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A CLASS OF SYMMETRIC FUNCTIONS FOR

MULTIPLICATIVELY CONVEX FUNCTION

KAIZHONG GUAN

(communicated by P. Bullen)

Abstract. A new symmetric function, which generalizes Hamy symmetric function, is defined.
Its properties, including Schur-geometric convexity, are investigated. Some analytic inequalities
are also established.

1. Introduction

The unweighted arithmetic and geometric means of positive sequence x = (x1, x2,
..., xn) with xi > 0 for 1 � i � n , denoted by An(x) and Gn(x) , respectively, are
defined as follows

An(x) =
1
n

n∑
i=1

xi, Gn(x) =

(
n∏

i=1

xi

) 1
n

.

Recently, C. P. Niculescu [1] developed a parallel theory to classical theory of
convex functions, based on a change of variable formula, by replacing the arithmetic
mean with the geometric one. The author defined the multiplicatively convex function,
i.e., GG-convex function, which reveals an entire new world of beautiful inequalities.
Its definition reads as follows:

DEFINITION 1.1. Suppose that I is a subinterval of (0,∞) . A function f : I →
(0,∞) is called multiplicatively convex if

x, y ∈ I and λ ∈ [0, 1] ⇒ f (x1−λ yλ ) � f (x)1−λ f (y)λ . (1.1)

Some interesting results related to it are also established therein. In particular,
under the presence of continuity and differentiability, the following theorems are proven
respectively.

Mathematics subject classification (2000): 26A51, 26D15, 0E05.
Key words and phrases: Multiplicatively convex function; Hamy symmetric function; Schur-geometric

convexity.
Supported by the Key Project of Chinese Ministry of Education and Hunan Province Department of Education.

c© � � , Zagreb
Paper MIA-10-69

745



746 KAIZHONG GUAN

THEOREM A. [1, Theorem 2.3]. Suppose that I is a subinterval of (0,∞) . A
continuous function f : I → [0,∞) is multiplicatively convex if and only if

x, y ∈ I ⇒ f (
√

xy) �
√

f (x)f (y), (1.2)

or
x1, ..., xn ∈ I ⇒ f ( n

√
x1 . . . xn) � n

√
f (x1) . . . f (xn). (1.3)

THEOREM B. [1, Proposition 4.3]. Let f : I → (0,∞) be a differential function
defined on a subinterval of (0,∞) . Then the following assertions are equivalent:

(i) f is multiplicatively convex;

(ii) The function xf ′(x)
f (x) is nondecreasing.

If moreover f is twice differentiable, then f is multiplicatively convex if, and only if,

x[f (x)f ′′(x) − f ′2(x)] + f (x)f ′(x) � 0 for every x > 0. (1.4)

It is well known that the technique of majorization play a very important role in
the classical study of convex functions. Schur-convex function, which preserve the or-
dering of majorization, has many important applications in analytic inequalities. Hardy,
Littlewood, and Polya were also interested in some inequalities that are related to Schur-
convex functions [3]. For more details, the interested readers can see the popular book
by Marshall and Olkin [2]. X. M. Zhang [4] proposed the Schur-geometrically-convex
theory as a parallel one to Schur-convex theory by defining logarithmical majorization
and using multiplicatively convex function.

For fixed n � 2, let

x = (x1, x2, ..., xn), y = (y1, y2, ..., yn)

be two n-tuples of positive numbers. And let

x[1] � x[2] � ... � x[n], y[1] � y[2] � ... � y[n],

be their ordered components.

DEFINITION 1.2. [4, p. 89] The n− tuple x is said to be logarithmically majorized
by y (in symbols ln x ≺ ln y ), if

m∏
i=1

x[i] �
m∏

i=1

y[i], m = 1, 2, ..., n − 1; (1.5)

and
n∏

i=1

x[i] =
n∏

i=1

y[i]. (1.6)

DEFINITION 1.3. [4, p. 107] Assume that I is a subinterval of (0,∞) . A function
f : In → (0,∞) is called Schur-geometrically-convex function if

ln x ≺ ln y on In ⇒ f (x) � f (y). (1.7)

The following theorem gives a criteria of a symmetric function on In being Schur-
geometrically-convex one.
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THEOREM C. [4, p. 108]. Let f (x) = f (x1, x2, ..., xn) be symmetric and have
continuous partial derivatives on In , where I is a subinterval of (0,∞) . Then
f : In → (0,∞) is a Schur-geometrically-convex function if

(ln x1 − ln x2)
(

x1
∂f (x)
∂x1

− x2
∂f (x)
∂x2

)
� 0 on In. (1.8)

On the other hand, all kinds of means about numbers and their inequalities have
stimulated the interests of many researchers all the time (See, for example, [2, 5-8] and
the references cited therein.). The Hamy symmetric function [5, 8] is defined as

Fn(x, r) = Fn(x1, ..., xn; r) =
∑

1�i1<i2<...<ir�n

⎛
⎝ r∏

j=1

xij

⎞
⎠

1
r

, r = 1, 2, ..., n. (1.9)

Corresponding to this is the r− th order Hamy mean

σn(x, r) = σn(x1, ..., xn; r) =
1

(n
r )

∑
1�i1<i2<...<ir�n

⎛
⎝ r∏

j=1

xij

⎞
⎠

1
r

, (1.10)

where (n
r ) = n!

(n−r)!r! . T. Hara et al. [5] established the following refinement of the
classical arithmetic and geometric means inequality:

Gn(x) = σn(x, n) � σn(x, n − 1) � ... � σn(x, 2) � σn(x, 1) = An(x). (1.11)

The paper [6] by H. T. Ku, M. C. Ku and X. M. Zhang contains some interesting
inequalities including the fact that (σn(x, r))r is log-concave. ( See also the popular
book [8] by P. S. Bullen.) At present, K. Z. Guan [7] investigated further and generalized
Hamy symmetric function and its mean. The Schur-convexity is proved.

Now we define the new symmetric function and its mean.

DEFINITION 1.4. Let f (x) be a non-negative function defined on an interval
I ⊂ (0,∞) . The following symmetric function is defined by

r∑
n

(f (x)) =
∑

1�i1<i2<...<ir�n

f

⎛
⎝ r∏

j=1

x1/r
ij

⎞
⎠ , r = 1, 2, ..., n, (1.12)

where x1, x2, ..., xn ∈ I .

Corresponding to this is the following r− th order mean:

σr
n(f (x)) =

1
(n
r )

∑
1�i1<i2<...<ir�n

f

⎛
⎝ r∏

j=1

x1/r
ij

⎞
⎠ , r = 1, 2, ..., n. (1.13)

Obviously, when f (x) = x, x ∈ (0,∞) , (1.12) and (1.13) reduce to (1.9) and (1.10),
respectively. Thus, this symmetric function and itsmean generalize theHamy symmetric
function and the r− th order Hamy mean, respectively.

The main purpose of the paper is to investigate the function
∑r

n(f (x)) and its
mean σr

n(f (x)) . The properties, including Schur-geometric convexity, are proven.
Some analytic inequalities are established.
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2. Main Results

In this section, we give our results related to
∑k

n(f (x)) and σr
n(f (x)) . The

properties, including Schur-geometric-convexity, are proven.

THEOREM 2.1. Suppose that f : I → (0,∞) is a multiplicatively convex function,
where I is a subinterval of (0,∞) . Then

σn
n (f (x)) � σn−1

n (f (x)) � ... � σ2
n (f (x)) � σ1

n (f (x)). (2.1)

Proof. It suffices to prove that

σk+1
n (f (x)) � σk

n(f (x)), k = 1, 2, ..., n − 1. (2.2)

Since f is multiplicatively convex, using arithmetic-geometric mean inequality and
Theorem A yields∑
1�i1<i2<...<ik+1�n

f ((xi1xi2 . . . xik+1
)1/(k+1))

=
∑

1�i1<i2<...<ik+1�n

{f (((xi2 . . . xik+1
)

1
k (xi1xi3 ...xik+1

)
1
k . . . (xi1xi2 . . . xik)

1
k )

1
k+1 )}

�
∑

1�i1<i2<...<ik+1�n

{f ((xi2 . . . xik+1
)1/k)f ((xi1xi3 . . . xik+1

)1/k)

. . . f ((xi1xi2 . . . xik )
1/k)}1/(k+1)

�
∑

1�i1<i2<...<ik+1�n

1
k + 1

{f ((xi2 . . . xik+1
)1/k) + f ((xi1xi3 . . . xik+1

)1/k)

+ ... + f ((xi1xi2 . . . xik )
1/k)}

=
n − k
k + 1

∑
1�i1<i2<...<ik�n

f ((xi1xi2 . . . xik)
1/k),

which implies that

σk+1
n (f (x)) =

1(
n

k+1

) ∑
1�i1<i2<...<ik+1�n

f ((xi1xi2 ...xik+1
)1/(k+1))

� 1(
n

k+1

) n − k
k + 1

∑
1�i1<i2<...<ik�n

f ((xi1xi2 ...xik)
1/k)

=
1

(n
k)

∑
1�i1<i2<...<ik�n

f ((xi1xi2 ...xik )
1/k)

= σk
n(f (x)).

�
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COROLLARY 2.2. [5]. Suppose that xi > 0, i = 1, 2, ..., n, then

Gn(x) = σn(x, n) � σn(x, n − 1) � ... � σn(x, 2) � σn(x, 1) = An(x). (2.3)

Proof. Let f (x) = x, x ∈ (0,∞) . Using Theorem B, we can easily see that f (x)
is a multiplicatively convex function in (0,∞) . By Theorem 2.1, we get (2.3) (or
(1.11)) and so the proof is complete. �

THEOREM 2.3. Suppose that f : I → (0,∞) has a continuous derivative on I .
If f (x) is monotonic and multiplicatively convex on I , then

∑r
n(f (x)) is a Schur-

geometrically-convex function on In , where I is a subinterval of (0,∞) .

In the proof we shall use the following lemma.

LEMMA 2.4. Assume that f : I → (0,∞) has a continuous derivative on I , where
I is a subinterval of (0,∞) . If f (x) is monotonic and multiplicatively convex on I ,
then

(ln x1 − ln x2)(x1f
′(x1) − x2f

′(x2)) � 0, ∀ x1, x2 ∈ I. (2.4)

Proof. We assume, without loss of generality, that f (x) is increasing and multi-
plicatively convex on I . The case where f (x) is decreasing and multiplicatively convex
is similar and so is omitted. From Theorem B, it follows that

(ln x1 − ln x2)
(

x1f ′(x1)
f (x1)

− x2f ′(x2)
f (x2)

)
� 0.

This implies that

(ln x1 − ln x2)
(

x1f
′(x1) − x2f

′(x2)
f (x1)
f (x2)

)
� 0. (2.5)

Thus, combining (2.5) with the increasing nature of f (x) , we obtain

(ln x1 − ln x2)(x1f
′(x1) − x2f

′(x2))

= (ln x1 − ln x2)
(

x1f
′(x1) − x2f

′(x2)
f (x1)
f (x2)

)

+ x2f
′(x2)(ln x1 − ln x2)

(
f (x1)
f (x2)

− 1

)

= (ln x1 − ln x2)
(

x1f
′(x1) − x2f

′(x2)
f (x1)
f (x2)

)

+
x2f ′(x2)
f (x2)

(ln x1 − ln x2)(f (x1) − f (x2))

� 0.

�



750 KAIZHONG GUAN

Proof of Theorem 2.3. It is obvious that the function
∑r

n(f (x)) is symmetric and
has a continuous partial derivative on In . By Theorem C, we only need to prove that

(ln x1 − ln x2)
(

x1
∂
∑r

n(f (x))
∂x1

− x2
∂
∑r

n(f (x))
∂x2

)
� 0 on In. (2.6)

To this end, we consider the following three possible cases for r .
Case 1. When r = 1 . It is clear that

∑1
n(f (x)) =

∑n
i=1 f (xi) . Differentiating it

with respect to xi (i = 1, 2) yields

∂
∑1

n(f (x))
∂xi

= f ′(xi), i = 1, 2.

From Lemma 2.4 it follows that

(ln x1 − ln x2)

(
x1

∂
∑1

n(f (x))
∂x1

− x2
∂
∑1

n(f (x))
∂x2

)

= (ln x1 − ln x2)(x1f
′(x1) − x2f

′(x2)) � 0.

Case 2. When r = 2 .
If n = 2, it is obvious that

2∑
2

(f (x)) = f (
√

x1x2).

Differentiating the above with respect to x1 and x2 and setting u =
√

x1x2, we have

∂
∑2

2(f (x))
∂x1

=
f ′(u)

2

√
x2

x1
,

∂
∑2

2(f (x))
∂x2

=
f ′(u)

2

√
x1

x2
.

One can easily find that (2.6) holds.
If n � 3, we can easily derive that

2∑
n

(f (x)) =
∑

1�i<j�n

f (
√

xixj) =
n∑

j=2

f (
√

x1xj) +
∑

2�i<j�n

f (
√

xixj). (2.7)

Differentiating (2.7) with respect to x1, we obtain

∂
∑2

n(f (x))
∂x1

=
1
2

n∑
j=2

f ′(
√

x1xj)
√

xj

x1

=
1
2

⎡
⎣f ′(

√
x1x2)

√
x2

x1
+

n∑
j=3

f ′(
√

x1xj)
√

xj

x1

⎤
⎦ .
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Similarly, we can get

∂
∑2

n(f (x))
∂x2

=
1
2

⎡
⎣f ′(

√
x1x2)

√
x1

x2
+

n∑
j=3

f ′(
√

x2xj)
√

xj

x2

⎤
⎦ .

Set u = √
x1xj, v = √

x2xj. Obviously, u, v ∈ I . Therefore, it follows from Lemma
2.4 that

(ln x1 − ln x2)

(
x1

∂
∑2

n(f (x))
∂x1

− x2
∂
∑2

n(f (x))
∂x2

)

=
(ln x1 − ln x2)

2

n∑
j=3

(uf ′(u) − vf ′(v))

=
n∑

j=3

(uf ′(u) − vf ′(v))(ln u − ln v)

� 0.

Case 3. When 3 � r � n.
Similar to the argument of Case 2, we have

∂
∑r

n(f (x))
∂x1

=
∑

3�i1<...<ir−1�n

f ′( r
√

x1xi1 . . . xir−1
)

r
√x1xi1 . . . xir−1

rx1

+
∑

3�i1<...<ir−2�n

f ′( r
√

x1x2xi1 . . . xir−2
)

r
√

x1x2xi1 . . . xir−2

rx1
,

and

∂
∑r

n(f (x))
∂x2

=
∑

3�i1<...<ir−1�n

f ′( r
√

x2xi1 . . . xir−1
)

r
√x2xi1 . . . xir−1

rx2

+
∑

3�i1<...<ir−2�n

f ′( r
√

x1x2xi1 . . . xir−2
)

r
√x1x2xi1 . . . xir−2

rx2
.

Put u∗ = r
√x1xi1 . . . xir−1

, v∗ = r
√x2xi1 . . . xir−1

, it is clear that u∗, v∗ ∈ I. Thus, by
Lemma 2.4, we can find that

(ln x1 − ln x2)
(

x1
∂
∑r

n(f (x))
∂x1

− x2
∂
∑r

n(f (x))
∂x2

)

=
(ln x1 − ln x2)

r

∑
3�i1<...<ir−1�n

(u∗f ′(u∗) − v∗f ′(v∗))

=
∑

3�i1<...<ir−1�n

(u∗f ′(u∗) − v∗f ′(v∗))(ln u∗ − ln v∗)

� 0.

Combining the cases 1-3, we have completed the proof of the theorem. �
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COROLLARY 2.5. The Hamy symmetric function Fn(x, r) = Fn(x1, x2, ..., xn; r) is
Schur-geometrically-convex in Rn

+ , where R+ = (0,∞) .

Proof. Let f (x) = x, x ∈ (0,∞) . One can easily see that f (x) is increasing and
multiplicatively convex in R+ . Using Theorem 2.3, we have completed the proof. �

3. Applications

In this section, some analytic inequalities are established by use of the results in
section 2.

THEOREM 3.1. Let xi > 0, i = 1, 2, ..., n, and set Gr =
∏

1�i1<...<ir�n
(xi1 . . . xir)1/r .

The following statements are true.
(i) If xi ∈ (0, 1), i = 1, 2, ..., n, then

1
n

n∑
i=1

1
1−xi

� 1
(n2 )

∑
1�i1<i2�n

1
1−G2

� ...

� 1
( n
n−1

)

∑
1�i1...<in−1�n

1
1−Gn−1

� 1
1−Gn(x) .

(3.1)

(ii) If xi ∈ (1,∞), i = 1, 2, ..., n, then

1
n

n∑
i=1

1
xi−1 � 1

(n2 )

∑
1�i1<i2�n

1
G2−1 � ...

� 1
( n
n−1

)

∑
1�i1...<in−1�n

1
Gn−1−1 � 1

Gn(x)−1 .
(3.2)

(iii) [9, p. 5] If ai > 1, i = 1, 2, ..., n, then

An(a)
An(a − 1)

� Gn(a)
Gn(a − 1)

. (3.3)

(iv) If ai > 0, i = 1, 2, ..., n, then

Gn(a)
Gn(1 + a)

� An(a)
An(1 + a)

. (3.4)

Proof. (i) Let f (x) = 1
1−x , x ∈ (0, 1). Simply calculation shows that

x[f (x)f ′′(x) − f ′2(x)] + f (x)f ′(x) =
1

(1 − x)4
� 0. (3.5)

By Theorem B and Theorem 2.1, direct calculating arrives at (3.1).
(ii) Set f (x) = 1

x−1 , x ∈ (1,∞). Direct and standard computing leads to

x[f (x)f ′′(x) − f ′2(x)] + f (x)f ′(x) =
2x − 1

(1 − x)4
� 0. (3.6)

Using Theorem B and Theorem 2.1 again, one can easily find that (3.2) holds.



MULTIPLICATIVELY CONVEX FUNCTION 753

(iii) Replacing xi of (3.1) by 1− 1
ai

(ai > 1 ) and noticing 1
n

n∑
i=1

1
1−xi

� 1
1−Gn(x) ,

one can find that
An(a)

An(a − 1)
� Gn(a)

Gn(a − 1)
.

(iv) Let xi = 1 + 1
ai

, i = 1, 2, ..., n . By (3.2), one immediately obtain (3.4). �

THEOREM 3.2. Assume that f : I → (0,∞) has a continuous derivative on I . If
f (x) is monotonic and multiplicatively convex on I , where I is a subinterval of (0,∞) ,
then for every xi ∈ I(1 � i � n) we have

f

(
n∏

i=1

x1/n
i

)
� 1

(n
r )

∑
1�i1<...<ir�n

f

⎛
⎝ r∏

j=1

(xij)
1/r

⎞
⎠ , r = 1, 2, ..., n. (3.7)

Proof. Let s =

((
n∏

i=1
xi

)1/n

,

(
n∏

i=1
xi

)1/n

, ...,

(
n∏

i=1
xi

)1/n
)

and x = (x1, x2, ..., xn) .

From Lemma 7.1 of [4, p. 97], it follows that ln s ≺ ln x . This together with Theorem
2.3 leads to (3.7) and the proof is complete. �

REMARK. Let f (x) = x, x ∈ (0,∞), and r = 1 , we get the arithmetic-geometric
mean inequality: Gn(x) � An(x).
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