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SOME NEW RETARDED VOLTERRA-FREDHOLM
TYPE INTEGRAL INEQUALITIES WITH POWER
NONLINEAR AND THEIR APPLICATIONS

QING-HUA MA AND JOSIP PECARIC

(communicated by V. Lakshmikantham)

Abstract. Some new explicit bounds on solutions to a class of new nonlinear retarded Volterra-
Fredholm type integral inequalities are established, which can be used as effective tools in the
study of certain integral equations. Applications examples are also indicated.

1. Introduction

In the study of ordinary differential equations and integral equations one often
deal with certain integral inequalities. The Gronwall-Bellman inequality and its various
linear and nonlinear generalizations are crucial in the discussion of in the existence,
uniqueness, continuation, boundedness, oscillation and stability and other qualitative
properties of solutions of differential and integral equations. The literature on such
inequalities and their applications is vast; see [1, 8, 16, 20] and the references given
therein.

To handle ordinary differential and integral equations with retardation, some de-
lay Volterra-type integral inequalities are needed. During the past few years, some
investigators have established some useful and interesting delay Volterra-type integral
inequalities in order to achieve various goals; see [2, 4, 6, 7, 9-14, 22] and the references
cited therein. Recently, in [21], Pachpatte has established the following one useful linear
Volterra-Fredholm type integral inequality with retardation:

THEOREM 1.1. ([21]) Let u(z),f(t) € C(I,R), a(t,s),b(t,s), c(t,s) € C(D,R.),
a(t,s), b(t,s) are nondecreasing in t for each s € I, h(t) € C'(I,1) be nondecreas-
ing with h(t) < t on I,k > 0 be a constant, where 1 = [o,B],Ry = [0,00),
D= {(t,;s) € *: a <s<t< B} and suppose that

h(r) s h(B)
u(t) < k+ /h<a)cz(t, $) |f ()u(s)+ /h(og(s7 o)u(o)do| ds+ /h(m b(t,s)u(s)ds (1.1),
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fortel. If

for t € I, where

for t €1, then

fortel.

When a(t, s)f (s) = a(s), c(t,s) =0, b(t,s) = b(s), and h(t) = ¢ the result in
Theorem will deduce the conclusion appeared in [1].

In this paper, we consider the explicit bounds on some general versions of (1.1)
which the constant k on the right side of (1.1) is replaced by the function I(¢) and
contain some power nonlinear terms respect to the unknown function u(¢) on the both
side of (1.1). Our results can be used as handy and effective tools in the study the
qualitative behavior of the solutions of certain retarded Volterra-Fredholm type integral
equations. For illustrate this, some application examples are given. Our results also
generalize some results in [7].

2. Retarded integral inequalities with power nonlinear

In what follows, R denotes the set of real numbers,R; = [0,+0o0), I = [fy, T];
C'(M, S) denotes the class of all i-times continuously differentiable functions defined
on set M with range in the set S(i = 1,2,---) and C°(M,S) = C(M,S).

Before giving our main results, we need the following important lemma in the
discussion of our proof.

LEMMA 2.1. ([6]) Let a > 0,p > q > 0 and p # 0, then

] 6]
ar —K P a+—Kﬂ
P p

forany K > 0.

THEOREM 2.1. Let u(t), I(t) and f(t) € C(I,R:), a(t,s), b(t,s) and c(t,s)
C(D,R.), a(t,s), b(t,s) and c(t,s) be nondecreasing in t for each s € I, o(t)
CY(1,1) be nondecreasing with o(t) <t on I, where D = {(t,s) € I* : t9 < s < t
T}. If u(t) satisfies

AN M m

o) s

o(T)
a(t, s) [f(s)bﬂ(s)ds—&—/ b(s,T)u"(1)dt ds—l—/ c(t,s)u" (s)ds

uP (1) <1
() < 10)+ / N

ato)
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fortel,where p>q>0,p>r>0,p>n=0,p,q,r and n are constants and

wep [oT)
Ara(r) = "k / c(t,5) exp(Apqr())ds < 1, (2.2)
o

then

ut) < [16) + 2L exp )| 23

fortel andany K; >0 (i =1,2,3), where

(1)
Ao = [ ate
alto

= For=p s
-K,” f(s)+ =K,” / b(s,t)dt| ds, (2.4)
p p ato)

_ o(t) a—p _ a
Al = [ o 409 lf(s) (I%Kl 7 Us) + ’%K{’)

(2.5)
S r—p _ r
+/ b(s,7) (sz” I(1) + uKé’) dt| ds
(X(t()) p p
and
OC(T) n—p _ n
Con(t) = / c(t,5) {Ew I(s) + 2 ”K;’] ds (2.6)
aty) p - p
fortel.

Proof. Define a function v(r) by

a(r) X
v(t) —/ a(t,s) [f(s)uq(s)der/ b(s, T)u’(1)dt

o(T)
ds+/ c(t, s)u" (s)ds, (2.7)
() a(to) a

or
u(t) < (1(0) +v(1)7. (2:8)
By Lemma 2.1 and (2.8), forany K; > 0 (i = 1,2,3), we have

u0) < 10 +v()F < KT 10+ v(0) + T 2K]
(0 < 0 +0)F < 2K 100 +9(0) + LS.

And

K7 (I(t) +v(1)) +”;”K§
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Substituting the last relations into (2.7) we get

a(to) p

o(r) q=p — q
o< [t lf(s) (2627 100 + vion + 2

+ /a ‘mb(s, 7) (ISKZTP (I(t) + v(1)) + 2 ;rK2’£’>dT] ds

n n=p o)
+ -K;” / c(t, s)v(s)ds,
p - a(ty)

(2.9)

where A,q(f) and Cp,(1) are defined as in (2.5) and (2.6) respectively. It is easy to
see that A,,(¢) and C,(f) are nonnegative, continuous and nondecreasing for ¢ € I.

From the assumptions, we observe that ¢'(¢) > 0 for ¢ € I. Fixing T’ € I, then
for 1o <t < T’, from (2.9) we have

a(r)

— q—pr
0 < (1) + (1) + [ all'0)| KT £ (906
(X(t()) p
(2.10)
r r—=p S n n—p OC(T)
+-K," b(s,t)v(t)dt| ds + —K; " / c(T', s)v(s)ds.
p alty) p al(ty)

Define a function w(t),t € [to,T'] by the right hand side of (2.10). Then for
t € [to.T'], w(z) is positive and nondecreasing in 7,

v(t) < w(r), (2.11)
_ . on a“n
w(to) = Apgr(T") + Cou(T") + pK3 /(m) (T, s)v(s)ds (2.12)
and
W) = (T, o) | 26,7 f (@lopta) + 2k [ “ b, r)v(r)dr] o (1)
14 p a(to)
q q=r

r—p a(t)

KT Fla() + 2K,7
p! p 2
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By setting 7 = s in (2.14) and integrating it with respect to s from 7y to 7" we
obtain

fo

T q—p
w(T") < wto) exp (/ a(T’, a(s)) L%Kle(a(S))
(2.15)

r r=p O{(S)
+-K,” / b(a(s), 7)dt| o (s) | ds.
P a(t)

Since 7’ is arbitrary, from (2.15) and (2.12) it has proved that

qa=r

w(t) < wlio) exp ( [ attats) [ZK £ (als))
’ (2.16)

r r=p OC(S)

—F;KzT b(afs), T)dT] a’(s)ds)

a(to)

and

n—, a(T
W(to) = Apgr(1) + Con(1) + —K, a / | >c(t, s)v(s)ds. (2.17)
p afty)
By making the change of variable on the right hand of (2.16) and using v(¢) < w(r)
for t € I we get
V(1) < wlto) exp (Apgr(7)) (2.18)
for ¢+ € I. Substituting (2.18) into (2.17) and combing with condition (2.2), it is easy
to observe that i (1) + Con(t)
par pn
W(to) < W
Now the desired inequality in (2.3) follows by using (2.19) in (2.18) and combing
with (2.8). O

(2.19)

When p =2, g =r =n =1 inTheorem 2.1 we get a Volterra-Fredholm-Ou-Iang
type inequality as follows. About Ou-Iang type inequalities and its generalizations and
applications, one can see [3, 5, 18-20, 24, 25].

COROLLARY 2.2. Ler u(t), f(s), a(t,s), b(t,s), c(t,s) and a(t) are defined as
in Theorem 2.1. If u(t) satisfies

a(t) s a(T)
W (1) < l(t)—s—/ot(m)a(t, s) lf(s)u(s)ds—i— L(f)(s,r)u(r)dr ds+ /O((m)c(t, s)u(s)ds
(2.20)
fort €1 and
Ani() = Sk /am e(t,5) exp(Aary (s))ds < 1 (2.21)
111 — s ) s plAaz11 y .
then B ,
() < 160+ OB o 1) e2)
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fortel andany K; >0 (i =1,2,3), where

1 OC(Z) it it N
A (1) = —/ a(t,s) |K, éf(s) +K, é/ b(s,T)dt| ds, (2.23)
2 Ja(w) a(to)
_ l (X(T) N
bon(t) = & / alt, ) | (5)Li(s) + / b(s, D)o (1)de | ds, (2.24)
2 Jaw) i)
1 (X(T)
Cu(t) = —/ c(t,s)Lz(s)ds (2.25)
2 Ja(w)
and 1 1
Li(t) = Ki_il(t) +Kl§ai = 172"3
fortel.

When p = g = r =n =1 we get an interesting result as following

COROLLARY 2.3. Let u(t), a(t,s), b(t,s) and a(t) are defined as in Theorem
2.1. If u(¢) satisfies

s

aft) a(T)
u(r) <l(t)+/ a(t,s) lf(s)u(s)ds—l—/ b(s, T)u(t)dr ds—&—/a c(t,s)u(s)ds

a(t) a(t) (t0)
(2.26)
fort €1 and
o(T)
Alll(t) = / C(l, S) exp(Am(s))ds <1, (227)
afto)
then _
A (r) + Cu(z
u(t) < 1(t) + A + Cul) exp (Ain (7)) (2.28)
1— Alll(t)
for t € I, where
a(r) s
A (f) = / ats) |F&) + [ bs,v)dr| ds, (2.29)
(X(t()) (X(t())

_ a(t) s
An() = / alt,s) lf(s)l(s)—k / b(s,r)l(r)dr] ds (2.30)

and
o(T)
Cii(t) = / c(t,9)l(s)ds (2.31)

fortel.

REMARK 2.1. (i) When [(r) = k > 0 (k is a constant), the inequality (2.26)
has been studied in Theorem 1.1, but in this special case, under same conditions as in
Theorem 1.1, a new estimate to the solution of (2.26) is established in (2.28), which is
incomparable with the result given in Theorem 1.1.
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(ii) Using the similar procedures of proof of Theorem 2.1, we can get a more
general result as following.

THEOREM 2.4. Let u(t), I(t) and fi(t) € C(I,R;), ai(t,s), bi(t,s) and c;(t,s) €
C(D,Ry), ai(t,s), bi(t,s) and cj(t,s) be nondecreasing in t foreach s € I, o;(t) and
Bi(t) € C'(1,1) be nondecreasing with o4(t), ﬁj( ) <tonl,where D={(t,s) €I*:
o <s<t<T}H i=12- m,j=12 - m(m and m, are some positive
integers ). If u(t) satisfies

mi

1) + Z/ [ s)ufi(s)ds + /j(m bi(s, T)u’i(r)d‘t'] ds

Bi(T)
+ Z/B c;(t, s)u" (s)ds

3 (1)

(2.32)

fortel, wherep>q; 20, p>r>20,p>2n >0, K;; >0, K, >0, K3 >0,
P qi, i, nj, Kij, Koi and K3;(i = 1,2,--- ,my,j=1,2,--- ,my) are constants and
"2 n WP Bi(T)
M= 2Ky / ¢i(t, ) exp(A(s))ds < 1, (2.33)
=1 Bi(t0)
then B :
A(n) + C(r b
u(t) < [l(t) + i)%(t()) exp (A(t))} (2.34)

for t €I and any K > 0, where

mi

Z/

Z/ i(1,8)

ri—p

Kl,” fl()+5K2,." / bi(s,T)dz| ds,  (2.35)
p (10)

— . 4
£ >(’ e Z<s>+ppq’1<;;)

(2.36)
riop ot
+/ bi(s, ) (erz i(r) + =1 ”-) dr| ds
O(i(to) p
and 5
e 5(T oo hr —n Y
=% / ¢i(tys) [ Ly 1(s) + L=k | as (2.37)
=1 Bilto) p p
fortel.

REMARK 2.2. (i) When m; =2, p=q1 =q =1, ai(t,s) = a(s), ax(t,s) =
b(s), fi(r) = fat) = 1, ou(r) =1, bi(t,s) = ba(t,s) = 0, ¢i(t,s) =0, j =
1,2,--- ,my, from Theorem 2.4 we can get Theorem 2.1 given in [7];

(i) When my =2, p>1, gt =q =1, ai(t,s) = a(s), ax(t,s) = b(s),
fit) =f2() =1, ou(r) =1, bi(t,s) = ba(t;5) =0, ¢i(t,5) =0, j=1,2,--+ ,mp,
from Theorem 2.4(let K;; = K> = I(¢) ) we can get Theorem 2.2 given in [7].
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THEOREM 2.5. Let u(t) and I(t) € C(I,R.),a(t,s) and b(t,s) € C(D,Ry),
a(t,s) and b(t,s) be nondecreasing in t for each s € I, a(t) € C'(I,I) be nonde-
creasing with o(t) < t on I, where D = {(t,s) € I* : t9 < s <t < T}. If u(t)
satisfies

b(s, T)u’(r)dr] ds
(2.38)

(t0)

fortel,where p>q>0,p>r=0, p,q and r are constants, N,M € (Ri,RJr)
satisfying

OgN(nx)*N(tay) <M(tvy)(x7y)7 (239)
and
() p—1 1
T (1) = / o(t, )M (s, + —z(s)> exp(Apgr(s))ds < 1, (2.40)
ato) p )4
then 1

() < [16) + 0 exp ()] (2.41)

fort el andany K; >0 (i =1,2), where Apq(t) and f;q,(t) are defined as in (2.4)
and (2.5), respectively, and

_ a(T) —1 1
C, = / N <s, Py —l(s)> ds. (2.42)
a(to) p P

Proof. Define a function v(z) by

o(T)
ds+ [ clasNs,u(s)ds,
a(to)
(2.43)

a(t) a(to)

o) s
(1) :/ a(t,s) [f(s)uq(s)ds +/ b(s,T)u"(1)dt

then

u(r) < (1(6) + 7(e)) 7. (2.44)

and
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Substituting the last relations into(2.43)and using (2.39), it follows that

< [ (m) wolro

(; sz(l(r) + (1) + %KE) dr] ds

(to)
“ (s, Pl Lo v‘(s))> ds — /a l:(:z)v (s, L L lz(s)) ds

—_P
P

Kl

(1(s) + 7(s)) + ’%K?)

S RES

+

+

+

L
.
[
< Apar (4G (1) + /a a(;)(;, 9

a(T) _
+ / c(t, )M (s, Pl lz@)) V(s)ds,
ato) p

_ _ _ (2.45)
where C, is defined in (2.42). Obviously, A,,-(f) and C, are nonnegative, continuous
and nondecreasing for ¢ € I. Taking similar procedure from (2.9) to (2.19) in the proof
of Theorem 2.1 to (2.45), we can get the desired inequality (2.41). O

REMARK 2.3. As Theorem 2.4, using similar arguments in the proof of Theorem
2.5, we can get a more general version of (2.38), but for space-saving, the details are
omitted here.

3. Applications

Consider retarded Volterra-Fredholm integral equations of the form

S

() =1(r) + /1F<t7 s, x(s — h(s)),/ G(s, 7, x(t — h(’L’)))d’L’) ds
o ; o (3.1)
+ / H(t, s, x(s — h(s)))ds

fo

for + € I, where x,l € C(I,R),h € C'(I,I) be nonincreasing with ¢ — h(t) >
to,h(to) = 0,t — h(t) € C'(I,1),W'(t) < 1,F € C(D x R*,R),G,H € C(D x R,R)
and p is a constant. As pointed out in [23], Volterra-Fredholm type integral equations
arises frequently in many applied areas which include engineering, mechanics, potential
theory, electrostatics, etc.

When p = 1, F(t,s,x,y) = MK;(t,5)x7, H(t,s,x) = K (t,8)x", h(t)
(3.1) becomes

07

T

x(t)=f0)+M /t Ki(t,5)x9(s)ds + )Lz/ K (t,s)x"(s)ds, t €1. (3.1)

to fo
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Under some suitable conditions, Yalcinbas [26] used a Taylor expansion approach
method to get the solution of (3.1)¢ which is expressed in the form

N
1
=Y (o)t =), teel

n=0

S

Here, we apply our results to study the boundedness, uniqueness, and continuous
dependence of the solutions of (3.1).

THEOREM 3.1. Assume that the functions F,G and H in (3.1) satisfies the con-
ditions

(2 5,%,3)| < a(t, s)[f (s)]x|* + [y]], (3:2)
|G (2, s,x)| < b(t,s)|x|]" (3.3)

and
|H(t,s,x)| < c(z,8)]x|", (3.4)

where functions a(t,s), b(t,s), c(t,s) and f(t), constants p,q,r and n are as in
Theorem 2.1, and let M* = malx{l/(l — W)} If
1€

T—h(T)
Ar () = l—,Ks” / M*c(t,€ + h(s)) exp(A™(&))dE < 1, (35)

1o

for t € I,where

t—h(r)
AX(f) = / M*a(t, E+h(s))

to

FE +h(s) / M*b(E + h(s), o + h(t ))dcr]dé

(3.6)
_ t—h(r) q—p _ q
A= [ g no)| (467wl 2k )
N (3.7)
+/é M*b(E + h(s), o + h(1)) <£K¥|l(6)| + ’ﬂK'L’> dc] dE
o ’ p’ p
and
T—nh(T) n =r —n &
cio= [ aren g n) B SGIER = PSS

for t,s,Tin I andany K; >0 (i = 1,2,3). If x(¢) is a solution of equation (3.1) on
1, then
— 1
(1) + C (¢ . »
ol < [0+ 4G o i) (3.9
1

fortel.
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Proof. Let x(¢) be a solution of (3.1). Using conditions (3.2)-(3.4) in (3.1) and
making the change of variable, we have

(O < 11(1)] +/ a(t, s) [f(S)X(S — h(s))| + /Sb(svf)IX(T - h(T))IrdT} ds

I 0]

T
—|—/ c(t,s)|x(s — h(s))|"ds

fo

Iy to

t s—h(s)
< )| + /a(t7 s) lf(s)|x(s — h(s))]? + M*b(s, 0 + h(’L’))x(O')rdO'] ds

T—h(T)
+ / M*c(t, & + h(s))|x(E)"dé

1o

t—h(t)
< @) +/ M*a(t, & + h(s)) |f (& + h(s))[x(E)|*

fo

3

+/ M*b(& + h(s), 0+ h(T))|x(G)|’d0'] dé&
4]

(D) (3.10)
s [ Mg HE) g
fo
for 7,5, 7 in I. Now a suitable application of Theorem 2.1 to (3.10) yields the desired
estimate in (3.9). O

THEOREM 3.2. Assume that the functions F,G and H in equation (3.1) satisfy
the conditions

|F(t7s>x>y) - F(I,S,f,y)‘ < a(t7s) (f(s)|xp _fp‘ + ‘y _y|)7 (311)
|G(2,5,x) — G(2,5,%)| < b(t,s)]x —*|, (3.12)
|H(z,s,x,y) — H(t,5,%,5)| < c(t,s)]x" —*| (3.13)
and
T—h(T)
B0 = [ el & ) explas (£))dE < 1.
where

t—h(r) ¢
A;(;):/t M*a(t, & + h(s)) f(§+h(s))+/tM*b(§+h(s),a+h(r))d6 dé&,

Sfunctions a,b,c and f are defined as in Theorem 3.1, p > 0 is a constant, then (3.1)
has at most one positive solution on 1.
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Proof. Let x(r) and X(¢) be two solutions of (3.1) on I, using the conditions
(3.11)—(3.13) to (3.1) we have

(1) =X (1)) </a(t,S)[f(S)\xp(S*h(S))*?(S*h(S))I

fo

+/Sb(s, )" (1 — h(7)) f)_c”(r—h(r))\dr}ds (3.14)

1o

T
+ / c(t,)[| (s — h(s)) — X (s — h(s))|ds

4]

Now making a change of variables on the right side of (3.14) and taking the similar
procedure as in the proof of Theorem 3.1 we have

t—h(r)
(1) = %(1)] < / M*a(t, &+ h(s)) [f (& + ()7 (€) = % (&)

to

+/§M*b(5 + h(s), 0+ h(D) ¥ (0) — ¥ (0)|do|dE  (3.15)

T—h(T)
A A R OISR

0]
where M™ is defined as in Theorem 3.1. A suitable application of Corollary 2.3 to the
function |x”(f) — X’ (¢)| in (3.15) yields that
X() — ¥ (1) <0
fortel.Hence x=Xon /. O

The following theorem investigate the continuous dependence of the solutions of
(3.1) on the functions F,G and H. For this we consider the following variation of

(3.1):
X (1) =1(t) + /tf(t,s,x(s — h(s)), /5 G(s, 7,x(1 — h(’L’)))dT)ds

I to

+ /Tﬁ<t, s, x(s — h(s)))ds

fo

(3.1%)

for t € 1, where F € C(D x R*,R),G,H € C(D x R,R) and p > 0 is a constant.

THEOREM 3.3. Consider (3.1) and (3.1%). If
(@)

|F(17S>X17y1) —F([,S,)Q,yz)‘ < G(I,S)V(S)

Wy = x|+ [yn = yall,
|G(t,5,x1) = G(t,5,x2) < (1, 5)|¥ — x5

X
Xy —

B

and

|H(t7s7x1) - H(t7s7x2)| < C(l, s)|)"11) _x12)|;
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T—h(T)
A5(0) = / (1, & + h(s)) exp(A3 (E))dE < 1

(iv) for all solutions X of (3.1x),

t
/to

F (r, 5. %(s — h(s)), /t G5, o5 (T — h(r)))dr))

_F <t,s,7c(s — h(s)), /SE(S7 7, %(T — h(’L’)))dT)> ds < ;,

to

/tot t,s (/ |G(s, 7,%(7 — h(7)))dt) — G(s,7,X(T — h T)))|dr)>ds<§7

4’

forall s,t €1 and x1,x2,y1,y2 € R,where € > 0 is an arbitrary constant, then

/ |H (t,5,%X(s — h —H(t, s,)_c(sfh(s)))|ds<E

() - T ()] < e (1 + W(&xp (A;(t))> (3.16)
for t €I, where T—h(T)
Cie) = / M*c(t, & + h(s))dE (3.17)

A% (t) and A5 (t) are defined as in Theorem 3.2 for t € I.

Proof. Let x(¢) and X(z) be the solutions of (3.1) and (3.1x), respectively. Then
x() satisfies (3.1) and x(z) satisfies (3.1x). Hence

W () — % ()] < [1(r) = 1()| +/t

F <t, 5,x(s — h(s)), [ Gl 5(r — h(T)))dr))

F (r 5,%(s — h(s)), [ Gl — h(T)))dr)) ds

/ |H (s, x(s — h( H(s,x(s — h(s)))|ds
<y / F(t,5,x(s — h / G(1,%(t — h(7)))dT))
— F(t,5,%(s — h(s)), / G(r,5(t — h(r)))d7))|ds

to
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4 / (1, 5,%(s — h(s)), / G E (T — h(e)dD)
CF(t,s,%(s — h(s)), [ G(r,5(t — h(1)))d7))|ds

+/ |H(t,s,x(s — h(s))) — H(t,s,%(s — h(s)))|ds

/ |H(z,s,%(s — — H(t,s,X(s — h(s)))|ds

+ |G(s, 7,x(t — h(1)))d7) — Gs, 7, %(z — h()))| dr)] ds
e ta(r,s>[ (5)1 (5 — h(s)) = %°(s — h(s))|
/ G(s. 7. x(t — h(1)))d") — G(s, 7. ( — h(1)))]| dT
/ |G(s, 7.X(t — h(7)))dr) — G(s, r,x(r—h(r)))\dr)] ds
+ / el 5) ¥ (s — h(s)) = 3(s — h(s))|ds

<t [ [fOp 1) -6 - n0)

+/ b(s,T)](t—h )_c”(rh(r))dr}ds
T
+/ (2, 8)|x" (s — h(s)) — X (s — h(s))|ds
+/ats (/ |G(s, 7, %(7 — h(7)))dTt) — 5(s,r,7c(rh(r)))|dr)>ds

H/a { )X (s — h(s)) — X (s — h(s))]
+/ b(s — ¥(1 — h(7))|dz|ds

T / () (s~ h(s)) = T (s — h(s))lds

by assumptions (i) - (iv).
By making a change of variable on the right of the last inequality and taking the
similar procedure as in the proofs of Theorem 3.1 we have
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t—h(r)

(1) =X (1) < e +/ M*a(t, & + h(s)) |f (& + h(s)) ¥ (§) = ¥ (S)]

to

+ /é M*b(E + h(s), o + h(1))|¥ (0) — % (0)|do| d&  (3.18)

T—N(T)
+/ M*c(t,& + h(s)) ¥ (§) — ¥(&)|dS

for z,5,7 in 1. Now a suitable application of Corollary 2.3 to (3.18) yields the desired
estimate in (3.16).

As(D) + G ()
1=27(1)

(1) — ¥ ()] < eK

Evidently, if function exp (A;(¢)) is bounded on I, so

for some K > 0 and 7 € I. Hence x” depends continuously on F,G and H. U
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