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Abstract. In this paper, we will consider some inequalities for a certain subclass B(A) of
uniformly locally univalent holomorphic functions on the unit disk in terms of the norm of pre-
Schwarzian derivative. We also investigate the relationships between the class B(A) and the

Hardy space.
1. Introduction

Let D denote the open unit disk in the complex plane. The Hardy space .77
(0 < p < o0) consists of all functions holomorphic in D) for which

IF, = tim () < oo,

where

1 2n 1/[7
<% If (re”) ‘p d@) (0<p< )
0

‘r?lagV(Z)\ (p = o0).

Mp(r’f) =

Let f(z) = Y2y @x2" be holomorphicin I and let  be a real number. Flett [5]

(see also [9]) defines the fractional integral of f of order B as IPf(z) = >.°° (n +
1)"Pa,z". If B > 0, then

1 B-1
1Pf(z) = ﬁ/o <log %) f(tz) dt.

The fractional derivative DPf of f of order B > 0 is defined as DPf = I-Pf .

Using the definition of fractional integral I°f Jung et al. [7] proved that if B > 1
and

Re{f'(z)} >0 (zeD),
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then I8 f € 7. Also, the following theorem is one of the extended versions of the
Hardy-Littlewood theorem (cf. [4, Theorem 5.12] ) on fractional integral.

THEOREM A. [Kim [8]] Iff € 47 and f(z) = O(1—|z|) Y with0 <y < 1/p,
then IPf € 71 with q = yp/(y — B) where 0 < B < y.

For a function f holomorphic on D, the Bloch seminorm is given by
If llzz = sup(1 — |z*)If" (2)1,
z€eD

and f is called a Bloch function when ||f || < co.

We will say that a holomorphic function f on the unit disk D is uniformly locally
univalentif f is univalenton each hyperbolic disk D(a, p) = {z € D;|{=%| < tanhp}
with radius p and center a € D for a positive constant p.

The hyperbolic norm of the pre-Schwarzian derivative Ty = f” /f’ of a locally
univalent function f on D is defined by

173 1| = sup(1 — |z*)|T (2)]-
zeD

This quantity can be regarded as the Bloch semi-norm of the function logf’. We
remark that the hyperbolic sup norm |7y || measures the deviation of the function from
similarities. Also, it is known (cf. [15]) that a holomorphic function f on the unit disk
is uniformly locally univalent if and only if the pre-Schwarzian derivative Ty of f is
hyperbolically bounded, i.e., the norm ||7%|| is finite.

Let < denote the class of functions of the form:
f@)=z+) ad,
n=2

which are holomorphic in . Also let . denote the subclass of &/ consisting of
functions which are univalent. In this note, we may assume that a holomorphic function
f on the unit disk is normalized so that £ (0) =0 and f'(0) = 1,1i.e., f € &.

Let B denote the set of normalized uniformly locally univalent functions:

B={f e : |T| < oc}.

The space B has a structure of non-separable complex Banach space under the Hornich
operation ([14]).
For a non-negative real number A we set

B(G)={f € o : 1] <24).

It is known that
1Tl <2 =1 € 2. (1)
In particular, a function in B(1) need not be bounded. See [10] for further information.

The following theorem is significant in connection with univalent function theory.
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THEOREM B. [Becker and Pommerenke [1], [2]] The set . of normalized uni-
valent holomorphic functions on the unit disk is contained in B(3) and contains B(}).
The result is sharp.

Since ||T¢|| is not invariant under Mobius transformations, it is often advantageous
to consider the quantity
1 ) -
Up(@) = 5(1 = [Ty (2) —
because this satisfies the relation Usoy = Uy 0 @0 - 0'/|@’| for o € Aut(D). The
quantity

ord(f) = sup Uy (2)]
zeD

is called the order of function f and extensively investigated by Pommerenke [11]. We
note that

1 1
STl = 1 < ond(f) < 1771+ 1. @)

Finally, we introduce two differential operators defined by Bonk et al. [3] as
follows:
Suppose f is holomorpicin D. Then D;f (j = 1,2) is defined by

Dif (2) = (1= |2P)f"(2),
Dof (2) = (1 = 2I?)’f"(2) — 22(1 — [z*)f"(2)-
These differential operators have the invariant property
IDi(Sof oT)| =|Dif|oT (j=1,2),

where S is any euclidean motion of C and T is any conformal automorphism of D.
We also note that

Il = sup [D1f (2)]
zeD

and

_ Dy (2)
C2Dif(2)

Ur (2) 3)

2. Inequalities and relationships between the class %(A) and the Hardy space

Let A be a non-negative real number. For a function f € %(4), Kim and Sugawa
[10, Theorem 2.3] proved that

(Mi)x <@ < (if:;)l 4)

From this fact, we see that every function in the class B(1) is Bloch. Furthermore,
using (2), (3) and (4), we obtain

THEOREM 2.1. If f € B(1), then

(@) [Ifllz <4,

(i) ord(f) <2,

(ii)) sup.es |Dof (2)] < 16.
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Next we consider relationships between the class B(4) and the Hardy space.

THEOREM C. [Pommerenke [13]] Let B be a constant with 0 < B < 2. Ifa
univalent function f € . satisfies that f(z) = O(1 — |z|)™P as |z| — 1, then the
following holds.

For 0 <p < é,wehavef € JP. For % < p, we have

My(r.f) = O(1 — )P,

Combining Theorem C with [10, Corollary 2.4], we have

THEOREM 2.2. Let f € . and let ||Ty|| = 2A.

If A <1, then f € .

IfA>1,then f € HP forany 0 <p < 1/(A —1).
If A =1, then f € BMOA.

Proof. If f € B(A) for A < 1, from [10, Corollary 2.4] we see that f is
bounded. If A > 1 and f € /(| B(4), Theorem B implies that 1 < A < 3. Since
f(z) = O(1 — |z])'~*, it follows from Theorem C that

fex? (0<p<l/(A-1)).
Finally, if f € B(1), then f is a Bloch function. Since f € ., f € BMOA if and
only if f is Bloch (see [12]). O
Note that > C BMOA C (oo, 7.

REMARK. Most of the above results can be extended to the case of p -valent, more
generally, mean p -valent function with p < oo (see Hayman [6]).

Finally, using Theorem A we have
THEOREM 2.3. Let 1 <A < 1/p. If f € B(A) and f' € F#7, then

Ap
fent  (a=+5—7)
Proof. If f € B(A), then f'(z) = O(1 — |z])™*. Since f' € #7 for | < A <
1/p, it follows from Theorem A that

'@ = [ rOa=r@ent @7 0

REMARK. (1) If f is Bloch and f' € 7 (0 < p < 1), then it is known ([8,
Remark 2.6]) that

fe () # (5)

0<p<oo

So, in particular, (5) holdsif f € B(1) and f' € #7 (0<p<1).
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(2) If f' € P for 0 < p < 1, by the Hardy-Littlewood Theorem, it is well

known that

_ b
fen? (Cl—ﬂ)

In theorem 2.3, using the condition 1 < A < 1/p we get

Ap(L—p)=Ap—Ap* = Ap—p=p(A—1).

Hence we have

1]
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(11]
(12]

[13)
[14]
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