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A CLASS OF SYMMETRIC FUNCTIONS FOR
MULTIPLICATIVELY CONVEX FUNCTION

KAIZHONG GUAN

(communicated by P. Bullen)

Abstract. A new symmetric function, which generalizes Hamy symmetric function, is defined.
Its properties, including Schur-geometric convexity, are investigated. Some analytic inequalities
are also established.

1. Introduction

The unweighted arithmetic and geometric means of positive sequence x = (xy, x2,
iy Xn) With x; > 0 for 1 < i < n, denoted by A,(x) and G,(x), respectively, are
defined as follows

1
An(x) = %Exiy Gn(x) = Hx,- .

Recently, C. P. Niculescu [1] developed a parallel theory to classical theory of
convex functions, based on a change of variable formula, by replacing the arithmetic
mean with the geometric one. The author defined the multiplicatively convex function,
i.e., GG-convex function, which reveals an entire new world of beautiful inequalities.
Its definition reads as follows:

DEFINITION 1.1. Suppose that [ is a subinterval of (0,00). A function f : [ —
(0, 00) is called multiplicatively convex if

x,y€land A € [0,1] = f (x' ") <F )" (). (1.1)

Some interesting results related to it are also established therein. In particular,
under the presence of continuity and differentiability, the following theorems are proven
respectively.
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THEOREM A. [1, Theorem 2.3]. Suppose that I is a subinterval of (0,00). A
continuous function f : I — [0, 00) is multiplicatively convex if and only if

x,y €I=f(xy) < VX (), (1.2)
Xy o X €1 = F(UF T 0) < VF000) - f (on)- (1.3)

THEOREM B. [1, Proposition 4.3]. Let f : I — (0,00) be a differential function
defined on a subinterval of (0,00). Then the following assertions are equivalent:
(i) f is multiplicatively convex;

(ii) The function ”fczg) is nondecreasing.
If moreover f is twice differentiable, then f is multiplicatively convex if, and only if,
xlf (") = )] +f (0)f'(x) = 0 for every x> 0. (1.4)

It is well known that the technique of majorization play a very important role in
the classical study of convex functions. Schur-convex function, which preserve the or-
dering of majorization, has many important applications in analytic inequalities. Hardy,
Littlewood, and Polya were also interested in some inequalities that are related to Schur-
convex functions [3]. For more details, the interested readers can see the popular book
by Marshall and Olkin [2]. X. M. Zhang [4] proposed the Schur-geometrically-convex
theory as a parallel one to Schur-convex theory by defining logarithmical majorization
and using multiplicatively convex function.

For fixed n > 2, let

X = (xla-x27"'7xn)a y= (yl7y2a"'ayn)
be two n-tuples of positive numbers. And let
X[l Z X[ 2 - Z Xy Y1) Z V2] Z - 2 Vs
be their ordered components.

DEFINITION 1.2. [4, p. 89] The n— tuple x is said to be logarithmically majorized
by y (in symbols Inx < Iny), if

H)Cm <Hym, m=1,2,...n—1; (L.5)
i=1 i=1

and

ITx0 =TT (1.6)
i=1 i=1

DEFINITION 1.3. [4, p. 107] Assume that [ is a subinterval of (0, c0). A function
f :I"— (0,00) is called Schur-geometrically-convex function if

Inx <InyonI"=f(x) <f(y). (1.7)

The following theorem gives a criteria of a symmetric function on I being Schur-
geometrically-convex one.
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THEOREM C. [4, p. 108]. Let f(x) = f(x1,x2,...,%,) be symmetric and have
continuous partial derivatives on I", where I is a subinterval of (0,00). Then
f 1" — (0,00) is a Schur-geometrically-convex function if

ofx) )

(ln.X'I - lnxz) <X18—x1 xza—xz> 2 Oonl". (18)

On the other hand, all kinds of means about numbers and their inequalities have
stimulated the interests of many researchers all the time (See, for example, [2, 5-8] and
the references cited therein.). The Hamy symmetric function [3, 8] is defined as

r

Fo(x,r) = Fp(x1, ooy X3 1) = Z xi |, r=12..n (1.9)
1

1<ii<ir<..<ir<n \ j=

Corresponding to this is the r— th order Hamy mean

1 ~
On(X,1) = Ou(X1y oy X3 7) = 7 Z xi | (1.10)
(’) 1<ii<ir<...<iy<n \ j=1
where () = (n_”—r'W T. Hara er al. [5] established the following refinement of the
classical arithmetic and geometric means inequality:
Gu(x) = 0y(x,n) < op(x,n — 1) < ... < 0u(x,2) < Ou(x, 1) = Ap(x). (1.11)

The paper [6] by H. T. Ku, M. C. Ku and X. M. Zhang contains some interesting
inequalities including the fact that (o, (x,r))" is log-concave. ( See also the popular
book [8] by P. S. Bullen.) At present, K. Z. Guan [7] investigated further and generalized
Hamy symmetric function and its mean. The Schur-convexity is proved.

Now we define the new symmetric function and its mean.

DEFINITION 1.4. Let f(x) be a non-negative function defined on an interval
I C (0,00). The following symmetric function is defined by

r

> ) = oo Hxlj/ L r=1,2,..n, (1.12)

n 1<i1<ir<..<ir<n
where x1,x3,...,x, € 1.

Corresponding to this is the following r— th order mean:

ol (f (x) = % oo I8 | r=12,00m (1.13)
P <ip<...<ir<n j=1

Obviously, when f (x) = x, x € (0,00), (1.12) and (1.13) reduce to (1.9) and (1.10),
respectively. Thus, this symmetric function and its mean generalize the Hamy symmetric
function and the r— th order Hamy mean, respectively.

The main purpose of the paper is to investigate the function Y (f (x)) and its
mean o) (f (x)). The properties, including Schur-geometric convexity, are proven.
Some analytic inequalities are established.
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2. Main Results

In this section, we give our results related to Zﬁ(f (x)) and o)(f(x)). The
properties, including Schur-geometric-convexity, are proven.

THEOREM 2.1. Supposethat f : I — (0,00) is a multiplicatively convex function,
where I is a subinterval of (0,00). Then

o, (f (1) < 0,7 (F () < ... < 67 (f (x)) < 0, (F (). (2.1)

Proof. 1Tt suffices to prove that
S (f(x) < of(f(x), k=1,2,...,n— 1. (2.2)

Since f is multiplicatively convex, using arithmetic-geometric mean inequality and
Theorem A yields

Z f((-xilxiz .. .x,-kﬂ)l/(kﬂ))

1<i1<i2<...<ik+1<n

= 3 U (i ) E G e, )E o (i, - oxg ) E)RT))

1<i <ix<...<ig <n

Z {f((xiz .- ~xik+1)l/k)f((xi1xi3 . "xik+1)l/k)

1<i <ix<...<ig <n

N

oo f (e, - .xik)l/k)}l/(kﬂ)

S ) S (o))

1<i <ix<...<ig <n

N

o+ (X, x) )}
—k
B Z 1 Z f((xilxiZ .. ,xik)l/k)7

+
1<i1<i2<...<ik<n

which implies that

o) = ! ST () )

)
k1) 1ii<ip <. <ig <n

=~

1 n-—

(n ) k+1 Z f((xilx,-Z...xik)l/k)

1<i1<i2<...<ik<n

— i Z f((x,-lxiz...x,-k)l/k)

1< <i<..<ip<n

= 0,(f (x))
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COROLLARY 2.2. [5]. Suppose that x; > 0, i =1,2,...,n, then

Gn(x) = oy(x,n) < ou(x,n— 1) < ... < 0,(x,2) < 0,(x, 1) = Ap(x). (2.3)

Proof. Let f (x) = x,x € (0,00). Using Theorem B, we can easily see that f (x)
is a multiplicatively convex function in (0,00). By Theorem 2.1, we get (2.3) (or
(1.11)) and so the proof is complete. [

THEOREM 2.3. Suppose that f : I — (0,00) has a continuous derivative on I.
If f(x) is monotonic and multiplicatively convex on I, then " (f (x)) is a Schur-
geometrically-convex function on I", where I is a subinterval of (0, 00).

In the proof we shall use the following lemma.

LEMMA 2.4. Assume that f : I — (0,00) has a continuous derivative on I, where
I is a subinterval of (0,00). If f(x) is monotonic and multiplicatively convex on I,
then

(Inx; — Inxp) (xerf ' (x1) — xaf "(x2)) = 0, Vx1,x2 € I (2.4)

Proof. We assume, without loss of generality, that f (x) is increasing and multi-
plicatively convex on 7. The case where f (x) is decreasing and multiplicatively convex
is similar and so is omitted. From Theorem B, it follows that

xaf () xf'(n)
fx) f(x2) > >0

(Inx; — Inx) (

This implies that

(Inx; — Inxy) <xlf'(x1) fxzf’(xz)ﬁ Eg;) > 0. (2.5)

Thus, combining (2.5) with the increasing nature of f (x), we obtain
(Inx; — Inxp) (erf’ (x1) — xaof ' (x2))
= (Inx; —Inxy) <xlf/(xl) —xf ' (x2)

f(x1)>

[ (x2)

st ) ({05 1)
= (Inx; — Inx,) <le/(xl) xzf/(xz);g;;>
+ 0f'(x) (Inx; — Inx2)(f (x1) — f (x2))

f(x2)

= 0.
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Proof of Theorem 2.3. 1t is obvious that the function ) (f (x)) is symmetric and
has a continuous partial derivative on I”. By Theorem C, we only need to prove that

05,0 ) 03,0 (x)
8x1 2 axz

(Inx; — Inxy) (xl > >0onl" (2.6)

To this end, we consider the following three possible cases for r.

Case 1. When r = 1. It is clear that Z}l(f (x)) = >°L,f (x;) . Differentiating it
with respect to x; (i = 1,2) yields

D SHIAC)) NN
B =f'(x), i=1,2.

From Lemma 2.4 it follows that

(Inx; — Inx,) <x1 9 Zéffj @) 9 Zg)(i (x)) )

= (Inx; — Inxp) (x1f " (x1) — xof '(x2)) = 0.

Case 2. When r=2.
If n = 2, it is obvious that

Y () =f(Vax).

Differentiating the above with respect to x; and x, and setting u = /x1x,, we have

Y5 ()  f'(w) F O350 ) f'w) [x

8)61 2

8)62 2 X2 '

One can easily find that (2.6) holds.
If n > 3, we can easily derive that

2
YU =Y f(Em) =) A+ Y (V). (2.7)

1<i<jgn j=2 2<i<j<n

Differentiating (2.7) with respect to x;, we obtain

8 2 X 1 " ’ Xj
O e
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Similarly, we can get

Set u = /x1x;, v = ,/x2%;. Obviously, u,v € I. Therefore, it follows from Lemma
2.4 that

O,(F) 93 ()
(lnx1 — 111)62) ( 8)61 — X2 axz )
- % > ) v 6)
=3
—Z uf’ (u "v))(nu — Inv)

20.

Case 3. When 3 <r < n.
Similar to the argument of Case 2, we have

03,0 ) _ T f(\/m)\/ﬁ

Ox rx
1 3<i < <ip_ <1 !

/X1 XX, « o . Xj .
! A% 1 r—2
+ E Qo /xxx, X, ) ————————,

. : rxi
3<ii<...<ip_p<n

and

/X2 Xiy e X

02,0 ) _ ) A

8)62

3Kii <<y <1t

V/XLX2 Xy e X
+ Z (oo, X)) ——————.

. : rx
3<ii <. <ip_p<n

Put u, = y/X1%;, ... X, _,, Vs« = J/X2X;, ...%;,_,, it is clear that u.,v, € I. Thus, by
Lemma 2.4, we can find that

(Inx; _1nx2)( Z@g< x) _ 262@3:( >>>

— QA S ) — v 0)

r
3<ii<..<ip—1<n
=Y ) —uf ) (. — Inv.)
3K <<l <1
> 0.

Combining the cases 1-3, we have completed the proof of the theorem. [
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COROLLARY 2.5. The Hamy symmetric function F,(x,r) = Fp(X1,X2, ..., X;57) is

Schur-geometrically-convex in R"., where Ry = (0,00).

Proof. Let f(x) =x, x € (0,00). One can easily see that f (x) is increasing and
multiplicatively convex in R, . Using Theorem 2.3, we have completed the proof. [

3. Applications

In this section, some analytic inequalities are established by use of the results in

section 2.

THEOREM 3.1. Let x; > 0,i=1,2,...,n, and set G, = T G..ox)r.

1<ir <...<ir<n
The following statements are true.

(i) If x; € (0,1),i = 1,2,...,n, then

n
1 1 1 1
n Z T 2 o . 1-G, 2 -
1

(i) If x; € (1,00),i =1,2,...,n, then

n

1 1 1 1

D= s B DN o
i=1 1<ii<i<n

1 1 1
2 D) Z G,_,—1 > Gp(x)—1°
=1 1y <1

—

(@ii) [9,p. 5] If a; > 1,i=1,2,....n, then

A,(a) G,(a)
-1 SGila-1)

(iv) If a; > 0,i=1,2,...,n, then

Ga(a) < Ay(a)
G.(1+a) = A(1+a)

Proof. (i) Let f(x) = 1=, x € (0,1). Simply calculation shows that

G 3) = 0] 1 0 () = gy 20

By Theorem B and Theorem 2.1, direct calculating arrives at (3.1).

(ii) Set f(x) = L5, x € (1,00). Direct and standard computing leads to

S () 10+ W) = gy 20

Using Theorem B and Theorem 2.1 again, one can easily find that (3.2) holds.
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(iif) Replacing x; of (3.1) by 1— al_, (a; > 1) and noticing % ; 171'” > 17(%"("),

one can find that
An(a) G, (a)

< .
Ap(a—1) " Gyla—1)
(iv) Let x; = 14+ L i=1,2,....,n. By (3.2), one immediately obtain (3.4). [

ai

THEOREM 3.2. Assume that f : I — (0,00) has a continuous derivative on 1. If
S (x) is monotonic and multiplicatively convex on I, where 1 is a subinterval of (0, 00),
then for every x; € I(1 < i < n) we have

r

f ﬁx}/” g% S I | r=12,0n (3.7)
i=1 r

1<ir <...<ir<n j=1

n 1/n n 1/n n 1/n
Proof. Lets = <H x,-) , <H x,-) s ey (H x,-) and x = (X1, X2, ..., Xy) -

i=1 i=1 i=1
From Lemma 7.1 of [4, p. 97], it follows that Ins < Inx. This together with Theorem
2.3 leads to (3.7) and the proof is complete. [J

REMARK. Let f (x) = x,x € (0,00), and r = 1, we get the arithmetic-geometric
mean inequality: G,(x) < A,(x).
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