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(communicated by L. Pick)

Abstract. In this paper we study a Dirichlet problem relative to the equation Lu = gϕ− (f iϕ)xi
,

where L is a linear elliptic operator with lower-order terms whose ellipticity condition is given

in terms of the function ϕ(x) = (2π)− n
2 exp

(
− |x|2 /2

)
, the density of the Gaussian measure.

We use the notion of rearrangement with respect to the Gauss measure to obtain a priory estimate
of the solution u and we study the summability of u in the Lorentz-Zygmund spaces when g
and f i varies in suitable Lorent-Zygmund spaces.

1. Introduction

In this paper we study the problem{ − (aij(x)uxi)xj
− (di(x)u)xi

+bi(x)uxi+c(x)u = gϕ− (f iϕ)xi
in Ω

u = 0 on ∂Ω
(1.1)

where Ω is an open set of R
n (n � 2) , ϕ(x) = (2π)−

n
2 exp

(
− |x|2 /2

)
is the density

of the Gauss measure and aij(x) , di(x), bi(x), i, j = 1, .., n, and c(x) are measurable
functions on Ω such that

(i) aij(x)ξiξj � ϕ(x) |ξ |2 for a.e. x ∈ Ω, ∀ξ ∈ R
n,

(ii) aij(x)
ϕ(x) ∈ L∞ (Ω) ,

(iii)
(∑

b2
i (x)

) 1
2 � b(x)ϕ(x) , b(x) ∈ L∞ (logL)−

1
2 (ϕ,Ω) ,

(iv)
(∑

d2
i (x)

) 1
2 � d(x)ϕ(x) , d(x) ∈ L∞ (logL)−

1
2 (ϕ,Ω) ,

(v) c(x)
ϕ(x) ∈ L∞ (Ω) and c(x) � 0 ,

(vi) g (x) ∈ L2 (logL)−
1
2 (ϕ,Ω) ,

(vii) f i(x) ∈ L2 (ϕ,Ω) i = 1, ..n,
∑

f 2
i (x) = f 2(x).

Problem (1.1) is related to the generator of Ornstein-Uhlenbeck semigroup (see
[11]).
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Degenerate elliptic equations has been studiedwhen Ω is bounded (see for example
[24], [31], [3] and [4]). In our case Ω can be not bounded and the ellipticity condition
(i) is given in term of Gaussian density.

First of all we observe that the natural space for searching weak solution of
the problem (1.1) (see Section 3 for the definition) is the weighted Sobolev space
H1

0 (ϕ,Ω) , that is the closure of C∞
0 (Ω) under the norm

‖u‖H1
0 (ϕ,Ω) =

(∫
Ω
|∇u (x)|2 ϕ(x)dx

) 1
2

.

We obtain a priory estimates using symmetrization techniques. It is well known
that if Ω is bounded such estimates can be obtained via Schwarz symmetrization by
comparing the solution of original problem with the solution of a simpler one which is
defined in a ball and has spherical symmetric data (see for example [27, 29, 28, 2, 3, 4]
and [5]).

In this case we use the notion of rearrangement with respect to Gauss measure (see
Section 2 for the definition) and we compare the solution of problem (1.1) with the
solution of a problem defined in an half-space having the same Gauss measure as Ω .
More precisely, if u is the solution of problem (1.1), we prove that

u�(x) � w(x), (2)

where u� (x) is the rearrangement of u (x) with respect to Gauss measure and w(x) is
the solution of the following “symmetrized” problem:⎧⎪⎪⎨⎪⎪⎩

− (wx1ϕ (x))x1
+ (D(Φ (x1))wϕ (x))x1

− B(Φ (x1))wx1ϕ (x)

= g�(x1)ϕ (x) − (F (Φ (x1))ϕ (x))x1
in Ω�

w = 0 on ∂Ω�.

(1.3)

Here Ω� is the half-space {x = (x1, ..., xn) ∈ R
n : x1 > λ} , with λ ∈ R such

that γn(Ω) = γn(Ω�) , g� is the rearrangement with respect to Gauss measure of the
function g , F2, D2 and B2 are functions related to f 2, d2 and b2, built on the level

sets of u (see Section 2 for the definition) and Φ (x1) = 1√
2π

∫ +∞
x1

exp
(
− t2

2

)
dt.

Comparison (2) provides estimates of u in terms of the solution of a problem
of the same type of (1.1), but simpler, because it is defined in an half-space and its
coefficients depend only on one variable. Moreover we are able to prove an estimate of
norm of u in H1

0 (ϕ,Ω) that gives also a sufficient condition for the existence in terms
of the summability of the data.

When di(x) ≡ 0 or bi(x) ≡ 0 i = 1, ..., n , the solution of problem (1.3) can be
explicitly written (see Corollary 3.1 and Corollary 3.2), then the pointwise comparison
(2) gives an explicit estimate for the solution u which is the starting point to obtain
regularity result.

Let us observe that by Gross inequality we have that if u ∈ H1
0 (ϕ,Ω) is a so-

lution of problem (1.1) then u belongs to Lorentz-Zygmund space L2 (logL)
1
2 (ϕ,Ω)

(see Section 2 for the definition). We study how the summability of u improves
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by improving the summability of the data f and g in Lorentz-Zygmund spaces
Lp,q (logL)α (ϕ,Ω) .

Comparison results using rearrangementwith respect to Gauss measure are proved
in [9] when di(x) ≡ bi(x) ≡ c(x) ≡ f i(x) ≡ 0 i = 1, .., n and in [15] when
di(x) ≡ f i(x) ≡ 0 and c(x) � c0(x)ϕ(x) . Parabolic case has been studied in [13].

2. Notations and preliminary results

In this section we recall some definitions and results which will be useful in the
following. Let γn be the n -dimensional Gauss measure on R

n defined by

γn (dx) = ϕ (x) dx = (2π)−
n
2 exp

(
−|x|2

2

)
dx, x ∈ R

n

normalized by γn (Rn) = 1.

We will denote by Φ (τ) the measure of the half-space {x ∈ R
n : x1 > τ} , i.e.

Φ (τ) = γn ({x ∈ R
n : x1 > τ}) =

1√
2π

∫ +∞

τ
exp

(
− t2

2

)
dt ∀τ ∈ R∪{−∞, +∞} .

We observe that we have

lim
t→0+;1−

(2π)−
1
2

exp
(
−Φ−1(t)2

2

)
t(2 log 1

t )
1
2

= 1 (4)

One of the main tools to prove the comparison result is the isoperimetric inequality
with respect to Gauss measure. Let us define the perimeter with respect to Gauss
measure as

P (E) = (2π)−
n
2

∫
∂E

exp

(
−|x|2

2

)
Hn−1 (dx) ,

where E is a (n − 1)− rectificable set and Hn−1 denotes the (n − 1)−dimensional
Hausdorff measure. For all λ ∈ R and ξ ∈ R

n , we denote by H (ξ , λ ) the half-space
defined by

H (ξ , λ ) = {x ∈ R
n : (x, ξ) > λ}

and we set H (ξ , λ ) = R
n if λ = −∞ and H (ξ , λ ) = ∅ if λ = +∞ . It is well

known (see [12], [16] and [21]) that among all measurable sets of R
n with prescribed

Gauss measure, the half-spaces take the smallest perimeter, that is

P (E) � P (H (ξ , λ ))

for all subsets E ⊂ R
n such that γn (E) = γn (H (ξ , λ )) .

Now we give the notion of rearrangement. If u is a measurable function in Ω , we
denote by
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(a) u∗ the usual decreasing rearrangementof u with respect to Lebesguemeasure,
i.e.1

u∗ (s) = inf {t � 0 : |{x ∈ Ω : |u| > t}| � s} s ∈ ]0, 1]

(b) u� the decreasing rearrangement of u with respect to Gauss measure, i.e.

u� (s) = inf {t � 0 : μ (t) � s} s ∈ ]0, 1] ,

where μ(t) = γn ({x ∈ Ω : |u| > t}) is the distribution function of u;
(c) u� the rearrangement with respect to Gauss measure of u , i.e.

u� (x) = u� (Φ (x1)) x ∈ Ω�,

where Ω� = {x = (x1, ..., xn) ∈ R
n : x1 > λ} is the half-space such that γn

(
Ω�) =

γn (Ω) .
By definition u� is a function which depend only on the first variable and its level

sets are half spaces (see [17]); moreover u, u� and u� have the same distribution
function.

For general results about the properties of rearrangement with respect to a positive
measure see, for example, [14] and [26]. We just recall that if u (x) , v (x) aremeasurable
functions the Hardy type inequality∫

Ω
|u (x) v (x)| γn (dx) �

∫
Ω�

u� (x) v� (x) γn (dx) =
∫ γn(Ω)

0
u� (s) v� (s) ds (5)

holds. The Lp weighted norm is invariant under the rearrangement with respect Gauss
measure:

‖u‖Lp(ϕ,Ω) =
∥∥u�∥∥

Lp(ϕ,Ω) =
∥∥u�∥∥

Lp(0,γn(Ω)) ,

while for the Lp weighted norm of |∇u| a Polya-Szëgo type inequality holds (see
[30]): ∥∥∇u�∥∥

Lp(ϕ,Ω) � ‖∇u‖Lp(ϕ,Ω) . (6)

In what follows we will use also the notion of pseudo-rearrangement firstly intro-
duced in [3] (see also [25]).

Let u : Ω → R be a measurable function, f ∈ Lp (ϕ,Ω) with 1 � p � +∞ , f �
0 and Ω� = [0, γn (Ω)] . We will say that a function f̃ u : Ω� → R is a Gauss pseudo-
rearrangement of f with respect to u if there exists a family E(u) = {E(s)}s∈Ω� of
measurable subsets of Ω such that

γn (E(s)) = s,

s1 � s2 ⇒ E(s1) ⊆ E(s2)

E(s) =
{
x ∈ Ω : |u(x)| > u� (s)

}
if s = μ(t)

and

f̃ u(s) =
d
ds

∫
E(s)

f (x)ϕ (x) dx for a.e. s ∈ Ω� .

(2.4)

1We denote by |D| the n-dimentional Lebesgue measure of a subset D ⊂ R
n .



REGULARITY RESULTS FOR DEGENERATE ELLIPTIC EQUATIONS RELATED TO GAUSS MEASURE 775

The function f̃ u is built on the level sets of u. The following proposition shows
that f̃ u is weak limit of a sequence of functions having the same decreasing rear-
rangements of f . The proof is a slight modification of the analogous result for the
pseudo-rearrangement obtained in [3].

PROPOSITION 2.1. Let Ω ⊆ R
n be a open set and f ∈ Lp (ϕ,Ω) , p > 1. Let

u : Ω → R be a measurable function and f̃ u be a Gauss pseudo-rearrangement of f
with respect to u. Then there exists a sequence {f h}h∈N

⊆ Lp
(
Ω�)

such that

f ∗
h (s) = f �(s) and f h ⇀ f̃ u in Lp(Ω�).

For more property about pseudo-rearrangement see also [19].
We often will use the following Hardy inequalities.

PROPOSITION 2.2. Suppose r > 0, 1 � q � ∞ and −∞ < α < +∞. Let ψ be
a nonnegative measurable function on (0,1). If 1 � q < ∞, then the inequalities(∫ 1

0

(
t−r(1− log t)α

∫ t

0
ψ(s)ds

)q
dt
t

) 1
q

� c

(∫ 1

0

(
t1−r(1− log t)αψ(t)

)q dt
t

) 1
q

(8)

and(∫ 1

0

(
tr(1− log t)α

∫ 1

t
ψ(s)ds

)q
dt
t

) 1
q

� c

(∫ 1

0

(
t1+r(1− log t)αψ(t)

)q dt
t

) 1
q

(9)

hold; while, for q = ∞ it holds that

sup
0<t<1

(
t−r(1 − log t)α

(∫ t

0
ψ(s) ds

))
� c sup

0<t<1

(
t1−r(1 − log t)αψ(t)

)
(10)

and

sup
0<t<1

(
tr(1 − log t)α

(∫ 1

t
ψ(s)ds

))
� c sup

0<t<1

(
t1+r(1 − log t)αψ(t)

)
. (11)

In all cases, the constants c = c(r, q , α) are independent of ψ .

In the limit case, r = 0 , the exponent of the logarithmic term increases by a factor
of 1 .

PROPOSITION 2.3. Suppose 1 � q � ∞ and 1
q +α �= 0 . Let ψ be a nonnegative

measurable function on (0, 1) . If 1 � q < ∞, then, it holds(∫ 1

0

(
(1 − log t)α

∫ t

0
ψ(s) ds

)q
dt
t

) 1
q

� c

(∫ 1

0

(
t(1 − log t)α+1ψ(t)

)q dt
t

) 1
q

(12)
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if 1
q + α > 0, or(∫ 1

0

(
(1 − log t)α

∫ 1

t
ψ(s) ds

)q
dt
t

) 1
q

� c

(∫ 1

0

(
t(1 − log t)α+1ψ(t)

)q dt
t

) 1
q

(13)
if 1

q + α < 0 . Moreover, for q = ∞, it holds

sup
0<t<1

(
(1 − log t)α

∫ t

0
ψ(s) ds

)
� c sup

0<t<1

(
t(1 − log t)α+1ψ(t)

)
(14)

when α > 0, or

sup
0<t<1

(
(1 − log t)α

∫ 1

t
ψ(s) ds

)
� c sup

0<t<1

(
t(1 − log t)α+1ψ(t)

)
(15)

when α < 0 . In all cases, the constants c = c(q , α) are independent of ψ .

For more details we refer, for instance, to [7].
Now we want to recall the definition and the main properties of Lorentz-Zygmund

spaces. Let u be any measurable function in Ω for 0 < q, p � ∞ and −∞ < α <
+∞ , we put2

||u||Lp,q(log L)α (ϕ,Ω) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(∫ γn(Ω)

0

[
t

1
p (1 − log t)αu�(t)

]q dt
t

) 1
q

if 0 < q < ∞,

sup
t∈(0,γn(Ω))

[
t

1
p (1 − log t)αu�(t)

]
if q = ∞.

(2.13)

We say that u belongs to the Lorentz-Zygmund space Lp,q(logL)α(ϕ,Ω) if

||u||Lp,q(log L)α (ϕ,Ω) < ∞.

We remark that for 1 < p � ∞ , 1 � q � ∞ and −∞ < α < +∞ , (2.13) is a
quasinorm, but replacing u� (t) with

u��(t) =
1
t

∫ t

0
u�(s)ds

we obtain an equivalent norm.
It is clear fromdefinition ofLorentz space and (2.13) that the space Lp,q(logL)0(ϕ,Ω)

is just theLorentz space Lp,q(ϕ,Ω) . Moreover if 1 < p < ∞ the space Lp,p(logL)α(ϕ,Ω)
is the Zygmund space Lp(logL)α(ϕ,Ω) , while if p = ∞ and α � 0 the space
L∞,∞(logL)−α(ϕ,Ω) is the Zygmund space Lαexp (ϕ,Ω) .

We will remind same inclusion relations among Lorentz-Zygmund spaces.
If 0 < r < p � ∞, 0 < q, s � ∞ and −∞ < α, β < ∞ , then we get

Lp,q(logL)α(ϕ,Ω) ⊆ Lr,s(logL)β (ϕ,Ω).

2We will use the following ‘arithmetic’ convention: s∞ = 0 for s > 0.
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It is clear from definition (2.13) that the space Lp,q(logL)α(ϕ,Ω) decreases as α
increases. When the first exponents are the same, 0 < p � ∞ , 0 < q, s � ∞ and
−∞ < α, β < ∞, the following inclusion holds

Lp,q(logL)α(ϕ,Ω) ⊆ Lp,s(logL)β (ϕ,Ω)

whenever either
q � s and α � β

or

q > s and α +
1
q

> β +
1
s
.

Let us observe that the space Lp,q(logL)α(ϕ,Ω) is not trivial if and only if one of the
following conditions hold :⎧⎪⎪⎪⎨⎪⎪⎪⎩

p < ∞,

p = ∞ and α +
1
q

< 0,

p = ∞, q = ∞ and α = 0.

For more properties and for the definition of the classical Lorentz-Zygmund space
Lp,q(logL)α(Ω) we refer to [7, 8] and [23]. In what follows, for the sake of simplicity,
we will denote by ||u||p,q;α the quasinorm ||u||Lp,q(log L)α (ϕ,Ω�).

We recall that the weighted Sobolev space H1
0 (ϕ,Ω) is the closure of C∞

0 (Ω)
under the norm

‖u‖H1
0(ϕ,Ω) =

(∫
Ω
|∇u (x)|2 dγn (x)

) 1
2

.

We remark that when γn(Ω) < 1 , the following Poincarè type inequality holds

‖u‖L2(ϕ,Ω) � C ‖∇u‖L2(ϕ,Ω) ,

where C is a constant depending on γn(Ω) (see [13, 15]).
The following imbendding theorem is a straight consequence of the Sobolev log-

arithmic inequalities (see [20, 1] ). We give a direct proof which uses properties of
rearrangement of functions.

PROPOSITION 2.4. If |∇f | ∈ Lp (ϕ,Ω) , 1 � p < ∞, then f ∈ Lp (logL)
1
2 (ϕ,Ω)

and
‖f ‖

Lp(log L)
1
2 (ϕ,Ω)

� C1 ‖∇f ‖Lp(ϕ,Ω) . (17)

If |∇f | ∈ L∞ (Ω) then f ∈ L∞ (logL)−
1
2 (ϕ,Ω) and

‖f ‖
L∞(log L)−

1
2 (ϕ,Ω)

� C2 ‖∇f ‖L∞(Ω) . (18)

In both cases the constants C 1 ,C 2 depend on p and γn(Ω).
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Proof. For 1 � p < +∞, using (9), (4) and (6) we obtain

‖f ‖p

Lp(log L)
1
2 (ϕ,Ω)

� c
∫ γn(Ω)

0

(
t(1 − log t)

1
2

∣∣∣∣ d
dt

f � (t)
∣∣∣∣)p

dt

� c
∫ γn(Ω)

0

∣∣∣∣ d
dt

f � (t)
∣∣∣∣p exp

(
−Φ−1(t)2

2
p

)
dt

= c
∥∥∇f �∥∥p

Lp
(ϕ,Ω)

� c ‖∇f ‖p
Lp(ϕ,Ω) ,

where c is a generic constant depending only by p and γn(Ω) and which may vary
from line to line.

For p = +∞ the inequality (18) follows in the same way with (9) replaced by
(15). �

Moreover we recall an inequality which will be useful in the following:

PROPOSITION 2.5. Let f ∈ Lp,q(logL)α(ϕ,Ω) with 1 � σ < p � ∞,σ � q � ∞
e −∞ < α < +∞ and Fσ =

(
f̃ σ

)
u
. Then F ∈ Lp,q(logL)α(Ω�) and for same

positive constant C

‖F‖Lp,q(log L)α (Ω�) � C ‖f ‖Lp,q(log L)α (ϕ,Ω) .

The proof of Proposition 2.5 is a slight modification of the proof of Lemma 2.2 in
[10], where Lorentz space are considered.

The following proposition is a slight modification of Gronwall lemma (see [22] for
the proof of the classical one).

LEMMA 2.1. Given the functions λ , γ , φ, θ in [a, +∞) suppose that λ � 0, γ � 0
and that λθ and λφ belong to L1(a, +∞). Moreover suppose that λγ belongs to
L1 (a, k) for each k > a and

lim
k→∞

(∫ +∞

k
λ (τ)φ(τ) dτ

)(
exp

[∫ k

a
λ (s) γ (s) ds

])
= 0. (19)

If for a.e. t � a

φ(t) � θ(t) + γ (t)
∫ ∞

t
λ (τ)φ(τ) dτ,

then for a.e. t � a

φ(t) � θ(t) + γ (t)
∫ ∞

t
θ(τ)λ (τ) exp

(∫ τ

t
λ (r)γ (r) dr

)
dτ.

3. Comparison result

In this section we will prove a comparison result between the solution of prob-
lem (1.1) and a simpler Dirichlet problem which is defined in an half-space and
has coefficients depending only on the first variable. The proof uses as main tools
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the isoperimetric inequality with respect to Gauss measure, Coarea formula and the
properties of the rearrangement of a function.

We recall that u ∈ H1
0(ϕ,Ω) is a weak solution of problem (1.1), if∫

Ω
(aij(x)uxiψxj + di(x)uψxi + bi(x)uxiψ + c(x)uψ) dx

=
∫
Ω

(g + f iψxi)ϕ(x)dx ∀ψ ∈ H1
0(ϕ,Ω).

(3.1)

Note that in the hypotheses (i)− (vii) , using Proposition 2.5, Hardy-Littlewood’s
inequality (5), Hölder’s and Poicarè’s inequalities, all terms in (3.1) are well defined.

THEOREM 3.1. Let Ω be an open set of R
n with γn (Ω) < 1 and let u ∈

H1
0(ϕ,Ω) be solution of (1.1) under the assumptions (i) − (vii) ; moreover, suppose

that either ‖b‖
L∞(log L)−

1
2 (ϕ,Ω)

is small enough or b ∈ L∞,a(logL)−
1
2 (ϕ,Ω) with

2 < a < ∞ . Let w(x)=w� (x) be the solution of problem (1.3) , where Ω� is the
half-space {x = (x1, ..., xn) ∈ R

n : x1 > λ} , with λ ∈ R such that γn(Ω) = γn(Ω�)
and F, B and D are functions such that F2 =

(
f̃ 2
)

u
, B2 =

(
b̃2
)

u
and D2 =

(
d̃2
)

u
.

Then

u�(x1) � w�(x1) = w(x) for a.e. x ∈ Ω�. (21)

Proof. Let be h > 0 and t ∈ [0, sup |u|[ . If we take

ψ(x) =

⎧⎪⎨⎪⎩
h sign u if |u| > t + h

(|u| − t) sign u if t < |u| � t + h

0 otherwise

in (3.1), then we get

1
h

∫
t<|u|�t+h

aij(x) uxiuxj dx +
1
h

∫
t<|u|�t+h

di(x)uuxi dx

+
1
h

∫
t<|u|�t+h

bi(x)uxi (|u| − t) sign u dx +
∫
|u|>t+h

bi(x) uxi sign u dx

+
1
h

∫
t<|u|�t+h

c(x)u(x) (|u| − t) sign u dx +
∫
|u|>t+h

c(x) u (x) sign u dx

=
1
h

∫
t<|u|�t+h

f iϕ(x)uxi dx +
1
h

∫
t<|u|�t+h

g(x)ϕ(x) (|u| − t) sign u dx

+
∫
|u|>t+h

g(x)ϕ(x) sign u dx

Under the conditions (i) , (iii) , (iv) and (v) , letting h → 0 and by Cauchy-
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Schwarz inequality, we obtain

− d
dt

∫
|u|>t

|∇u|2 ϕ(x) dx

�
∫ +∞

t

(
− d

ds

∫
|u|>s

|∇u|2 ϕ (x) dx

) 1
2
(
− d

ds

∫
|u|>s

b2(x)ϕ (x) dx

) 1
2

ds

+

(
− d

dt

∫
|u|>t

|∇u|2 ϕ(x) dx

) 1
2

t

(
− d

dt

∫
|u|>t

d2(x)ϕ (x) dx

) 1
2

+

(
− d

dt

∫
|u|>t

f 2ϕ(x) dx

) 1
2
(
− d

dt

∫
|u|>t

|∇u|2 ϕ(x) dx

) 1
2

+
∫
|u|>t

g(x)ϕ(x)sign u dx.

(3.3)

On the other hand, Coarea formula (see [18]) and isoperimetric inequality with
respect to the Gauss measure give

− d
dt

∫
|u|>t

|∇u|ϕ(x)dx �
∫

∂{|u|>t}�
ϕ(x)Hn−1(dx) =

1√
2π

exp

(
−Φ−1 (μ (t))2

2

)
(23)

where {|u| > t}� is the half space having Gauss measure μ(t).
Then, using (23) and Hölder inequality, we get

1 � (2π)
1
2 exp

(
Φ−1 (μ (t))2

2

)(−μ ′(t)
) 1

2

(
− d

dt

∫
|u|>t

|∇u|2 ϕ(x) dx

) 1
2

. (24)

Moreover from (2.4), we have(
− d

dt

∫
|u|>t

f 2(x)ϕ(x) dx

) 1
2

=

(
− d

dt

∫ μ(t)

0
F2 (s) ds

) 1
2

= F (μ (t))
(−μ ′ (t)

) 1
2 ,

(25)(
− d

dt

∫
|u|>t

b2(x)ϕ(x) dx

) 1
2

=

(
− d

dt

∫ μ(t)

0
B2 (s) ds

) 1
2

= B (μ (t))
(−μ ′ (t)

) 1
2 ,

(26)
and(

− d
dt

∫
|u|>t

d2(x)ϕ(x) dx

) 1
2

=

(
− d

dt

∫ μ(t)

0
D2 (s) ds

) 1
2

= D (μ (t))
(−μ ′ (t)

) 1
2 ,

(27)
where F, B and D are functions such that F2 =

(
f̃ 2
)

u
, B2 =

(
b̃2
)

u
and D2 =

(
d̃2
)

u
.
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Applying (24), Hölder inequality, (5), (25), (26), and (27) it follows

(
− d

dt

∫
|u|>t

|∇u|2 ϕ(x) dx

) 1
2

� (2π)
1
2 exp

(
Φ−1 (μ (t))2

2

)(−μ ′(t)
) 1

2 ×

×
∫ +∞

t

(
− d

ds

∫
|u|>s

|∇u|2 ϕ(x) dx

) 1
2

B (μ (s))
(−μ ′ (s)

) 1
2 ds

+ tD (μ (t))
(−μ ′ (t)

) 1
2 + F (μ (t))

(−μ ′ (t)
) 1

2

+ (2π)
1
2 exp

(
Φ−1 (μ (t))2

2

)(−μ ′(t)
) 1

2

∫ μ(t)

0
g�(s)ds.

(3.9)

Now we want use Gronwall lemma with

φ(t) = exp

(
−Φ−1 (μ (t))2

2

)(−μ ′(t)
)− 1

2

(
− d

dt

∫
|u|>t

|∇u|2 ϕ(x) dx

) 1
2

.

We remark that the condition (19) holds if ‖b‖
L∞(log L)−

1
2 (ϕ,Ω)

is small enough or

b ∈ L∞,a(log L)−
1
2 (ϕ,Ω) with 2 < a < ∞. For comfort of the reader we bring back

the details in Appendix.
Applying Gronwall lemma, by (3.9) we have

φ(t) � (tD (μ (t)) + F (μ (t))) exp

(
−Φ−1 (μ (t))2

2

)
+ (2π)

1
2

∫ μ(t)

0
g�(s)ds

+ (2π)
1
2

∫ +∞

t
exp

[∫ s

t
(2π)

1
2 B (μ (r)) exp

(
Φ−1 (μ (r))2

2

)(−μ ′ (r)
)
dr

]
×

× [
(sD (μ (s)) + F (μ (s))) B (μ (s))

(−μ ′ (s)
)

+ (2π)
1
2
(−μ ′ (s)

)
B (μ (s)) exp

(
Φ−1 (μ (s))2

2

)∫ μ(s)

0
g�(z)dz

]
ds,

(3.10)
hence setting μ (r) = τ and μ (s) = σ we get

φ(t) � (tD (μ (t)) + F (μ (t))) exp

(
−Φ−1 (μ (t))2

2

)
+ (2π)

1
2

∫ μ(t)

0
g�(s)ds

+ (2π)
1
2

∫ μ(t)

0
exp

[∫ μ(t)

σ
(2π)

1
2 B (τ) exp

(
Φ−1 (τ)2

2

)
dτ

]
×

×
[
u�(σ)D (σ) B(σ)+F (σ) B(σ)+ (2π)

1
2 exp

(
Φ−1 (σ)2

2

)
B(σ)

∫ σ

0
g�(z)dz

]
dσ.
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Using (24) we have

(−μ ′ (t)
)−1 � (2π)

1
2 (tD (μ (t)) + F (μ (t))) exp

(
Φ−1 (μ (t))2

2

)

+ (2π) exp
(
Φ−1 (μ (t))2

)∫ μ(t)

0
g�(s)ds

+ (2π) exp
(
Φ−1 (μ (t))2

)∫ μ(t)

0
exp

[∫ μ(t)

σ
(2π)

1
2 B (τ) exp

(
Φ−1 (τ)2

2

)
dτ

]
×

×
[
u�(σ)D (σ) B (σ)+F (σ) B (σ)+ (2π)

1
2 exp

(
Φ−1 (σ)2

2

)
B(σ)

∫ σ

0
g�(z)dz

]
dσ.

Consequently, setting μ (t) = s and integrating by part we get

− (
u�(s)

)′ � (2π) exp
(
Φ−1 (s)2

)
×

×
∫ s

0
exp

[∫ s

σ
(2π)

1
2 B (τ) exp

(
Φ−1 (τ)2

2

)
dτ

]
g�(σ)dσ

+ (2π) exp
(
Φ−1 (s)2

)∫ s

0

[
u�(σ)D (σ) B (σ) + F (σ) B (σ)

]×
× exp

[∫ s

σ
(2π)

1
2 B (τ) exp

(
Φ−1 (τ)2

2

)
dτ

]
dσ

+ (2π)
1
2 exp

(
Φ−1 (s)2

2

)[
u�(s)D (s) + F (s)

]
.

(3.11)

If w(x) = w�(x) is solution of (1.3) we obtain

− (
w�(s)

)′
= (2π) exp

(
Φ−1 (s)2

)
×

×
∫ s

0
exp

[∫ s

σ
(2π)

1
2 B (τ) exp

(
Φ−1 (τ)2

2

)
dτ

]
g�(σ)dσ

+ (2π) exp
(
Φ−1 (s)2

)∫ s

0

[
w�(σ)D (σ) B (σ) + F (σ)B (σ)

]×
× exp

[∫ s

σ
(2π)

1
2 B (τ) exp

(
Φ−1 (τ)2

2

)
dτ

]
dσ

+ (2π)
1
2 exp

(
Φ−1 (s)2

2

)[
w�(s)D (s) + F (s)

]
.

(3.12)

indeed (3.12) can be deduced in the same way as (3.11), starting from problem (1.3)
and observing that in this case all the inequalities are equalities.

To prove the comparison (21) we argue as in [2] (see Theorem 2)
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From (3.11) and (3.12) writing

V(s) =
∫ s

0

[(
u�(σ) − w�(σ)

)
D (σ) B (σ)

]×
× exp

[∫ γn(Ω)

σ
(2π)

1
2 B (τ) exp

(
Φ−1 (τ)2

2

)
dτ

]
dσ,

we have⎧⎨⎩ − (
A(s)Q(s)D−1 (s) B−1 (s) V ′(s)

)′ � (2π) exp
(
Φ−1 (s)2

)
Q(s)A(s)V(s)

V(0) = V ′(γn(Ω)) = 0,

(3.13)

where

A(s) = exp

[∫ s

γn(Ω)
(2π)

1
2 exp

(
Φ−1 (σ)2

2

)
D (σ) dσ

]
and

Q(s) = exp

[∫ s

γn(Ω)
(2π)

1
2 exp

(
Φ−1 (σ)2

2

)
B (σ) dσ

]
.

The existence of a solution w�(x) of problem (1.3) and the equality (3.12), guarantees
that the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− (
A(s)Q(s)D−1 (s) B−1 (s) Z′(s)

)′
= (2π) exp

(
Φ−1 (s)2

)
Q(s)A(s)Z(s)

+ (2π)
1
2 exp

(
Φ−1 (s)2

2

)
A(s)F (s) + (2π) exp

(
Φ−1 (s)2

)
A(s)×

×
∫ s

0
exp

[∫ s

σ
(2π)

1
2 B (τ) exp

(
Φ−1 (τ)2

2

)
dτ

]
g�(σ)dσ

+ (2π) exp
(
Φ−1 (s)2

)
A(s)×

×
∫ s

0
F (σ) B (σ) exp

[∫ s

σ
(2π)

1
2 B (τ) exp

(
Φ−1 (τ)2

2

)
dτ

]
dσ

Z(0) = Z′(γn(Ω)) = 0

have the following positive solution

Z(s) =
∫ s

0
w�(σ)D (σ) B (σ) exp

[∫ γn(Ω)

σ
(2π)

1
2 B (τ) exp

(
Φ−1 (τ)2

2

)
dτ

]
dσ.

This allow us to state (see [6]) that the problem⎧⎨⎩ − (
A(s)Q(s)D−1 (s) B−1 (s)Ψ′(s)

)′
= λ (2π) exp

(
Φ−1 (s)2

)
A(s)Q(s)Ψ(s)

Ψ(0) = Ψ′(γn(Ω)) = 0,
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has the first eigenvalue λ1 > 1, and consequently (see again [6]) in (3.13) we have
V(s) � 0 and V ′(s) � 0, i.e. (21). �

In the next two Corollaries we examine separately the cases bi(x) ≡ 0 i = 1, .., n
and di(x) ≡ 0 i = 1, .., n. As a matter of the fact, under this assumptions, comparison
(21) can be easily proved and the solution w(x) of problem (1.3) can been written
giving an explicit estimate of u�(x1). Moreover an estimate of the norm of |∇u| can
be proven.

COROLLARY 3.2. Under the assumptions of Theorem 3.1 , if di(x) ≡ 0 i =
1, ..., n then comparison (21) holds with

w (x1) =
∫ x1

λ
exp

(
τ2

2

)∫ +∞

τ
g� (σ) exp

(∫ σ

τ
B(Φ(r))dr − σ2

2

)
dσ dτ

+
∫ x1

λ
F (Φ (τ)) dτ

+
∫ x1

λ
exp

(
τ2

2

)∫ +∞

τ
F (Φ (σ)) B (Φ (σ)) exp

(∫ σ

τ
B(Φ(r))dr − σ2

2

)
dσ dτ.

(3.14)

Moreover ∫
Ω
|∇u|q ϕ(x)dx �

∫
Ω�

|∇w|q ϕ(x)dx for all 0 < q � 2 (34)

holds.

Proof. Let us observe that in this case, di(x) ≡ 0 i = 1, ..., n , (21) can be obtained
by (3.11) and (3.12).

We prove (34). Using Hölder inequality and (3.10) we have

− d
dt

∫
|u|>t

|∇u|q ϕ(x)dx �
(−μ ′ (t)

)1− q
2

{
F (μ (t)) + (2π)

1
2 exp

(
Φ−1 (μ (t))2

2

)
×

×
(∫ μ(t)

0
g�(s)ds

)
+ (2π)

1
2 exp

(
Φ−1 (μ (t))2

2

)
×

×
∫ ∞

t

(
F (μ (τ)) + (2π)

1
2 ×

× exp

(
Φ−1 (μ (τ))2

2

)∫ μ(τ)

0
g�(s)ds

)
B (μ (τ))

(−μ ′ (τ)
)×

× exp

[
(2π)

1
2

∫ τ

t
B (μ (r)) exp

(
Φ−1 (μ(r))2

2

)(−μ ′ (r)
)
dr

]
dτ

}q

.
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Integrating between 0 and +∞ the last inequality becomes∫
Ω
|∇u|q ϕ(x)dx �

γn(Ω)∫
0

{
F (s) + (2π)

1
2 exp

(
Φ−1 (s)2

2

)
×

×
(∫ s

0
g�(τ)dτ

)
+ (2π)

1
2 exp

(
Φ−1 (s)2

2

)
×

×
∫ s

0

(
F (τ) + (2π)

1
2 exp

(
Φ−1 (τ)2

2

)∫ τ

0
g�(σ)dσ

)
×

×B(τ) exp

[
(2π)

1
2

∫ s

τ
B(σ) exp

(
Φ−1 (σ)2

2

)
dσ

]
dτ

}q

ds,

and integrating by parts (34) follows. �
The next Corollary examine the case bi(x) ≡ 0 i = 1, ..., n . The condition on

di(x) , i = 1, ..., n , are needed to write explicitly the solution w(x) of problem (1.3).

COROLLARY 3.3. Under the assumptions of Theorem 3.1 , if bi(x) ≡ 0 i = 1, ...n ,
and either ‖d‖

L∞(log L)−
1
2 (ϕ,Ω)

is small enough or d ∈ L∞,a(logL)−
1
2 (ϕ,Ω) with

2 < a < ∞ , then comparison (21) holds with

w(x1) =
∫ x1

λ
F (Φ (s)) exp

(∫ x1

s
D (Φ (r)) dr

)
ds

+
∫ x1

λ
(2π)

1
2 exp

(∫ x1

s
D (Φ (r)) dr +

s2

2

)∫ +∞

s
g�(z) exp

(
− z2

2

)
dzds.

(3.16)

Moreover ∫
Ω
|∇u|q ϕ(x)dx �

∫
Ω�

|∇w|q ϕ(x)dx for all 0 < q � 2 (36)

holds.

Proof. By (3.11) integrating between s and γn(Ω) , it follows that

u�(s) �
∫ γn(Ω)

s
(2π)

1
2 exp

(
Φ−1 (τ)2

2

)(
u�(τ)D (τ) + F (τ)

)
dτ

+
∫ γn(Ω)

s
(2π) exp

(
Φ−1 (τ)2

)∫ τ

0
g�(z)dzdτ.

We want to apply Gronwall lemma with φ(s) = u�(s). Condition (19) can be verified
arguing as in Lemma 5.1 in the Appendix. Integrating by parts we get

u�(s) �
∫ γn(Ω)

s

(
F(r) + (2π)

1
2 exp

(
Φ−1 (r)2

2

)∫ r

0
g�(z)dz

)
×

× (2π)
1
2 exp

(
Φ−1 (r)2

2

)
exp

(∫ r

s
(2π)

1
2 exp

(
Φ−1 (σ)2

2

)
D (σ) dσ

)
dr.
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Now putting s = Φ(x1) we have (21).
Using (3.9) with B(t) ≡ 0 we have

− d
dt

∫
|u|>t

|∇u|q ϕ(x) dx �
(−μ ′(t)

) {tD (μ (t)) + F (μ (t))

+ (2π)
1
2 exp

(
Φ−1 (μ (t))2

2

)∫ μ(t)

0
g�(s)ds

}q

.

Integrating between 0 and +∞ the last inequality becomes∫
Ω
|∇u|q ϕ(x) dx �

∫ +∞

λ

{
u�(x)D (Φ(x)) + F(Φ(x))

+ (2π)
1
2 exp

(
x2

2

)∫ +∞

x
g�(r) exp

(
− r2

2

)
dr

}q

ϕ(x)dx.

Using (21) we have (36).

4. Regularity results

In this section we study how the summability of the solution u of problem (1.1)
improves by improving the summability of the data in the Lorentz-Zygmund spaces.
First of all we prove an apriori estimate for the norm of u in H1

0(ϕ,Ω) that gives also
a sufficient condition for the existence in terms of the summability of the data.

PROPOSITION 4.1. Let u ∈ H1
0(ϕ,Ω) be a solution of problem (1.1) under the as-

sumptions (i)− (vii) . If ‖b‖
L∞(log L)−

1
2 (ϕ,Ω)

and ‖d‖
L∞(log L)−

1
2 (ϕ,Ω)

are small enough,

the inequality

‖∇u‖L2(ϕ,Ω) � C1 ‖g‖
L2(log L)−

1
2 (ϕ,Ω)

+ C2 ‖f ‖L2(ϕ,Ω) , (37)

holds for some positive constants C1, C2 depending only on γn (Ω) , ‖b‖ and ‖d‖ .
We can avoid the assumption on smallness of one of two norms ‖b‖ or ‖d‖ taking

it in the smaller space L∞,a(logL)−
1
2 (ϕ,Ω) with 2 < a < ∞.

Proof. We can apply Gronwall lemma to (3.9) when ‖b‖
L∞(log L)−

1
2 (ϕ,Ω)

is small

enough or b ∈ L∞,a(logL)−
1
2 (ϕ,Ω) with 2 < a < ∞. Condition (19) can be verified

arguing as in Lemma 5.1 in the Appendix.
We have(
− d

dt

∫
|u|>t

|∇u|2 ϕ(x) dx

) 1
2

� (2π)
1
2 exp

(
Φ−1 (μ (t))2

2

)(−μ ′(t)
) 1

2

∫ +∞

t

(
sD (μ (s)) + F (μ (s))

+ (2π)
1
2 exp

(
Φ−1 (μ (s))2

2

)∫ μ(s)

0
g�(z)dz

)
B (μ (s))

(−μ ′ (s)
)×
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× exp

[∫ s

t
(2π)

1
2 exp

(
Φ−1 (μ (r))2

2

)
B (μ (r))

(−μ ′ (r)
)
dr

]
ds

+ tD (μ (t))
(−μ ′ (t)

) 1
2 + F (μ (t))

(−μ ′ (t)
) 1

2

+ (2π)
1
2 exp

(
Φ−1 (μ (t))2

2

)(−μ ′(t)
) 1

2

∫ μ(t)

0
g�(z)dz.

Raising to the power 2, integrating between 0 and +∞ , making a variable change
we get∫

Ω
|∇u|2 ϕ(x) dx � C

∫ γn(Ω)

0
exp

(
Φ−1 (t)2

) [(∫ t

0

(
u�(s)D(s) + F (s)

)
B(s)×

× exp

[∫ t

s
(2π)

1
2 exp

(
Φ−1 (r)2

2

)
B (r) dr

]
ds

)2

+ C

(∫ t

0
B(s) exp

(
Φ−1 (s)2

2

)∫ s

0
g�(z)dz×

× exp

[∫ t

s
(2π)

1
2 exp

(
Φ−1 (r)2

2

)
B (r) dr

]
ds

)2
⎤⎦ dt

+ C
∫ γn(Ω)

0
u�2(t)D2 (t) dt + C

∫ γn(Ω)

0
F2 (t) dt

+ C
∫ γn(Ω)

0
exp

(
Φ−1 (t)2

)(∫ t

0
g�(z)dz

)2

dt.

We observe that if b ∈ L∞(logL)−
1
2 (ϕ,Ω) and ‖b‖

L∞(log L)−
1
2 (ϕ,Ω)

is sufficiently

small, integrating by parts and using Proposition 2.5 we have∫ t

s

B (r)

r (1 − log r)
1
2

dr � C ‖B‖
L∞(log L)−

1
2 (Ω�)

+ C
∫ t

s

∫ r
0 B (τ) dτ

r2 (1 − log r)
1
2

dr

� C ‖b‖
L∞(log L)−

1
2 (ϕ,Ω)

+ ‖b‖
L∞(log L)−

1
2 (ϕ,Ω)

log
( t

s

)
,

(4.2)

for some positive constant C .
If b ∈ L∞,a(logL)−

1
2 (ϕ,Ω) , 2 < a < ∞ , Hölder’s and Young’s inequalities give∫ t

s

B (r)

r (1 − log r)
1
2

dr � C(ε)
∫ t−s

0

(
B∗ (r)

(1 − log r)
1
2

)a
dr
r

+ ε
∫ t

s

1
r
dr

� C(ε) ‖b‖a

L∞,a(log L)−
1
2 (ϕ,Ω)

+ ε log
( t

s

)
,

(4.3)

where ε can be arbitrary small and C(ε) is a suitable constant depending on ε .
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Then using (4.2) or (4.3) we get

∫
Ω
|∇u|2 ϕ(x) dx � C

∫ γn(Ω)

0
exp

(
Φ−1 (t)2

)[(∫ t

0

(
u�(s)D(s)+F(s)

)
B(s)

( t
s

)β
ds

)2

+

(∫ t

0
exp

(
Φ−1 (s)2

2

)
B(s)

( t
s

)β ∫ s

0
g�(z)dzds

)2
⎤⎦ dt

+ C
∫ γn(Ω)

0
u�2(t)D2 (t) dt

+ C
∫ γn(Ω)

0
F2 (t) dt + C

∫ γn(Ω)

0
exp

(
Φ−1 (t)2

)(∫ t

0
g�(z)dz

)2

dt.

where β = C ‖b‖
L∞(log L)−

1
2 (ϕ,Ω)

if we use (4.2) and β = Cε if we use (4.3).

Here and in what follows C will be a positive constant, depending only on γn(Ω)
and ‖b‖ , which may vary from line to line .

Using (4), (5) we can apply (8) if β is sufficiently small obtaining

∫
Ω
|∇u|2 ϕ(x) dx � C

∫ γn(Ω)

0

1
(1 − log t)

(
u�(t)D∗(t)B∗(t)

)2
dt

+ C
∫ γn(Ω)

0

1
(1 − log t)

(B∗(t)F∗ (t))2 dt

+ C
∫ γn(Ω)

0

1
(1 − log t)

(
B∗(t)

1

(1 − log t)
1
2

g��(t)

)2

dt

+ C
∫ γn(Ω)

0
u�2(t)D∗2 (t) dt + C

∫ γn(Ω)

0
F∗2 (t) dt

+ C
∫ γn(Ω)

0

1
t2(1 − log t)

(∫ t

0
g�(z)dz

)2

dt.

and then by (17) we have

‖∇u‖2
L2(ϕ,Ω) � C ‖d‖2

L∞(log L)−
1
2 (ϕ,Ω)

(
1+ ‖b‖2

L∞(log L)−
1
2 (ϕ,Ω)

)
‖∇u‖2

L2(ϕ,Ω)

+ C
(
1+ ‖b‖2

L∞(log L)−
1
2 (ϕ,Ω)

)(
‖f ‖2

L2(ϕ,Ω) + ‖g‖2

L2(log L)−
1
2 (ϕ,Ω)

)
.

(4.4)

Then we have proved (37) if ‖d‖
L∞(log L)−

1
2 (ϕ,Ω)

and ‖b‖
L∞(log L)−

1
2 (ϕ,Ω)

are small

enough or ‖d‖
L∞(log L)−

1
2 (ϕ,Ω)

is small enough and b ∈ L∞,a(logL)−
1
2 (ϕ,Ω). We

observe that in this last case (4.4) can be obtained with ‖d‖
L∞,a(log L)−

1
2 (ϕ,Ω)

.
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Toprove (37)without smallness assumption on ‖d‖ weassume d ∈ L∞,a(log L)−
1
2 (ϕ,Ω)

and we argue as in the Theorem 3.1. As a matter of the fact instead of (3.3) we have

− d
dt

∫
|u|>t

|∇u|2 ϕ(x) dx �
∫
|u|>t

|b(x)| |∇u|ϕ (x) dx +

(
− d

dt

∫
|u|>t

|∇u|2 ϕ(x) dx

) 1
2

×

× t

(
− d

ds

∫
|u|>t

d2(x)ϕ (x) dx

) 1
2

+

(
− d

dt

∫
|u|>t

f 2ϕ(x) dx

) 1
2

×

×
(
− d

dt

∫
|u|>t

|∇u|2 ϕ(x) dx

) 1
2

+
∫
|u|>t

g(x)ϕ(x) sign u dx.

Applying (24), Hölder inequality, (5), (25) and (27) we get(
− d

dt

∫
|u|>t

|∇u|2 ϕ(x) dx

) 1
2

� (2π)
1
2 exp

(
Φ−1 (μ (t))2

2

)(−μ ′(t)
) 1

2

∫
|u|>t

|b(x)| |∇u|ϕ (x) dx

+ tD (μ (t))
(−μ ′ (t)

) 1
2 + F (μ (t))

(−μ ′ (t)
) 1

2

+ (2π)
1
2 exp

(
Φ−1 (μ (t))2

2

)(−μ ′(t)
) 1

2

∫ μ(t)

0
g�(s)ds.

(4.5)

Hence

− d
dt

∫
|u|>t

|∇u|2 ϕ(x) dx

�
{

(2π)
1
2 exp

(
Φ−1 (μ (t))2

2

)(−μ ′(t)
) 1

2

∫
|u|>t

|b(x)| |∇u|ϕ (x) dx

+ tD (μ (t))
(−μ ′ (t)

) 1
2 + F (μ (t))

(−μ ′ (t)
) 1

2

+ (2π)
1
2 exp

(
Φ−1 (μ (t))2

2

)(−μ ′(t)
) 1

2

∫ μ(t)

0
g�(s)ds

}2

.

Integrating between 0 and +∞ , by a variable change we have∫
Ω
|∇u|2 ϕ(x) dx � C

∫ γn(Ω)

0
exp

(
Φ−1 (s)2

)(∫
|u|>u� (s)

|b(x)| |∇u|ϕ (x) dx

)2

ds

+ C
∫ γn(Ω)

0
u�2(s)D2 (s) ds +

∫ γn(Ω)

0
F2 (s) ds+

+ C
∫ γn(Ω)

0
exp

(
Φ−1 (s)2

)(∫ s

0
g�(z)dz

)2

ds.

(4.6)
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Now we evaluate the first integral. Putting h(x) = |b(x)| |∇u| and using (4), (5)
and Proposition 2.5, we obtain

∫ γn(Ω)

0
exp

(
Φ−1 (s)2

)(∫
|u|>u� (s)

|b(x)| |∇u|ϕ (x) dx

)2

ds

� C
∫ γn(Ω)

0

1
s2(1 − log s)

(∫ s

0
h̃�

u (t)dt

)2

ds �
∥∥∥h̃u

∥∥∥2

L2(log L)−
1
2 (0,γn(Ω))

� C ‖h‖2

L2(log L)−
1
2 (ϕ,Ω)

� C ‖b‖2

L∞(log L)−
1
2 (ϕ,Ω)

‖∇u‖2
L2(ϕ,Ω) .

(4.7)

Using (4.7) and (4), Hölder inequality and Proposition 2.5 the inequality (4.6)
becomes

‖∇u‖2
L2(ϕ,Ω) � C

{
‖b‖2

L∞(log L)−
1
2 (ϕ,Ω)

‖∇u‖2
L2(ϕ,Ω)

+ ‖d‖2

L∞,a(log L)−
1
2 (ϕ,Ω)

‖u‖2

L2(log L)
1
2 (ϕ,Ω)

+ ‖f ‖2
L2(ϕ,Ω) + ‖g‖2

L2(log L)−
1
2 (ϕ,Ω)

}
.

(4.8)

Now we want to evaluate ‖u‖
L2(log L)

1
2 (ϕ,Ω)

. We will prove that

‖u‖
L2(log L)

1
2 (ϕ,Ω)

� C ‖f ‖L2(ϕ,Ω) + C ‖g‖
L2(log L)−

1
2 (ϕ,Ω)

+ C ‖b‖
L∞(log L)−

1
2 (ϕ,Ω)

‖∇u‖L2(ϕ,Ω) ,
(4.9)

and, putting (4.9) in (4.8), we obtain

‖∇u‖2
L2(ϕ,Ω) � C ‖b‖2

L∞(log L)−
1
2 (ϕ,Ω)

(
1 + ‖d‖2

L∞,a(log L)−
1
2 (ϕ,Ω)

)
‖∇u‖2

L2(ϕ,Ω)

+ C
(
1 + ‖d‖2

L∞,a(log L)−
1
2 (ϕ,Ω)

)(
‖f ‖2

L2(ϕ,Ω) + ‖g‖2

L2(log L)−
1
2 (ϕ,Ω)

)
.

(4.10)

The inequality (4.10) implies the assertion (37) if ‖b‖
L∞(log L)−

1
2 (ϕ,Ω)

is suffi-

ciently small.
Now we prove (4.9). By (4.5) and using (24) we have

1
(−μ ′(t))

� C

{
(2π) exp

(
Φ−1 (μ (t))2

)
×
∫
|u|>t

|b(x)| |∇u|ϕ (x) dx

+ (2π)
1
2 exp

(
Φ−1 (μ (t))2

2

)
[tD (μ (t)) + F (μ (t))]

+ (2π) exp
(
Φ−1 (μ (t))2

) ∫ μ(t)

0
g�(s)ds

}
.
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Putting μ (t) = s and integrating between s and γn(Ω) we obtain

u�(s) � C
∫ γn(Ω)

s
(2π) exp

(
Φ−1 (z)2

)(∫
|u|>u� (z)

|b(x)| |∇u|ϕ (x) dx+
∫ z

0
g�(r)dr

)
dz

+
∫ γn(Ω)

s
(2π)

1
2 exp

(
Φ−1 (z)2

2

)(
u�(z)D (z) + F (z)

)
dz.

We want to apply Gronwall lemma with φ(s) = u�(s). Condition (19) can be
verified arguing as in Lemma 5.1 in the Appendix. Integrating by parts we have

u�(s) � C
∫ γn(Ω)

s

(
exp

(
Φ−1 (z)2

2

)
F (z) + exp

(
Φ−1 (z)2

)
×

×
(∫

|u|>u� (z)
|b(x)| |∇u|ϕ (x) dx +

∫ z

0
g�(r)dr

))
×

× exp

(∫ z

s
exp

(
Φ−1 (τ)2

2

)
D (τ) dτ

)
dz.

(4.11)

Using (4.3) with D replaced by B we get

exp

(∫ z

s
exp

(
Φ−1 (τ)2

2

)
D (τ) dτ

)
� C1

( z
s

)Cε
,

where C1 is a constant depending on ‖d‖ . In (4.11) for a suitable ε we can use (9)
and by (4.7) we obtain (4.9). �

Now we study the summability of the solution u in the Lorentz-Zygmund space
We first observe that under the assumption of Proposition 4.1 if g ∈ L2(logL)−

1
2 (ϕ,Ω)

and f ∈ L2(ϕ,Ω) , then problem (1.1 ) has a solution u ∈ H1
0 (ϕ,Ω) . Moreover by

Gross inequality we have that the solution u ∈ L2(logL)
1
2 .

We will use estimates obtained in Corollaries 3.2 and 3.3 considering di(x) ≡ 0
or bi(x) ≡ 0. In each case, for the convenient of the reader we will examine separately
f i(x) ≡ 0, i = 1, ..., n or g(x) ≡ 0.

THEOREM 4.1. Under the assumptions of Corollary 3.2 , when f i(x) ≡ 0, i =
1, ..., n and g ∈ Lp,q(logL)α(ϕ,Ω) , the following results hold:

(a) if

p = 2 and either 1 � q � 2 and α � −1
2

or 2 < q � ∞ and α > −1
q

or
2 < p < ∞, 1 � q � ∞ and −∞ < α < +∞,

then u ∈ Lp,q(logL)α+1(ϕ,Ω) . Besides

‖u‖Lp,q(log L)α+1(ϕ,Ω) � C1 ‖g‖Lp,q(log L)α (ϕ,Ω) ; (48)
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(b) if

p = ∞, 1 � q � ∞,−∞ < α < +∞ and α +
1
q

< 0,

then u ∈ L∞,q(logL)α(ϕ,Ω) . Besides

‖u‖L∞,q(log L)α (ϕ,Ω) � C2 ‖g‖L∞,q(log L)α (ϕ,Ω) . (49)

The constants C1, C2 depend on p, q,α, γn (Ω) and ‖b‖
L∞,a(log L)−

1
2 (ϕ,Ω)

.

Proof. If w ∈ H1
0(ϕ,Ω�) is the weak solution of problem (1.3) with f i ≡ 0, i =

1, ..., n by (4) and (4.2) or (4.3) we have

w(t) � C
∫ γn(Ω)

t

1
σ2(1 − logσ)

∫ σ

0

(σ
s

)β
g�(s)ds dσ,

where β = C ‖b‖
L∞(log L)−

1
2 (ϕ,Ω)

if we use (4.2) and β = Cε if we use (4.3). Here

and in what follows C will be a positive constant, depending only on γn(Ω) and ‖b‖ ,
which may vary from line to line . We prove result (a) when 1 � q < ∞. By definition
(2.13), (9) and (8) with 1

p − 1 + β < 0 , we have

||w||qp,q;α+1

� C
∫ γn(Ω)

0

(
t

1
p (1 − log t)α+1

∫ γn(Ω)

t

σβ

σ2(1 − logσ)

∫ σ

0

(
1
s

)β

g�(s)ds dσ

)q
dt
t

� C
∫ γn(Ω)

0

(
t

1
p−1+β (1 − log t)α

∫ t

0

(
1
s

)β

g�(s)ds

)q
dt
t

� C
∫ γn(Ω)

0

(
t

1
p (1 − log t)αg�(t)

)q dt
t

= C||g||qp,q;α .

The last inequality and (21) prove (48).
When q = ∞ the inequality (48) follows by the same method as before with (9)

replaced by (11). The same proof still goes in the case (b) if we replace (9) by (13)
when 1 � q < ∞ and by (15) when q = ∞ . �

THEOREM 4.2. Under the assumptions of Corollary 3.2 , when g(x) ≡ 0 and
f i ∈ Lp,q(logL)α (ϕ,Ω) , i = 1, ....n , the following results hold:

(a) if
2 < p < ∞, 2 � q � ∞ and −∞ < α < +∞,

then u ∈ Lp,q (logL)α+ 1
2 (ϕ,Ω) .Besides

‖u‖
Lp,q(log L)α+ 1

2 (ϕ,Ω)
� C1 ‖f ‖Lp,q(log L)α (ϕ,Ω) ; (50)

(b) if

p = ∞, 1 � q < ∞,−∞ < α < +∞ and α +
1
q

< 0
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or
p = ∞, q = ∞, and α � 0,

then u ∈ L∞,q(logL)α−
1
2 (ϕ,Ω) . Besides

‖u‖
L∞,q(log L)α−

1
2 (ϕ,Ω)

� C2 ‖f ‖L∞,q(log L)α (ϕ,Ω) . (51)

The constants C1, C2 depends on p, q,α, γn (Ω) and ‖b‖
L∞,a(log L)−

1
2 (ϕ,Ω)

.

Proof. Using (4) we have

w�(t) � w1(t) + w2(t),

where

w1(t) = (2π)
1
2

∫ γn(Ω)

t

F (σ)

σ(1 − logσ)
1
2

dσ (52)

and

w2(t) = (2π)
∫ γn(Ω)

t

1
σ2(1 − logσ)

×

×
∫ σ

0
exp

[
(2π)

1
2

∫ σ

r

B(r)
σ(1 − logσ)

1
2

dτ

]
B(r)F (r) dr dσ.

(4.17)

Case (a) with 2 � q < ∞ . In what follows C will be a positive constant. Let us
observe that integrating by parts, using Hardy-Littlewood inequality (5) we get:

w1(t) � C
||F||L1(Ω�)

γn(Ω) (1 − log γn(Ω))
1
2

+ C
∫ γn(Ω)

t

∫ σ
0 F∗ (s) ds

σ2 (1 − logσ)
1
2

dσ (54)

Using (54), (9) and Proposition 2.5 we have

‖w1‖
Lp,q(log L)α+ 1

2 (ϕ,Ω)
� C||F||

L1(Ω� )

(∫ γn(Ω)

0
t

q
p (1 − log t)(α+ 1

2 )q dt
t

) 1
q

+C

(∫ γn(Ω)

0
t

q
p (1 − log t)(α+ 1

2 )q

(∫ γn(Ω)

t

∫ σ
0 F∗ (s) ds

σ2 (1 − logσ)
1
2

dσ

)q
dt
t

) 1
q

� C ‖F‖Lp,q(log L)α (Ω�) � C ‖f ‖p,q;α .

(4.19)

To evaluate the norm of w2 in Lp,q (logL)α+ 1
2 (ϕ,Ω) it’s possible to argue as in

Theorem 4.1, obtaining
||w2||p,q;α+ 1

2
� C||f ||p,q;α . (56)

By (4.19) and (56) we obtain (50).
The proof of other cases is analogues and run as before. �
In a similar way it’s possible to prove the following theorems.
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THEOREM 4.3. Under the assumptions of Corollary 3.3 , when f i(x) ≡ 0, i =
1, ..., n and g ∈ Lp,q(logL)α(ϕ,Ω) , the following results hold:

(a) if

p = 2 and either 1 � q � 2 and α � −1
2

or 2 < q � ∞ and α > −1
q

or

2 < p < ∞, 1 � q � ∞ and −∞ < α < +∞,

then u ∈ Lp,q(logL)α+1(ϕ,Ω) . Besides

‖u‖Lp,q(log L)α+1(ϕ,Ω) � C1 ‖g‖Lp,q(log L)α (ϕ,Ω) ;

(b) if

p = ∞, 1 � q � ∞,−∞ < α < +∞ and α +
1
q

< 0,

then u ∈ L∞,q(logL)α(ϕ,Ω) . Besides

‖u‖L∞,q(log L)α (ϕ,Ω) � C2 ‖g‖L∞,q(log L)α (ϕ,Ω) .

The constants C1, C2 depend on p, q,α, γn (Ω) and ‖d‖
L∞,a(log L)−

1
2 (ϕ,Ω)

.

THEOREM 4.4. Under the assumptions of Corollary 3.3 , when g ≡ 0 and f i ∈
Lp,q(logL)α (ϕ,Ω) , i = 1, ..., n , the following results hold:

(a) if

2 < p < ∞, 2 � q � ∞ and −∞ < α < +∞,

then u ∈ Lp,q (logL)α+ 1
2 (ϕ,Ω) . Besides

‖u‖
Lp,q(log L)α+ 1

2 (ϕ,Ω)
� C1 ‖f ‖Lp,q(log L)α (ϕ,Ω) ;

(b) if

p = ∞, 2 � q < ∞,−∞ < α < +∞ and α +
1
q

< 0

or

p = ∞, q = ∞ and α � 0,

then u ∈ L∞,q(logL)α−
1
2 (ϕ,Ω) . Besides

‖u‖
L∞,q(log L)α−

1
2 (ϕ,Ω)

� C2 ‖f ‖L∞,q(log L)α (ϕ,Ω) .

The constants C1, C2 depends on p, q,α, γn (Ω) and ‖d‖
L∞,a(log L)−

1
2 (ϕ,Ω)

.
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REMARK. We remark that even if we improve the summability of the data, we
cannot prove that the solution of problem (1.1) must be bounded as the following
example shows.

Let us consider the problem{ − (wx1ϕ (x))x1
= g�(x1)ϕ (x) in Ω�

w = 0 on ∂Ω�;

we have

w (x) =
∫ γn(Ω)

Φ(x1)
exp(Φ−1(σ)2)

∫ σ

0
g�(t)dt dσ,

and then

‖w‖L∞(Ω) = w� (0) =
∫ γn(Ω)

0
exp(Φ−1(σ)2)

∫ σ

0
g�(t)dt dσ. (57)

Using (4) it is easy to see that (57) is finite only if g ≡ 0.

5. Appendix

In this Appendix we want verify that Gronwall lemma can be applied to (3.9).

LEMMA 5.1. With reference to (3.9) let γ ≡ 1 ,

λ (t) = B (μ (t))
(−μ ′ (t)

)
exp

(
Φ−1(μ (t))2

2

)
(58)

and

φ (t) =

(
− d

dt

∫
|u|>t

|∇u|2 ϕ(x)dx

) 1
2

exp

(
−Φ−1(μ (t))2

2

)(−μ ′ (t)
)− 1

2 . (59)

If either ‖b‖
L∞(log L)−

1
2 (ϕ,Ω)

is small enough or b ∈ L∞,a(logL)−
1
2 (ϕ,Ω) , 2 < a <

∞ , then (19) holds.

Proof. Under position (58) and (59) the condition (19) to verify becomes

lim
k→∞

⎡⎣∫ +∞

k
B (μ (t))

(−μ ′ (t)
) 1

2

(
− d

dt

∫
|u|>t

|∇u|2 ϕ(x)dx

) 1
2

dt

⎤⎦×

× exp

(
(2π)

1
2

∫ k

0
exp

(
Φ−1 (μ (t))2

2

)
B (μ (t))

(−μ ′ (t)
)
dt

)
= 0.

(5.3)
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Using Hölder’s inequality, Hardy’s inequality, (4) and the Proposition 2.5, we have⎡⎣∫ +∞

k
B (μ (t))

(−μ ′ (t)
) 1

2

(
− d

dt

∫
|u|>t

|∇u|2 ϕ(x)dx

) 1
2

dt

⎤⎦×

× exp

(
(2π)

1
2

∫ k

0
exp

(
Φ−1 (μ (t))2

2

)
B (μ (t))

(−μ ′ (t)
)
dt

)

� C1 ‖b‖
L∞(log L)−

1
2 (ϕ,Ω)

(∫ μ(k)

0
(1− log s) ds

) 1
2
(∫

|u|>k
|∇u|2 ϕdx

) 1
2

×

× exp

(
(2π)

1
2 C2

∫ γn(Ω)

μ(k)

B (s)

s (1 − log s)
1
2

ds

)
,

(5.4)

for some positive constants C1 and C2.

Using (4.2) if b ∈ L∞ (logL)−
1
2 (ϕ,Ω) or (4.3) if b ∈ L∞,a (logL)−

1
2 (ϕ,Ω) ,

2 < a < ∞ , condition (5.3) holds.
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