athematical
nequalities
& Papplications

Volume 10, Number 4 (2007), 727-731

ON WILKER-TYPE INEQUALITIES

LING ZHU

(communicated by P. Bullen)

Abstract. In this note, two Wilker-type inequalities involving hyperbolic functions are estab-
lished.

1. Introduction

J. B. Wilker [1] proposed two open questions as the following statements:
(@) If 0 < x < m/2, then

(sinx)2 tanx

+—>2. (1)

X X

(b) There exists a largest constant ¢ such that

. > ¢
(%) + 2% 04 e tanx (2)
X X
for 0 <x < m/2.

J. S. Sumner et al. [2] affirmed the truth of the Problems above and obtained a

further results as follows
THEOREM A. If 0 < x < /2, then

inx\ 2
ng tanx < (%) + teu% -2< %f tan x. (3)
Furthermore, 16/n* and 8/45 are the best constants in (3).

B. N. Guo et al. [3] gave new proofs of the inequalities (1) and (2). Recently, the
author of this paper [4] showed a new simple proof of inequality (1); L. Pinelis [5] got
other proof of inequalities (3) by using L’Hospital rules for monotonicity; L. Zhang and
L. Zhu [6] gave a new elementary proof of double inequalities (3).

In this note, we establish two Wilker-type inequalities involving hyperbolic func-
tions in the form of inequalities (1) and (2), and obtain the following results.

THEOREM 1. If x > 0, then

) 2
h tanh
(sm x> N anhx 5o )
X X
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THEOREM 2. If x > 0, then

inhx\? tanh 8
(sm x) + aI; al >2+Ex3tanhx. (5)

X

Furthermore, 8/45 is the best constant in (5).

2. Three Lemmas

LEMMA 1. ([7—=9]) Let f,g : [a,b] — R be two continuous functions which
are differentiable on (a,b). Further, let g’ # 0 on (a,b). If f'/g’ is increasing (or

decreasing) on (a,b), then the functions J; 8:’; EZ; and J; 8:’; EZ; are also increasing

(or decreasing) on (a,b).

LEMMA2. ([10—11]) Letl, and m, (n=1,2,---) be real numbers, and let the
power series L(x) = > 2 1,x" and M(x) = "2 mux" be convergent for |x| < R.

If my >0 for n =1,2,---, and if I,/m, is strictly increasing (or decreasing) for
n=12--, then the Sunction L(x)/M(x) is strictly increasing (or decreasing) on
(0,R).

In the following, we show a new inequality about hyperbolic functions:

LEMMA 3. Let x > 0, then

- P
<smhx> > coshx (6)

X
holds if and only if p > 3

Proof. Let F(x) = logcﬁjfx” = L “where f1(x) = logcoshx, and g(x) =

log
smhx
log =% . Then fi(x)  xsinhxtanhx  f>(x)

g)(x)  xcoshx —sinhx  ga(x)’
where f,(x) = xsinh#tanhx, and g,(x) = xcoshx — sinhx.
So

f3(x)  tanhx 1
= F1+ . 8
gh(x) X cosh? x ®)

Because that

<0

(tanhx)’  2x —sinh2x
x ~ 2x2cosh®x

and

1Y 1
< 5 ) =-2 > tanhx < 0
cosh” x cosh” x

f2 )
()

is also decreasing on (0, 400) by Lemma 1. This leads to that

for x € (0,+00), we obtain that the function

W _ fx)=f(0)
Then ‘(5 = &0-e.0)
F(x) = % is decreasing on (0, +o00) by Lemma 1.

Inview of lim F(x) = 3,and hIJ}’l F(x) = 0, the proof of Lemma 3 is complete.

x—0+

is decreasing on (0, +00) by (8).
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3. A short proof of Theorem 1

From Lemma 3 and arithmetic-geometric mean inequality, we have

sinh x 2 tanh x sinh x 2 tanh x sinh x 3 1
+ >2 =2 >2
X X X X X coshx

REMARK 1. In the same way, we can obtain

sinx\2 tanx sinx\ 2 tanx sinx\3 1
(—) + 2t 0 (—)—:z (—) >2
X X X X X COSX

. . . rsnx\3 .
using the inequality (%2¢)” > cosx (0 < x < %). That is, we have showed another

new simple proof of inequality (1).

REMARK 2. Following the same method as that we had used in proving Lemma 3,
the following well-known result ( see [12] ) reappears:

sinx\ 4 /)
— 0 = 9
(x) >cosx,0 <x <5 9)

holds if and only if ¢ < 3.

4. A concise proof of Theorem 2

sinh? x cosh.x sinh x
SRS + A2 — 2 coshx A(x) o
Let H = x X — , wh A _ sinh® xcoshx
. * H) x3 sinhx B) ® S
snhr 2 coshux, and B(x) = x° sinhx.
Then
1 inh
A(x) = y(sinh3 x)' + SH; * 2 coshx
1 inh
= @(cosh 3x — coshx) + sn; Y 5 coshx
1 0 32n+2 —1 5 & x2n 0 x2n
= — n _ 2
4;(2n+2)' +n§(2n+1)' ;(211)'

32n+2 -1 1 2 -
ok
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and
B(x) = x° sinhx
e x4
:g(2n+l)
:ii
— (2n—3)!
:anxzn,
n=2
13242 1 1 2 1
h = — — , by = ,n>=2,and N*.
where an = 2 T 1 (@) Qn 3 "7 owmane
So
An
Cp = —
by
1 3%2+2 1Jr 1 B 2 / 1
d2nt2)!  @nrin (@)’ |[@n-3n
19— 3002 — 400 — 9
_32 an5 — 5+ n
= h
3571,
n+1 274 _
where h(n) = 2 4n53 n5n3+0;z 2 n>2,and n € N*.

we obtain results in two cases:
(1) Obviously, h(2) < h(3). Thatis, ¢ < ¢3.

ol _32x2 —40x — 9 9*
(2) Let h(x) = Al

(X)) = —4————

4x5 —5x3 + x > 1) 4x5 —5x3 +x’
32x%> +40x+9

m(x) = 4x5 —5x3 +x

,and x € [3,+00). Then

h(x) =9l(x) — m(x), (10)
where x € [3,+00).
In the following we shall prove that the function /(x) is increasing on [3, 4+00)
and m(x) is decreasing on [3,400).
(i) We compute
I(x)

() —

I'(x) = pRCp ern(x), (11)
where n(x) = (log9)(4x> — 5x° + x) — (20x* — 15x? + 1), and x € [3,+00). Then
n(3) = (log9)(840) — 1480 > 0, and

n'(x) = (log9)(20x* — 15x* + 1) — (80x> — 30x),
n'(3) = (log9)(1484) — 2070 > 0;
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n” (x) = (log9)(80x* — 30x) — (240x* — 30),
n"(3) = (log9)(2070) — 2130 > 0;
n®(x) = (log 9)(240x* — 30) — 480x,
n3)(3) = (log9)(2130) — 1440 > 0;
n™ (x) = (1og 9)480x — 480 > 0.

So n(x) > 0 and /(x) > 0 for x € [3,+00). Thatis, I(x) is increasing on [3,+00).

(i) Evidently, m(x) is decreasing on [3,400).
Therefore, we obtain that A(x) is increasing on [3,+00) by (10).

Combining (1) and (2), we conclude that ¢, is increasing for n = 2,3,---, and
H(x) = % is increasing on (0, +oo) by Lemma 2.
Furthermore, lirgl+ Hx) =2, and hm H(x) = +00. The proof of Theorem 3
is complete.
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