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Abstract. The purpose of this paper is, by using the two-step projection methods, to study the
convergence analysis and the approximation solvability of the system of nonlinear variational
inequalities in the setting of Hilbert spaces. The results presented in this paper generalize and
improve the corresponding results in Verma [4].

1. Introduction and preliminaries

Projection and projection type method play an important role in the numerical
solution of variational inequality theory based on their convergence analysis.

Recently, Verma [4] introduced the general two-step model for projection methods
and then applied it to the approximation solvability for a class of strongly monotone
and Lipschitz nonlinear variational inequalities in Hilbert spaces.

The purpose of this paper is, by using the two-step projection methods, to study
further the convergenceanalysis and the approximation solvability for a class of systems
of nonlinear variational inequalities in the setting ofHilbert spaces. The results presented
in this paper generalize and improve the corresponding results in Verma [3], [4].

Throughout this paper, we assume that H is a real Hilbert space with inner product
〈 ·, ·〉 and norm ‖ · ‖ , K is a closed convex subset of H and T : K → H is a mapping.

We consider a system of two nonlinear variational inequality (in short, SNVI)
problems as follows:

Find x∗, y∗ ∈ K such that{ 〈 ρT(y∗) + x∗ − y∗, x − x∗〉 � 0, ∀ x ∈ K, ρ > 0,

〈ηT(x∗) + y∗ − x∗, x − y∗〉 � 0, ∀ x ∈ K, η > 0.
(A)

The SNVI problem (A) is equivalent to the following projection problem:{
x∗ = PK[y∗ − ρT(y∗)], ρ > 0,

y∗ = PK [x∗ − ηT(x∗)], η > 0,
(B)
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where PK is the projection of H onto K .
Special cases of the SNVI problem (A) are following:
(1) If η = 0 , then, from the SNVI problem (A) , we have the following nonlinear

variational inequality (in short, NVI) problem:
Find x∗ ∈ K such that

〈T(x∗), x − x∗〉 � 0, ∀ x ∈ K. (C)

(2) If K is a closed convex cone of H , then the SNVI problem (A) is equivalent
to a system of nonlinear complementarity problems (in short, SNC):

Find x∗, y∗ ∈ K such that

⎧⎨
⎩

T(x∗) ∈ K∗, T(y∗) ∈ K∗,
〈 ρT(y∗) + x∗ − y∗, x∗〉 = 0, ρ > 0,

〈ηT(y∗) + y∗ − x∗, y∗〉 = 0, η > 0,

(D)

where K∗ is a polar cone of K defined by

K∗ = {f ∈ H : 〈 f , x〉 � 0 for all x ∈ K}.

In order to give the main results, we first recall some definitions, notations and
lemmas:

DEFINITION 1.1. Let T : H → H be a mapping.
(1) T is said to be monotone if, for any x, y ∈ H ,

〈Tx − Ty, x − y〉 � 0.

(2) T is said to be r -strongly monotone if, for any x, y ∈ H , there exists a
constant r > 0 such that

〈Tx − Ty, x − y〉 � r‖x − y‖2.

(3) T is said to be L -Lipschitz if, for any x, y ∈ H , there exists a constant L � 1
such that

‖Tx − Ty‖ � L‖x − y‖.
LEMMA 1.1. ([1]) For any given z ∈ H and x ∈ K , x = PK(z) if and only if

〈 x − z, y − x〉 � 0 for all y ∈ K .

LEMMA 1.2. ([2]) Let {an} , {bn} and {cn} be three nonnegative sequences
satisfying the following conditions:

an+1 � (1 − tn)an + bn + cn, n � 0,

where tn ∈ (0, 1) for all n � 0 ,
∑∞

n=0 tn = ∞ , bn = ◦(tn) and
∑∞

n=0 cn < ∞ . Then
an → 0 as n → ∞ .
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2. The two-step projection methods

This section is devoted to study the general two-step models for projectionmethods
and its special forms are applied to study the convergenceanalysis for the approximation
solvability of the SNVI problem (A) .

Algorithm 2.1. For an arbitrarily chosen initial point x0 ∈ K , compute the se-
quences {xn} and {yn} in K generated by{

xn+1 = (1 − αn − γn)xn + αnPK [yn − ρT(yn)] + γnun, n � 0,

yn = (1 − βn − δn)xn + βnPK [xn − ηT(xn)] + δnvn, n � 0,

where PK is the projection of H onto K , ρ,η > 0 are constants, {un} , {vn} are
bounded sequences in K and {αn} , {βn} , {γn} , {δn} are sequences in [0, 1] satisfying
the following conditions:

0 � αn + γn � 1, 0 � βn + δn � 1, n � 0.

If βn = 0 and δn = 0 for all n � 0 , then, from Algorithm 2.1, we have the
following:

Algorithm 2.2. For an arbitrarily initial point x0 ∈ K , compute the sequence
{xn} in K generated by

xn+1 = (1 − αn − γn)xn + αnPK [xn − ρT(xn)] + γnun, n � 0,

where 0 � αn + γn � 1 for all n � 0 and {un} is a bounded sequence in K .
If βn = 1 and δn = 0 for all n � 0 , then, from Algorithm 2.1, we have the

following:
Algorithm 2.3. For an arbitrarily chosen initial point x0 ∈ K , compute the se-

quences {xn} and {yn} in K generated by{
xn+1 = (1 − αn − γn)xn + αnPK [yn − ρT(yn)] + γnun, n � 0,

yn = PK [xn − ηT(xn)], n � 0,

where 0 � αn + γn � 1 for all n � 0 and {un} is a bounded sequence in K .

REMARK 2.1. If γn = 0 and δn = 0 for all n � 0 , then, from Algorithm 2.1, we
have Algorithm 2.1 in Verma [4].

3. The main results

Now, we present, based on Algorithm 2.1, the approximation solvability of the
SNVI problem (A) involving r -strongly monotone and μ -Lipschitz continuous map-
ping in Hilbert spaces.

THEOREM 3.1. Let H be a real Hilbert space and K be a nonempty closed convex
subset of H . Let T : K → H be r -strongly monotone and μ -Lipschitz continuous.
Suppose that x∗, y∗ ∈ K form a solution of the SNVI problem (A) . Let {xn} and {yn}
be the sequences generated by Algorithm 2.1. If the following conditions are satisfied:

(i) 0 � αn + γn � 1 and 0 � βn + δn � 1 for all n � 0 ,
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(ii) βn → 1 , δn → 0 ,
∑∞

n=0 γn < ∞ and
∑∞

n=0 αn = ∞ ,
(iii) 0 < ρ < 2r

μ2 and 0 < η < 2r
μ2 ,

then the sequences {xn} and {yn} converge strongly to x∗ and y∗ , respectively.

Proof. Since x∗, y∗ form a solution of the SNVI problem (A) , we have

x∗ = PK [y∗ − ρT(y∗)], ρ > 0,

y∗ = PK [x∗ − ηT(x∗)], η > 0.

Applying Algorithm 2.1, we have

‖xn+1−x∗‖ = ‖(1 − αn − γn)(xn − x∗)
+ αn{PK[yn − ρT(yn)] − PK [y∗ − ρT(y∗)]} + γn(un − x∗)‖

� (1 − αn − γn)‖xn − x∗‖
+ αn‖PK[yn − ρT(yn)] − PK [y∗ − ρT(y∗)]‖ + γn‖un − x∗‖

� (1−αn)‖xn−x∗‖+αn‖yn−y∗−ρ[T(yn)]−T(y∗)]‖+Mγn, n � 0,

(3.1)

where
M = max{sup

n�0
‖un − x∗‖, sup

n�0
‖vn − y∗‖, ‖x∗ − y∗‖} < ∞.

Since T is r -strongly monotone and μ -Lipschitz continuous, we have

‖yn − y∗ − ρ[T(yn) − T(y∗)]‖2

= ‖yn − y∗‖2 − 2ρ〈T(yn) − T(y∗), yn − y∗〉 + ρ2‖T(yn) − T(y∗)‖2

� ‖yn − y∗‖2 − 2ρr‖yn − y∗‖2 + ρ2μ2‖yn − y∗‖2

= (1 − 2ρr + (ρμ)2)‖yn − y∗‖2

= θ2‖yn − y∗‖2, n � 0,

(3.2)

where θ =
√

1 − 2ρr + (ρμ)2 < 1 by the condition (iii) .
Substituting (3.2) into (3.1) and simplifying the resultant result , we have

‖xn+1 − x∗‖ � (1 − αn)‖xn − x∗‖ + αnθ‖yn − y∗‖ + Mγn, n � 0. (3.3)

Similarly, we have

‖yn−y∗‖ = ‖(1 − βn − δn)(xn − y∗) + βn{PK[xn − ηT(xn)]
− PK[x∗ − ηT(x∗)]} + δn(vn − y∗)‖

� (1 − βn − δn)‖xn − y∗‖ + βn‖PK[xn − ηT(xn)]
− PK[x∗ − ηT(x∗)]‖ + δn‖vn − y∗‖

� (1 − βn)‖xn − y∗‖ + βn‖xn − x∗ − η[T(xn) − T(x∗)]‖ + Mδn

� (1 − βn)‖xn − x∗‖ + βn‖xn − x∗ − η[T(xn) − T(x∗)]‖
+ (1 − βn)‖x∗ − y∗‖ + Mδn

� (1−βn)‖xn−x∗‖+βn

√
1−2ηr+(ημ)2‖xn−x∗‖+M[(1−βn)+δn]

= (1 − βn)‖xn − y∗‖ + βnσ‖xn − x∗‖ + M[(1 − βn) + δn]
� ‖xn − x∗‖ + M[(1 − βn) + δn], n � 0,

(3.4)
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where

σ =
√

1 − 2ηr + (ημ)2 < 1.

From (3.3) and (3.4), we have

‖xn+1 − x∗‖ � ‖(1 − αn)‖xn − x∗‖ + αnθ{xn − x∗‖
+ M[(1 − βn) + δn]} + Mγn

� [1 − αn(1 − θ)]‖xn − x∗‖
+ αnM[(1 − βn) + δn] + Mγn, n � 0.

(3.5)

Taking
an = ‖xn − x∗‖, tn = (1 − θ)αn, n � 0,

cn = Mγn, bn = αnM[(1 − βn) + δn], n � 0,

in Lemma 1.2, by the conditions (ii) and (iii) , we have
∑∞

n=0 tn = ∞ , bn = ◦(tn) ,∑∞
n=0 cn < ∞ . This implies that all the conditions in Lemma 1.2 are satisfied. There-

fore, we have

‖xn − x∗‖ → 0

as n → ∞ . Again, from (3.4), we have

‖yn − y∗‖ → 0

as n → ∞ . This completes the proof.

REMARK 3.1. (1) Theorem 3.1 generalizes and improves the main result in Verma
[4]. Especially, in the cases that γn = δn = 0 for all n � 0 , Theorem 3.1 correct some
important mistakes appeared in the proof of Theorem 3.1 in [4].

(2) Taking

αn =
1

n + 1
, βn =

n2 + 1
n2 + 2

, n � 0,

γn =
n − 1

n3
, δn =

1
n2 + 2

, n � 0,

then the sequences {αn} , {βn} , {γn} and {δn} satisfy the conditions (i) and (ii) in
Theorem 3.1.

In Theorem 3.1, taking βn = 1 and δn = 0 for all n � 0 , then, from Theorem
3.1, we have the following:

THEOREM 3.2. Let H be a real Hilbert space, K be a nonempty closed convex
subset of H and T : K → H be a r -strongly monotone and μ -Lipschitz continuous
mapping. Let x∗, y∗ ∈ K form a solution of the SNVI problem (A) and {xn} , {yn} be
the sequences generated by Algorithm 2.3 . If the following conditions are satisfied:

(i) 0 � αn + γn � 1 for all n � 0 ,
∑∞

n=0 αn = ∞ and
∑∞

n=0 γn < ∞ ,
(ii) 0 < ρ < 2r

μ2 and 0 < η < 2r
μ2 ,

then the sequences {xn} and {yn} converge strongly to x∗ and y∗ , respectively.
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THEOREM 3.3. Let H , K and T be the same as in Theorem 3.1 . Let x∗ ∈ K be
a solution of the NVI problem (C) and {xn} be a sequence generated by Algorithm
2.2 . If the following conditions are satisfied:

(i) 0 � αn + γn � 1 for all n � 0 ,
∑∞

n=0 αn = ∞ and
∑∞

n=0 γn < ∞ ,
(ii) 0 < ρ < 2r

μ2 ,
then the sequences {xn} converges strongly to x∗ .

Proof. Taking η = 0 and δn = 0 for all n � 0 in Theorem 3.1, the conclusion
of Theorem 3.3 can be obtained from Theorem 3.1 immediately.
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