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(communicated by Z. Daroczy)

Abstract. The purpose of this paper is to show that all zeros of the reciprocal polynomial

Pm(z) =
m∑

k=0

Akz
k (z ∈ C)

of degree m � 2 with real coefficients Ak ∈ R (i.e. Am �= 0 and Ak = Am−k for all
k = 0, . . . ,

[m
2

]
) are on the unit circle, if there is a B ∈ R such that AmB � 0, |Am| � |B| and

|Am + B| �
m−1∑
k=1

|Ak + B − Am|
holds.

If the inequality is strict then the zeros of Pm have the form e±uj (j = 1, . . . ,
[m

2

]
) where

2(j − 1)π
m

< uj <
2jπ
m

(j = 1, . . . ,
[m

2

]
)

and they are simple (for odd m, in addition to these zeros, −1 = e−iπ is a zero too).
This implies that the polynomial Pm (with Am > 0 ) and z2m − 1 satisfy the circular

interlacing condition.
If in the inequality (for the coefficients) equality holds, then double zeros may arise, we

discuss how this can happen.

1. Introduction

Recently J. Mckee and C. Smyth [6] proved that there are Salem numbers of
every trace. One essential part of the proof was a novel construction of polynomials of
specified negative trace, using pairs of polynomials whose zeros interlace on the unit
circle.

A pair of relatively prime polynomials P and Q are said to satisfy the circular
interlacing condition if they both have real coefficients, positive leading term, and all
their zeros lie on the unit circle, and interlace there. The last condition means that the
zeros of P and Q can be written as eiαj and eiβj j = 1, . . . , m respectively where

α1 < β1 < α2 < β2 < · · · < αm < βm < α1.
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The importance of interlacing polynomials is shown by the following
PROPOSITION 1. (J. Mckee and C. Smyth [6]) Suppose that the polynomials P

and Q satisfy the circular interlacing condition, have integer coefficients, and that P
is monic (and thus cyclotomic). Then

(a) if P(1) = 0, or Q(1) = 0 and 2P(1)−Q′(1) < 0, then (z2−1)P(z)− zQ(z)
is the minimal polynomial of a Salem number (or perhaps a reciprocal Pisot number),
possibly multiplied by a cyclotomic polynomial. [Note: one of P(1) and Q(1) is always
zero.]

(b) always (z2− z−1)Q(z)− zQ(z) is the minimal polynomial of a Pisot number.

The starting point of this paper was different. We were looking for sufficient
conditions, more general than the previous ones ([3, 9, 4]), which ensure that all zeros
of reciprocal (or self-inversive) polynomials are on the unit circle. The interlacing is a
byproduct, which in the light of the paper [6] seems to be important.

The first author [3] proved that all zeros of the reciprocal polynomial

Pm(z) =
m∑

k=0

Akz
k (z ∈ C)

of degree m � 2 with real coefficients Ak ∈ R (i.e. Am �= 0 and Ak = Am−k for all
k = 0, . . . ,

[
m
2

]
) are on the unit circle, if

|Am| �
m−1∑
k=1

|Ak − Am| (1)

holds, moreover the zeros are located quite regularly.
A. Schinzel [9] generalized this result for self-inversive polynomials. He proved

that all zeros of the polynomial

Pm(z) =
m∑

k=0

Akz
k ∈ C[z]

satisfying

Ak ∈ C, Am �= 0, Am−k = εAk (k = 0, . . . , m) with a fixed ε ∈ C, |ε| = 1 (2)

are on the unit circle if

|Am| � inf
c,d∈C

|d|=1

m∑
k=0

∣∣cAk − dm−kAm

∣∣ . (3)

If the inequality is strict the zeros are simple. Polynomials satisfying (3) are called
self-inversive see e.g. [1, 2, 7].

The authors proved [4] that if the coefficients of a self-inversive polynomial Pm

satisfy the inequality

|Am| � 1
2

m−1∑
k=1

|Ak| (4)

then all zeros of Pm are on the unit circle. Moreover, they found the approximate
location of the zeros.
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Here we find a common generalization of the conditions (1), (4) in case of recip-
rocal polynomials. Also the approximate location of the zeros is given and the case of
multiple zeros is studied.

Our basic tool is the Chebyshev transformation of semi-reciprocal polynomials.
Concerning this transformation we refer to [3].

2. The main result and its proof

MAIN THEOREM. All zeros of the reciprocal polynomial Pm(z) =
∑

k = 0mAkzk

(z ∈ C) of degree m � 2 with real coefficients Ak ∈ R (i.e. Am �= 0 and Ak = Am−k

for all k = 0, . . . ,
[

m
2

]
) are on the unit circle, if

|Am + B| �
m−1∑
k=1

|Ak + B − Am| (5)

holds with some B ∈ R satisfying

AmB � 0, |Am| � |B|. (6)

Moreover if the inequality (5) is strict and m = 2n is even then the zeros of Pm

have the form e±uj (j = 1, . . . , n) where

2(j − 1)π
2n

< uj <
2jπ
2n

(j = 1, . . . , n) (7)

and they are simple.
If the inequality (5) is strict and m = 2n + 1 is odd then the zeros of Pm are

−1 = eiπ and e±uj (j = 1, . . . , n) where

2(j − 1)π
2n + 1

< uj <
2jπ

2n + 1
(j = 1, . . . , n) (8)

and they are simple.

REMARK 1. With B = 0 we obtain from (5) the condition (1) of the first author
[3], while with B = Am we obtain condition (4) of [4]. In the second case our result for
the location of zeros gives the same as in [4], in the first case it differs from that of [3].

REMARK 2. If in (5) strict inequality holds then, by (7), (8) the polynomials Pm

(with Am > 0 ) and Qm(z) := zm − 1 satisfy the circular interlacing property.

REMARK 3. (added in proof) It is easy to check that in case of Am > 0 (5) holds
with some B ∈ R satisfying Am � B � 0 if and only if one of the inequalities

Am �
m−1∑
k=1

|Ak − Am|,

2Am �
m−1∑
k=1

|Ak|,

2Am − Ai �
m−1∑
k=1

|Ak − Ai| where i = 1, . . . , m − 1 is such that Am > Ai > 0,
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is satisfied, that is if (5) holds with B = 0 , B = Am , B = Am − Ai (i = 1, . . . , m− 1 ,
Am > Ai > 0) respectively. In this way one can get rid of the inconvenient existence
condition (concerning B ) in the main theorem.

Proof. We show that all zeros of the Chebyshev transform TPm of Pm are in the
interval [−2, 2].

With the notation vj(z) = zj + zj−1 + · · · + 1 =
zj+1 − 1
z − 1

, ej(z) = zj, wj(z) =

zj + 1 (j = 0, 1, . . . ) , ak = Ak + B − Am (k = 0, . . . , m) we have for even m = 2n

P2n(z) = (Am − B)v2n(z) +
n−1∑
k=0

akek(z) · w2n−2k(z) + anen(z),

hence by the linearity of the Chebyshev transform

TP2n(x) = (Am − B)T v2n(x) +
n−1∑
k=0

akT (ek · w2n−2k)(x) + anT (en)(x).

The Chebyshev transforms we need here have been calculated in [3]. Thus we have

TP2n(x) = (Am − B)
[
Un

( x
2

)
+ Un−1

( x
2

)]
+

n−1∑
k=0

2akTn−k

( x
2

)
+ anT0

( x
2

)

where Tn and Un are the n th Chebyshev polynomial of the first and second kind,
defined by Tn(cos x) = cos nx (n = 0, 1, . . . ) and Un(cos x) = sin(n+1)x

sin x (n =
−1, 0, 1, . . . ) respectively (see for example in [8]).

For odd m = 2n + 1 we have P2n+1(z) = (z + 1)P̃2n(z) with

P̃2n(z) = (Am − B)ṽ2n(z) +
n∑

k=0

akek(z)w̃2n−2k(z)

where

ṽ2n(z) =
v2n+1(z)
z + 1

= z2n + z2n−2 + · · · + z2 + 1 = vn(z2),

w̃2n−2k(z) =
w2n+1−2k(z)

z + 1
=

z2n+1−2k + 1
z + 1

(k = 0, . . . , n).

Taking the Chebyshev transforms of these functions from [3] we get

T P̃2n(x) = (Am − B)T ṽ2n(x) +
n∑

k=0

akT (ek · w̃2n−2k)(x)

= (Am − B)Un

( x
2

)
+

n∑
k=0

ak

[
Un−k

( x
2

)
− Un−k−1

( x
2

)]
.

From now on we treat odd and even m ’s separately.
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In the proof we may assume that Am > 0, Am � B � 0 (otherwise, if Am < 0, we
multiply Pm by −1 and replace B by −B ).

Case 1 . m = 2n is even. Let

xj = 2 cos yj with yj =
2jπ
m

=
jπ
n

(j = 0, . . . , n)

then

Un

(xj

2

)
+ Un−1

(xj

2

)
=

sin(n + 1)yj

sin yj
+

sin nyj

sin yj
=

sin 2n+1
2 yj

sin 1
2yj

=
sin
(
jπ + jπ

2n

)
sin jπ

2n

=
sin jπ
sin jπ

2n

cos
jπ
2n

+ cos jπ = 2n δj0 + (−1)j

Tn−k

(xj

2

)
= cos(n − k)yj = cos(n − k)

jπ
n

= cos

(
jπ − jkπ

n

)
= (−1)j cos

jkπ
n

where δij denotes Kronecker’s symbol (δij = 0 if i �= j and δii = 1 ).
Thus, for j = 0, . . . , n we have

TP2n(xj) = (−1)j

[
2n(Am − B)δj0 + (Am + B) +

n−1∑
k=1

2ak cos
jkπ
n

+ an cos jπ

]
(9)

where ak = Ak + B − Am (k = 1, . . . , 2n) .
Assume that strict inequality holds in (5). We claim that

sgn TP2n(xj) = (−1)j (j = 0, . . . , n). (10)

To prove this we observe that by (5) and by ak = am−k

Am + B >

m−1∑
k=1

|ak| =
n−1∑
k=1

2|ak| + |an| �
n−1∑
k=1

2

∣∣∣∣ak cos
jkπ
n

∣∣∣∣+ |an cos jπ|

therefore the expression Ej in bracket in (9) can be estimated as

Ej � Am + B −
n−1∑
k=1

2

∣∣∣∣ak cos
jkπ
n

∣∣∣∣− |an cos jπ| > 0.

Hence there is a zero αj of the Chebyshev transform TP2n in each interval
]xj, xj+1[ (j = 0, . . . , n − 1) and by Lemma 1 of [3] the corresponding zeros of Pm

are e±iuj where αj = 2 cos uj, uj ∈ [0, π] proving (7) and showing that the zeros are
simple.

Assume now that equality holds in (5) i.e.

Am + B =
m−1∑
k=1

|Ak + B − Am|.
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By Am + B > 0 there is a k0 ∈ {1, . . . , m − 1} such that Ak0 + B − Am �= 0. Let

A[l]
k0

= Ak0 −
1
l

sgn (Ak0 + B − Am),

A[l]
m−k0

= Am−k0 −
1
l

sgn (Am−k0 + B − Am).

For l ∈ N large enough, say l � l0, we have

|A[l]
k0

+ B − Am| = |Ak0 + B − Am| − 1
l

< |Ak0 + B − Am|,

|A[l]
m−k0

+ B − Am| = |Am−k0 + B − Am| − 1
l

< |Am−k0 + B − Am|.

Denoting by P[l]
m (l � l0) the polynomial obtained from Pm by replacing its

coefficients Ak0 , Am−k0 by A[l]
k0
, A[l]

m−k0
respectively the condition (5) holds with strict

inequality for P[l]
m thus all of its zeros are on the unit circle. On the other hand the zeros

of P[l]
m tend to the zeros of Pm as l → ∞ (see [5] Theorem (1,4)) we conclude that the

zeros of the latter are on the unit circle too. In this case in (7) some inequality signs
may have to be replaced by equality signs and Pm may have multiple zeros.

Case 2. m = 2n + 1 is odd. Let

xj = 2 cos yj with yj =
2jπ
m

=
2jπ

2n + 1
(j = 0, . . . , n)

then for all j = 0, . . . , n

Un

(xj

2

)
=

sin(n + 1)yj

sin yj
=

sin
(

2n+1
2 yj + 1

2yj
)

2 sin 1
2yj cos 1

2yj
=

1
2

(
sin 2n+1

2 yj

sin 1
2yj

+
cos 2n+1

2 yj

cos 1
2yj

)

=
1
2

(
sin jπ

sin jπ
2n+1

+
cos jπ

cos jπ
2n+1

)
=

1
2

(
(2n + 1)δj0 +

(−1)j

cos jπ
2n+1

)
,

Un−k

(xj

2

)
− Un−k−1

(xj

2

)
=

sin(n − k + 1)yj

sin yj
− sin(n − k)yj

sin yj
=

cos 2(n−k)+1
2 yj

cos 1
2yj

=
cos
(
jπ − 2kjπ

2n+1

)
cos jπ

2n+1

=
(−1)j cos 2kjπ

2n+1

cos jπ
2n+1

.

Thus, for j = 0, . . . , n we have

T P̃2n(xj)=
(−1)j

2 cos jπ
2n+1

[
(2n+1)(Am−B)δj0+(Am+B)+

n∑
k=1

2ak cos
2jkπ
2n+1

]
. (11)

Assume that strict inequality holds in (5). We claim that

sgn (T P̃2n(xj)) = (−1)j (j = 0, 1, . . . , n). (12)
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To justify this observe that by (5)

Am + B >

n∑
k=1

2|ak| �
n∑

k=1

2

∣∣∣∣ak cos
2jkπ

2n + 1

∣∣∣∣ .
therefore the expression Ẽj in bracket in (11) can be estimated as

Ẽj � Am + B −
n∑

k=1

2

∣∣∣∣ak cos
2jkπ

2n + 1

∣∣∣∣ > 0.

Hence there is a zero αj of the Chebyshev transform T P̃2n in each interval
]xj, xj+1[ (j = 0, . . . , n − 1) and by Lemma 1 of [3] the corresponding zeros of P̃2n

are e±iuj where αj = 2 cos uj, uj ∈ [0, π] proving (8) and showing that the zeros are
simple.

Assume now that equality holds in (5). We can complete the proof analogously
to the case 1, by obtaining the zeros of P̃2n as limits l → ∞ of zeros of a sequence
of polynomials P̃[l]

2n, where the (modified) coefficients of the corresponding sequence

P[l]
2n+1 satisfy (5) with strict inequality. Again in this case in (8) some inequality signs

may have to be replaced by equality signs and Pm may have multiple zeros. �

3. Multiple zeros

From the proof of the Main Theorem it turns out that multiple zeros are possible
only if in (5) equality stands.

In the sequel suppose that equality holds in (5), and for the sake of definiteness
consider the case of even m = 2n. As we have seen in the proof, the zeros of P2n are

e±iuj (j = 1, . . . , n) where uj are limits of u[l]
j as l → ∞, e±iu[l]

j (j = 1, . . . , n) being

the zeros of P[l]
2n satisfying

(j − 1)π
n

< u[l]
j <

jπ
n

(j = 1, . . . , n; l � l0).

Taking the limit we get

0 � u1 � π
n

� · · · � (j − 1)π
n

� uj � jπ
n

� · · · � un � π. (13)

For each j = 1, . . . , n in the inequality (j−1)π
n � uj � jπ

n only at one side can be
equality, at the other side strict inequality must hold.

If 0 = u1 (un = π ) then by Lemma 1 of [3] ei0 = 1(eiπ = −1 ) is a double zero
of P2n.

If in two consecutive (double) inequalities of (13) we have equalities in the middle
and inequalities at the sides, i.e. we have

(j − 1)π
n

< uj =
jπ
n

= uj+1 <
(j + 1)π

n
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for some j = 1, . . . , n − 1 then 2 cos
jπ
n

is a double zero of TP2n and by Lemma 1 of

[3] e±
ijπ
n are double zeros of P2n.

Thus the multiple zeros of P2n can be at most double zeros and these double zeros

can only be the numbers e±
ijπ
n (j = 0, . . . , n).

Suppose that A2n > 0, A2n � B � 0 and equality holds in (5) .

In order that e
ijπ
n for j = 0, n be a double zero of P2n it is necessary and sufficient

that A2n + B =
2n∑

k=1
|ak|, TP2n(2 cos jπ

n ) = 0, or by (9)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A2n + B −
n−1∑
k=1

2|ak| − |an| = 0

2n(A2n − B)δj0 + (A2n + B) +
n−1∑
k=1

2ak cos
jkπ
n

+ an cos jπ = 0

(14)

hold.
In order that e

±ijπ
n for j = 1, . . . , n − 1 be double zeros of P2n it is necessary

and sufficient that A2n + B =
2n∑

k=1
|ak|, TP2n(2 cos jπ

n ) = 0, (TP2n)′(2 cos jπ
n ) = 0, or

by (9) ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A2n + B −
n−1∑
k=1

2|ak| − |an| = 0

A2n + B +
n−1∑
k=1

2ak cos
jkπ
n

+ an cos jπ = 0

(A2n − B)n
2 sin2 jπ

2n

+
n−1∑
k=1

2ak(n − k)
sin kjπ

n

sin jπ
n

= 0

(15)

hold.
Rewriting the condition (TP2n)′(2 cos jπ

n ) = 0 as the third line of (15) requires
some calculations.

First we differentiate TP2n and use the identity T ′
n = nUn−1 to obtain

(TP2n)
′ (x) =

A2n − B
2

[
U′

n

( x
2

)
+ U′

n−1

( x
2

)]
+

n−1∑
k=0

ak(n − k)Un−k−1

( x
2

)
.

With x = cosϑ we have after some simplifications

U′
n(x) =

d
dϑ

sin(n + 1)ϑ
sinϑ

dϑ
dx

=
n sin(n + 2)ϑ − (n + 2) sin nϑ

−2 sin3 ϑ
and

U′
n(x) + U′

n−1(x) =
2n sinϑ (cos nϑ + cos(n + 1)ϑ) − 2 sin nϑ(1 + cosϑ)

−2 sin3 ϑ
.
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where for sinϑ = 0 the right hand side is defined by its limit.
We get, after some trigonometric manipulations, that

U′
n

(
cos

jπ
n

)
+ U′

n−1

(
cos

jπ
n

)
=

(−1)j+1n
(
1 + cos jπ

n

)
sin2 jπ

n

=
(−1)j+1n

2 sin2 jπ
2n

and finally

(TP2n)
′
(

2 cos
jπ
n

)
= (−1)j+1 1

2

[
(A2n − B)n
2 sin2 jπ

2n

+
n−1∑
k=1

2ak(n − k)
sin kjπ

n

sin jπ
n

]

the formula we used in (15).
From the systems of equations (14), (15) one can easily find conditions for the

coefficients of P2n which ensure that e±
ijπ
n are double zeros of it. The case of odd

degree can be dealt with similarly.
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