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ON THE ZEROS OF A CLASS OF POLYNOMIALS

W. M. SHAH AND A. LIMAN

(communicated by Th. M. Rassias)

Abstract. In this paper we prove some results concerning the distribution of the zeros of a
polynomial in the complex plane. Our results not only contain some known generalizations of
Eneström-Kakeya theorem but also a variety of interesting results can be deduced from them by
a fairly uniform procedure.

1. Introduction

If P(z) =
n∑

j=0
ajzj is a polynomial of degree n such that an � an−1 � · · · � a1 �

a0 > 0 , then according to a well-known result in the theory of distribution of the zeros
of polynomials, due to Eneström and Kakeya (for reference, see[11, p. 136 or 12, p.
272]), all the zeros of P(z) lie in |z| � 1 .

We may apply this result to the polynomial P(tz) to obtain the following more
general result.

THEOREM A . If P(z) =
n∑

j=0
ajzj is a polynomial of degree n such that

tnan � tn−1an−1 � · · · � ta1 � a0 > 0,

then all the zeros of P(z) lie in |z| � t.
In the literature [1-12] there exist some extensions and generalizations of Eneström-

Kakeya theorem. Govil and Rahman [8] extended this theorem to the polynomials with
complex coefficients. As a refinement of the result of Govil and Rahman, Govil and
Jain [7] proved the following:

THEOREM B . Let P(z) =
n∑

j=0
ajzj �≡ 0 be a polynomial with complex coefficients

such that
| arg ak − β | � α � π

2
, k = 0, 1, 2, · · · , n

for some β and
|an| � |an−1| � · · · � |a1| � |a0|,
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then P(z) has all its zeros in the ring-shaped region given by

R3 � |z| � R2.

Here

R2 =
c
2

(
1
|an| −

1
M1

)
+

{
c2

4

(
1
|an| −

1
M1

)2

+
M1

|an|

} 1
2

R3 =
1

2M2
2

[
− R2

2|b|(M2 − |a0|) + {4|a0|R2
2M

3
2 + R4

2|b|2(M2 − |a0|2)} 1
2

]
,

where

M1 = |an|R2,

M2 = |an|R2
2

[
R + R2 − |a0|

|an| (cosα + i sinα)

]
,

c = |an − an−1|,
b = a1 − a0

and

R = cosα + sinα +
2 sinα
|an|

n−1∑
k=0

|ak|.

Aziz and Mohammad [2] used Schewarz’s lemma and proved the following gener-
alization of Eneström-Kakeya theorem.

THEOREM C . Let P(z) =
n∑

j=0
ajzj be a polynomial of degree nwith real coefficients.

If t1 > t2 � 0 can be found such that

art1t2 + ar−1(t1 − t2) − ar−2 � 0, r = 1, 2, · · · , n + 1 , (a−1 = an+1 = 0),

then all the zeros of P(z) lie in |z| � t1.

RecentlyGardner andGovil [6] considered a larger class of polynomials and proved
the following more general result.

THEOREM D . Let P(z) =
n∑

j=0
ajzj be a polynomial of degree n . If Re(aj) = αj

and Im(aj) = βj, for j = 0, 1, 2, · · · , n, an �= 0 and for some k and r and for some
t � 0,

α0 � tα1 � t2α2 � · · · � tkαk � tk+1αk+1 � · · · � tnαn

and
β0 � tβ1 � t2β2 � · · · � trβr � tr+1βr+1 � · · · � tnβn

then P(z) has all its zeros in R1 � |z| � R2, where

R1 = min{(t|a0|/2(tkαk + trβr) − (α0 + β0) − tn(αn + βn − |an|), t}
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and

R2 = max

{
(|a0|tn+1−tn−1(α0+β0)−t(αr+βr)+(t2 + 1)(tn−k−1αk+tn−r−1βr)

+ (t2 − 1)
( k+1∑

j=1

tn−j−1αj+
r−1∑
j=1

tn−j−1βj

)

+ (1 − t2)
( n−1∑

j=k+1

tn−j−1αj+
n−1∑

j=r+1

tn−j−1βj

)/
|an|, 1

t

}
.

In this paper, as inspired by the Theorems C and D above, we make use of a
generalized form of Schewarz’s Lemma and prove some more general results in the dis-
tribution of the zeros of polynomials. These results include not only the above theorems
as special cases, but also lead to a standard development of interesting generalizations
of some well-known results by a fairly uniform procedure.

THEOREM 1. Let P(z) =
n∑

j=0
ajzj be a polynomial of degree n . If t1 �= 0 and t2

are real numbers with t1 � t2 � 0, such that

max
|z|=R

∣∣∣∣
n+1∑
j=0

(ajt1t2 + aj−1(t1 − t2) − aj−2)zn−j+2

∣∣∣∣ � M1 (1)

max
|z|=R

∣∣∣∣
n+2∑
j=1

(ajt1t2 + aj−1(t1 − t2) − aj−2)zj

∣∣∣∣ � M2, (2)

where a−2 = a−1 = 0 = an+1 = an+2 and R is any positive real number. Then all the
zeros of P(z) lie in the ring-shaped region

min(r2, R) � |z| � max(r1,
1
R

),

where

r1=
2M2

1

{R4|(t1−t2)an−an−1|2(M1−|an|)2+4|an|R2M3
1}

1
2 −|(t1−t2)an−an−1|(M1−|an|)R2

(3)

r2 =
1

2M2
2

[
{R4|a1t1t2 + a0(t1 − t2)|2(M2 − |a0|t1t2)2 + 4M3

2R
2|a0|t1t2} 1

2

− R2(M2 − |a0|t1t2)|a1t1t2 + a0(t1 − t2)|
]
.

(4)

REMARK 1. Theorems A , B , C and many other such generalizations of En-
eström-Kakeya theorem can be easily deduced from Theorem 1 by a suitable choice of
R, t1 and t2 . As an example, we show Theorem C is a special case of Theorem 1. For
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this, suppose that Theorem 1 satisfies the hypothesis of Theorem C . We have from (1)
for |z| = R = 1

t1∣∣∣∣
n+1∑
j=0

(ajt1t2+aj−1(t1−t2)−aj−2)zn−j+2

∣∣∣∣ �
n+1∑
j=0

|(ajt1t2+aj−1(t1−t2)−aj−2)| 1

tn−j+2
1

= an = M1(say).

It can be easily verified that

r1 =
2M2

1

−|(t1−t2)an−an−1|(M1−|an|)R2+{R4|(t1−t2)an−an−1|2(M1−|an|)2+4|an|R2M3
1}

1
2

=
|(t1−t2)an−an−1|(M1−|an|)R2+{R4|(t1−t2)an−an−1|2(M1−|an|)2+4|an|R2M3

1}
1
2

2|an|M1R2

=
|(t1−t2)an−an−1|

2

{
1
|an|−

1
M1

}
+

[
|(t1−t2)an−an−1|2

4

{
1
|an|−

1
M1

}2

+
M1

|an|R2

] 1
2

.

(5)
Now, using value of M1 in (5), we get r1 = t1 . This is precisely the conclusion

of Theorem C due to Aziz and Mohammad [1].
Next, we use Theorem 1 to prove the following result, which includes some well-

known extensions of Eneström-Kakeya theorem due to Dewan and Bidkham [5], Govil
and Jain [7], Aziz and Mohammad [1], and also includes a generalization of a result due
to Aziz and Shah [3].

THEOREM 2. Let P(z) =
n∑

j=0
ajzj be a polynomial of degree n . If for some t1 �= 0

and t1 � t2 � 0, such that

max
|z|=R

∣∣∣∣
n+1∑
j=0

(ajt1t2 + aj−1(t1 − t2) − aj−2)zn−j+1

∣∣∣∣ � M3 (6)

max
|z|=R

∣∣∣∣
n+2∑
j=1

(ajt1t2 + aj−1(t1 − t2) − aj−2)zj−1

∣∣∣∣ � M4, (7)

where R is any positive real number, then all the zeros of P(z) lie in

min

{
t1t2|a0|

M4
, R

}
� |z| � max

{
M3

|an| ,
1
R

}
. (8)

The following corollary immediately follows from Theorem 2, if we take t2 = 0 .

COROLLARY 1. Let P(z) =
n∑

j=0
ajzj be a polynomial of degree n . If for some

t > 0,

max
|z|=R

|ta0z
n + (ta1 − a0)zn−1 + · · · + (tan − an−1)| � M

′
3 , (9)
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where R is any positive real number,then all the zeros of P(z) lie in

|z| � max

{
M

′
3

|an| ,
1
R

}
. (10)

This result was also independently proved by Aziz and Shah [3]. If we assume
taj − aj−1 � 0, for all j = 1, 2, · · · , n, in Corollary 1, we get the following:

COROLLARY 2. Let P(z) =
n∑

j=0
ajzj be a polynomial of degree n and for some

t > 0, taj − aj−1 � 0, for all j = 1, 2, · · · , n , then all the zeros of P(z) lie in

|z| � max

[
1
|an|

{
|a0|tn+1 − a0t

n−1 + tan + (t2 − 1)
n−1∑
j=1

tn−j−1aj

}
,
1
t

]
.

For t = 1 , Corollary 2 reduces to the following:

COROLLARY 3. If P(z) =
n∑

j=0
ajzj is a polynomial of degree n with real coefficients,

an �= 0, satisfying an � an−1 � · · · � a1 � a0 then all the zeros of P(z) lie in

|z| � max

{
an − a0 + |a0|

|an| , 1

}
.

REMARK 2. Since an−a0+|a0|
|an| � 1, Corollary 3 reduces to the result of Joyal,

Labelle and Rahman [10]. Also for a0 > 0, it reduces to Eneström - Kakeya theorem.

REMARK 3. Since in the proof of Theorem 2, we consider F(z) = (t2 + z)(t1 −
z)P(z) and for t2 = 0, F(z) has a zero at origin. Therefore, inequality (8), for t2 = 0
cannot provide any improvement to the bound obtained by Aziz and Shah [3]. In this
case, it is natural to ask that what can be said about the modulii of the zeros of P(z)
analogous to Theorem 2. In reply to this question, we have been able to prove the
following:

THEOREM 3. Let P(z) =
n∑

j=0
ajzj be a polynomial of degree n . If for some t > 0

max
|z|=R

| − anz
n + (tan − an−1)zn−1 + · · · + (ta1 − a0)| � M4, (11)

where R is any positive real number. Then all the zeros of P(z) lie in

|z| < min

{
t|a0|
M4| , R

}
. (12)
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If we take R = t , the following Corollary is immediate.

COROLLARY 4. Let P(z) is a polynomial of degree n. If for some positive real
number t ,

ant
n � an−1t

n−1 � · · · � a1t � a0,

then P(z) does not vanish in

|z| � min

{
t|a0|

tn(|an| − an) − a0
, t

}
. (13)

Combining Corollary 3 and Corollary 4 for t = 1 and noting that

max

{
an − a0 + |a0|

|an| , 1

}
=

an − a0 + |a0|
|an|

and

min

{
|a0|

|an| + an − a0
, 1

}
=

|a0|
|an| + an − a0

,

we get the following generalization as well as the improvement of Eneström-Kakeya
theorem.

THEOREM 4. Suppose P(z) =
n∑

j=0
ajzj is a polynomial of degree n . If an � an−1 �

· · · � a1 � a0, then all the zeros of P(z) lie in the ring-shaped region

|a0|
|an| + an − a0

� |z| � |a0| − a0 + an

|an| . (14)

The result is best possible and equality holds for the polynomial

P(z) = zn + zn−1 + · · · + z + 1.

While seeking an extension of Theorem D analogous to Theorem 4, we have been
able to obtain the following result, which immediately follows on combining Corollary
1 and Theorem 3. The theorem not only shall contain Theorem D and many other such
results as special cases, but also is a refinement of Theorem 2 due to Aziz and Shah [3].

THEOREM 5. Let P(z) =
n∑

j=0
ajzj be a polynomial of degree n . If for some t > 0 ,

max
|z|=R

|ta0z
n + (ta1 − a0)zn−1 + · · · + (tan − an−1)| � M

′

and
max
|z|=R

| − anz
n + (tan − an−1)zn−1 + · · · + (ta1 − a0)| � M

′′
,

where R is any positive real number. Then all the zeros of P(z) lie in the ring-shaped
region

min

{
t|a0|
M′′ , R

}
� |z| � max

{
M

′

|an| ,
1
R

}
. (15)
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As mentioned above many well-known generalizations of Eneström- Kakeya theo-
rem follow from Theorem 5 by a fairly uniform procedure. Here, for example, we show
that the theorem of Gardner and Govil [6] can be deduced from Theorem 5 by simple
calculations.

For this, assuming the hypothesis of Theorem D , and taking aj = αj + iβj, j =
0, 1, 2, · · · , n and R = t in Theorem 5, we have for |z| = t,

|ta0z
n + (ta1 − a0)zn−1 + · · · + (tan − an−1)| � |a0|tn+1 +

n∑
j=1

|taj − aj−1|tn−j

� |a0|tn+1 +
n∑

j=1

|tαj − αj−1|tn−j +
n∑

j=0

|tβj − βj−1|tn−j

= tn+1|a0| − tn−1(α0 − β0) − t(αn − βn) + (t2 + 1)(tn−k−1αk + tn−r−1βr)

+ (t2 − 1)

(
k−1∑
j=1

tn−j−1αj +
r−1∑
j=1

tn−r−1βj

)

+ (1 − t2)

(
n−1∑

j=k+1

tn−j−1αj +
n−1∑

j=r+1

tn−r−1βr

)

= M
′
.

Also

| − anz
n + (tan − an−1)zn−1 + · · · + (ta1 − a0)|

� |an|tn +
n∑

j=1

|taj − aj−1|tj−1

� |an|tn +
n∑

j=1

|tαj − αj−1|tj−1 +
n∑

j=1

|tβj − βj−1|tj−1

= 2(tk|αk| + trβr) − (α0 + β0) − tn(αn + βn − |an|)
= M

′′
.

Using these observations in Theorem 5, we get the conclusion of Theorem D .

2. Lemmas

For the proofs of these theorems, we need the following lemmas. The first lemma
is due to Govil, Rahman and Schmeisser [9]

LEMMA 1. If f (z) is analytic in |z| � 1 , f (0) = a where |a| < 1 , f
′
(0) = b ,

|f (z)| � 1 on |z| � 1 , then for |z| � 1 ,

|f (z)| � (1 − |a|)|z|2 + |b||z| + |a|(1 − |a|)
|a|(1 − |a|)|z|2 + |b||z| + (1 − |a|) .

The estimate is sharp.
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From Lemma 1, one can easily deduce the following:

LEMMA 2. If f (z) is analytic in |z| � R , f (0) = 0 , f
′
(0) = b , |f (z)| � M for

|z| = R, then

|f (z)| � M|z|
R2

M|z| + R2|b|
M + |b||z| for |z| � R.

3. Proofs of the Theorems

Proof of Theorem 1 . Consider the polynomial

F(z) = (t2 + z)(t1 − z)P(z)

= −anz
n+2 + (an(t1 − t2) − an−1)zn+1

+ (ant1t2 + an−1(t1 − t2) − an−2)zn

+ · · · + (a1t1t2 + a0(t1 − t2))z + a0t1t2.

(16)

Let

G(z) = zn+2F(1/z)
= −an + (an(t1 − t2) − an−1)z

+ (ant1t2 + an−1(t1 − t2) − an−2)z2

+ · · · + (a1t1t2 + a0(t1 − t2)zn+1 + a0t1t2z
n+2,

so that
|G(z)| � |an| − |H(z)|, (17)

where

H(z) = (an(t1 − t2) − an−1)z + (ant1t2 + an−1(t1 − t2) − an−2)z2 + · · · + a0t1t2z
n+2.

Clearly H(0) = 0 and H
′
(0) = an(t1 − t2) − an−1 . Since by (1) |H(z)| � M1

for |z| = R , therefore it follows by Lemma 2, that

|H(z)| � M1|z|
R2

M1|z| + R2|an(t1 − t2) − an−1|
M1 + |an(t1 − t2) − an−1||z| f or |z| � R.

Using this in (17), we get for |z| � R.

|G(z)| � |an| − M1|z|
R2

M1|z| + R2|an(t1 − t2) − an−1|
M1 + |an(t1 − t2) − an−1||z|

=
−M2

1 |z|2 + R2|an(t1 − t2) − an−1|(|an| − M1)|z| + |an|R2M1

R2(M1 + |an(t1 − t2) − an−1||z|)
> 0,

if
M2

1 |z|2 − R2|an(t1 − t2) − an−1|(|an| − M1)|z| − |an|R2M1 < 0.
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Thus |G(z)| > 0, if

|z| <
1

2M2
1

[
− R2|an(t1 − t2) − an−1|(|an| − M1) + {R4|(t1 − t2)an

− an−1|2(M1 − |an|)2 + 4|an|R2M3
1 |an|R2} 1

2

]

=
1
r1

.

Consequently, all the zeros of G(z) lie in |z| � min

(
1
r1

, R

)
. Since F(z) =

zn+2G(1/z) , it follows that all the zeros of F(z) and hence all the zeros of P(z) lie in

|z| � max

(
r1,

1
R

)
. (18)

Again from (16),we have

|F(z)| � |a0|t1t2 − |T(z)| (19)

where

T(z) = −anz
n+2 + (an(t1 − t2) − an−1)zn+1 + · · · + (a1t1t2 + a0(t1 − t2))z.

Clearly T(0) = 0 and T
′
(0) = a1t1t2 + a0(t1 − t2) . Since by (2), |T(z)| � M2

for |z| = R , therefore it follows by Lemma 2, that

|T(z)| �
M2|z|

(
(M2|z| + R2|a1t1t2 + a0(t1 − t2)|

)

R2

(
M2 + |a1t1t2 + a0(t1 − t2)||z|

) , for |z| � R.

Using this in (19), we get for |z| � R,

|F(z)| � |a0|t1t2 −
M2|z|

(
M2|z| + R2|a1t1t2 + a0(t1 − t2)|

)

R2

(
M2 + |a1t1t2 + a0(t1 − t2)||z|

)

=
−M2

2 |z|2 − R2(M2 − |a0|t1t2)|a1t1t2 + a0(t1 − t2)||z| + |a0|t1t2R2M2

R2

(
M2 + |a1t1t2 + a0(t1 − t2)||z|

)
> 0,

if
M2

2 |z|2 + R2(M2 − |a0|t1t2)|a1t1t2 + a0(t1 − t2)||z| − |a0|t1t2R2M2 < 0.
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Thus |F(z)| > 0, if

|z| <
1

2M2
2

[
− R2(M2 − |a0|)t1t2 + a0(t1 − t2)|

+ {R4(M2 − |a0|t1t2)2|a1t1t2 + a0(t1 − t2)|2 + 4M3
2R

2|a0|t1t2} 1
2

]

= r2.

This shows that all the zeros of F(z) and hence of the polynomial P(z) lie in

|z| � min(r2, R). (20)

Combining (18) and (20), the desired result follows.

Proof of Theorem 2 . From (1) and (6), we have

max
|z|=R

∣∣∣∣∣
n+1∑
j=0

(ajt1t2 + aj−1(t1 − t2) − aj−2)zn−j+2

∣∣∣∣∣ � M3R = M1 (say).

Replacing M1 by M3R in (3), we get from Theorem 1,

r1=
2M2

3

−|(t1−t2)an−an−1|(M3R−|an|)+
{
|(t1−t2)an−an−1|2(M3R−|an|)2+4|an|R2M3

3

} 1
2

.

(21)
Now suppose that M3R � |an| , then M3R−|an| � 0 . Since |(t1− t2)an−an−1| �

M3, therefore,we have

|(t1 − t2)an − an−1|(M3R − |an|) � M3(M3R − |an|).
Equivalently

M3|an| + |(t1 − t2)an − an−1|(M3R − |an|) � M2
3R.

From this we easily conclude that

2M3|an| � −|(t1 − t2)an − an−1|(M3R − |an|)

+
{
|(t1 − t2)an − an−1)|2(M3R − |an|)2 + 4M3

3 |an|R
} 1

2

.

This with the help of (21) implies

r1 � M3

|an| .

Hence, it follows by Theorem 1, that all the zeros of P(z) lie in the circle

|z| � M3

|an| , if |an| � M3R. (22)
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Now if |an| � M3R, then from (6), it clearly follow, that∣∣∣∣∣
n+1∑
j=0

(ajt1t2 + aj−1(t1 − t2) − aj−2)zn−j+2

∣∣∣∣∣ � |an| f or |z| = R.

Using Rouche’s theorem, it follows that the polynomial

G(z) = −an +
n+1∑
j=0

(ajt1t2 + aj−1(t1 − t2) − aj−2)zn−j+2

does not vanish in |z| < R. This means that the polynomial F(z) = zn+2G(1/z) does
not vanish in |z| > 1

R . Since every zero of P(z) is also a zero of F(z), we conclude
that all the zeros of P(z) lie in the circle

|z| � 1
R

, if |an| > M3R. (23)

From (22) and (23), we conclude that all the zeros of P(z) lie in

|z| � max

{
M3

|an| ,
1
R

}
. (24)

Now, making use of (2) and (7) and proceeding similarly as above one can easily
prove that all the zeros of P(z) lie in

|z| � min

{
t1t2|a0|

M4
, R

}
. (25)

Combining (24) and (25), the proof of Theorem 2 is complete.

Proof of Theorem 3 . The proof of Theorem 3 follows on the same lines as the
proof of Theorem 2. We omit the details.

Proof of Corollary 2 . We have from (9) for R = t and the fact taj − aj−1 � 0
for j = 1, 2, · · · , n

max
|z|=R

|ta0z
n + (ta1 − a0)zn−1 + (ta2 − a1)zn−2

+ · · · + (tan−1 − an−2)z + (tan − an−1)|
� |a0|tn+1 + |(ta1 − a0)|tn−1 + |(ta2 − a1)|tn−2

+ · · · + |(tan−1 − an−2)|t + |(tan − an−1)|
= |a0|tn+1 + tna1 − a0t

n−1 + tn−1a2 − a1t
n−2

+ · · · + t2an−1 − tan−2 + tan − an−1

= |a0|tn+1 − a0t
n−1 + ant + (t2 − 1)

n−1∑
j=1

ajt
n−j−1

= M
′
(say).
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Using this in (10), the desired result follows.
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