

If mn > 0 for n = 1, 2, · · · , and if ln/mn is strictly increasing (or decreasing) for
n = 1, 2, · · · , then the function L(x)/M(x) is strictly increasing (or decreasing) on
(0, R) .

In the following, we show a new inequality about hyperbolic functions:

LEMMA 3. Let x > 0 , then (
sinh x

x

)p

> cosh x (6)

holds if and only if p � 3 .

Proof. Let F(x) = log cosh x
log sinh x

x
= f 1(x)

g1(x)
, where f 1(x) = log cosh x , and g1(x) =

log sinh x
x . Then f ′

1(x)
g′1(x)

=
x sinh x tanh x

x cosh x − sinh x
=

f 2(x)
g2(x)

, (7)

where f 2(x) = x sinh t tanh x , and g2(x) = x cosh x − sinh x .
So

f ′
2(x)

g′2(x)
=

tanh x
x

+ 1 +
1

cosh2 x
. (8)

Because that (
tanh x

x

)′
=

2x − sinh 2x

2x2 cosh2 x
< 0

and (
1

cosh2 x

)′
= −2

1

cosh2 x
tanh x < 0

for x ∈ (0, +∞) , we obtain that the function f ′2 (x)
g′2(x)

is decreasing on (0, +∞) by (8).

Then f ′1 (x)
g′1(x)

= f 2(x)−f 2(0)
g2(x)−g2(0) is also decreasing on (0, +∞) by Lemma 1. This leads to that

F(x) = f 1(x)−f 1(0)
g1(x)−g1(0) is decreasing on (0, +∞) by Lemma 1.

In view of lim
x→0+

F(x) = 3 , and lim
x→+∞F(x) = 0 , the proof of Lemma3 is complete.
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3. A short proof of Theorem 1

From Lemma 3 and arithmetic-geometric mean inequality, we have

(
sinh x

x

)2

+
tanh x

x
� 2

√(
sinh x

x

)2 tanh x
x

= 2

√(
sinh x

x

)3 1
cosh x

> 2.

REMARK 1. In the same way, we can obtain

(sin x
x

)2
+

tan x
x

� 2

√(sin x
x

)2 tan x
x

= 2

√( sin x
x

)3 1
cos x

> 2

using the inequality
(

sin x
x

)3
> cos x (0 < x < π

2 ) . That is, we have showed another
new simple proof of inequality (1).

REMARK 2. Following the same method as that we had used in proving Lemma 3,
the following well-known result ( see [12] ) reappears:

(sin x
x

)q
> cos x, 0 < x <

π
2

(9)

holds if and only if q � 3 .

4. A concise proof of Theorem 2

Let H(x) =
sinh2 x cosh x

x2 + sinh x
x − 2 cosh x

x3 sinh x
=

A(x)
B(x)

, where A(x) = sinh2 x cosh x
x2 +

sinh x
x − 2 cosh x , and B(x) = x3 sinh x .

Then

A(x) =
1

3x2
(sinh3 x)′ +

sinh x
x

− 2 cosh x

=
1

4x2
(cosh 3x − cosh x) +

sinh x
x

− 2 cosh x

=
1
4

∞∑
n=0

32n+2 − 1
(2n + 2)!

x2n +
∞∑

n=0

x2n

(2n + 1)!
− 2

∞∑
n=0

x2n

(2n)!

=
∞∑
n=0

[
1
4

32n+2 − 1
(2n + 2)!

+
1

(2n + 1)!
− 2

(2n)!

]
x2n

=
∞∑
n=2

[
1
4

32n+2 − 1
(2n + 2)!

+
1

(2n + 1)!
− 2

(2n)!

]
x2n

=
∞∑
n=2

anx
2n,
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and

B(x) = x3 sinh x

=
∞∑
n=0

x2n+4

(2n + 1)!

=
∞∑
n=2

x2n

(2n − 3)!

=
∞∑
n=2

bnx
2n,

where an =
1
4

32n+2 − 1
(2n + 2)!

+
1

(2n + 1)!
− 2

(2n)!
, bn =

1
(2n − 3)!

, n � 2 , and n ∈ N
+ .

So

cn =
an

bn

=
[
1
4

32n+2 − 1
(2n + 2)!

+
1

(2n + 1)!
− 2

(2n)!

]
/

[
1

(2n − 3)!

]

=
1
32

9n+1 − 32n2 − 40n − 9
4n5 − 5n3 + n

=
1
32

h(n),

where h(n) =
9n+1 − 32n2 − 40n − 9

4n5 − 5n3 + n
, n � 2 , and n ∈ N

+ .

we obtain results in two cases:
(1) Obviously, h(2) < h(3) . That is, c2 < c3 .

(2) Let h(x) =
9x+1 − 32x2 − 40x − 9

4x5 − 5x3 + x
, l(x) =

9x

4x5 − 5x3 + x
,

m(x) =
32x2 + 40x + 9
4x5 − 5x3 + x

, and x ∈ [3, +∞) . Then

h(x) = 9l(x) − m(x), (10)

where x ∈ [3, +∞) .
In the following we shall prove that the function l(x) is increasing on [3, +∞)

and m(x) is decreasing on [3, +∞) .
(i) We compute

l′(x) =
l(x)

4x5 − 5x3 + x
n(x), (11)

where n(x)= (log 9)(4x5 − 5x3 + x) − (20x4 − 15x2 + 1) , and x ∈ [3, +∞) . Then
n(3) = (log 9)(840) − 1480 > 0 , and

n′(x) = (log 9)(20x4 − 15x2 + 1) − (80x3 − 30x),
n′(3) = (log 9)(1484)− 2070 > 0;
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n′′(x) = (log 9)(80x3 − 30x) − (240x2 − 30),
n′′(3) = (log 9)(2070)− 2130 > 0;

n(3)(x) = (log 9)(240x2 − 30) − 480x,

n(3)(3) = (log 9)(2130)− 1440 > 0;

n(4)(x) = (log 9)480x− 480 > 0.

So n(x) > 0 and l′(x) > 0 for x ∈ [3, +∞) . That is, l(x) is increasing on [3, +∞) .
(ii) Evidently, m(x) is decreasing on [3, +∞) .
Therefore, we obtain that h(x) is increasing on [3, +∞) by (10).
Combining (1) and (2), we conclude that cn is increasing for n = 2, 3, · · · , and

H(x) = A(x)
B(x) is increasing on (0, +∞) by Lemma 2.

Furthermore, lim
x→0+

H(x) = 8
45 , and lim

x→+∞H(x) = +∞ . The proof of Theorem 3

is complete.
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