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Abstract. Let up be the generalized and normalized Bessel function depending on parameters
b , c , p and let λp(x) = up(x2), x ∈ R. In this paper we extend to the function λp some well-
known classical inequalities like Mahajan’s inequality, Mitrinović’s inequality, improvements
of Jordan’s inequality, Redheffer’s inequality, using an adequate integral representation of the
function λp and the monotone form of l’Hospital’s rule. Moreover we prove that the integral

ςp(x) =
∫ x

0
λp(t) dt

is sub-additive (super-additive) under certain conditions on parameters b , c , p .

1. Introduction and preliminaries

The sine and cosine functions are particular cases of normalized Bessel functions,
while the hyperbolic sine and hyperbolic cosine functions are particular cases of nor-
malized modified Bessel functions. Thus it is natural to generalize some formulas and
inequalities involving these elementary functions to normalized Bessel functions and
normalizedmodifiedBessel functions, respectively. Recently, the author extended some
well known inequalities, like Lazarević’s inequality, Turán-type inequality [8], Kober’s
inequality [8] to the function λp, defined bellow. In this paper our aim is to continue
this investigation: we extend some well-known classical inequalities, like Mahajan’s
inequality, Mitrinović’s inequality, Jordan’s inequality, Redheffer’s inequality to the
function λp, using an adequate integral representation of the function λp.

This paper is organized as follows. In this section we give the definition and some
basic facts about the function λp in the question. In section 2 we extend Mahajan’s
inequality using a result of L. Lorch and M. E. Muldoon [16]. On the other hand we
offer the hyperbolic counterpart of Mitrinović’s inequality [18, p. 240]. In section 3 we
use the Redheffer inequality to obtain a new lower bound for the function λp. In section
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4 we extend Cusa’s inequality to generalized and normalized Bessel functions and we
obtain refinements of some known inequalities established in [8]. In section 5 we obtain
new bounds for the function λp by extending three improvements of the well-known
Jordan’s inequality. Finally, in section 6 we prove that the integral

ςp(x) =
∫ x

0
λp(t) dt

is sub-additive (super-additive) under certain conditions on parameters b , c , p . This
result extends the recent result of S. Koumandos [15], who among other things proved
that the sine integral is sub-additive on [0,∞).

For the definition of the function λp let us recall some basic facts. The generalized
Bessel function of the first kind vp is defined [7] as a particular solution of the differential
equation

x2y′′(x) + bxy′(x) +
[
cx2 − p2 + (1 − b)p

]
y(x) = 0,

where b, p, c ∈ R, and vp has the infinite series representation

vp(x) =
∑
n�0

(−1)ncn

n!Γ
(
p + n + b+1

2

) · ( x
2

)2n+p
for all x ∈ R.

This function permits us to study the classical Bessel function Jp and the modified
Bessel function Ip together. For c = 1 ( c = −1 respectively) and b = 1 the function
vp reduces to the function Jp ( Ip respectively). Now the generalized and normalized
Bessel function of the first kind is defined [7] as follows

up(x) = 2pΓ (κ) · x−p/2vp(x1/2) =
∑
n�0

(−c/4)n

(κ)n

xn

n!
for all x ∈ R, (1)

where κ := p + (b + 1)/2 �= 0,−1,−2, . . . , and (a)n = Γ(a + n)/Γ(a) is the well
known Pochhammer symbol defined in terms of Euler’s Γ -function. This function
is related to an obvious transform of the hypergeometric function 0F1, i.e. up(x) =
0F1(κ ,−cx/4) and satisfies the following differential equation

xy′′(x) + κy′(x) + (c/4)y(x) = 0.

For properties of the function up, such as differentiation formula, integral repre-
sentation, lower and upper bounds, and interesting functional inequalities we refer to
the papers [5, 6, 7, 9]. Let us consider the function λp defined by

λp(x) = up(x2) =
∑
n�0

(−c/4)n

(κ)n

x2n

n!
for all x ∈ R. (2)

For c = 1 ( c = −1 respectively) and b = 1 this function reduces to the function Jp

(Ip respectively) defined by

Jp(x) = 2pΓ(p + 1)x−pJp(x), Ip(x) = 2pΓ(p + 1)x−pIp(x).
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For later use it is worth mentioning that in particular (for p = −1/2 and p = 1/2,
respectively) the functions Jp and Ip reduces to some elementary functions, like

J−1/2(x) = cos x, I−1/2(x) = cosh x, J1/2(x) =
sin x

x
, I1/2(x) =

sinh x
x

.

2. Mitrinovic’s, Mahajan’s inequality

In 1979. A. Mahajan [17] extended a result of D. S. Mitrinović [18, p. 240] by
proving that if p > −1, then

(x + 1)Jp

(
π

x + 1

)
− xJp

(π
x

)
> 1 for all x > π

π +
√
π2 + 32(p + 2)
16(p + 2)

. (3)

D. S. Mitrinović has proved the case p = −1/2 of (3), i.e.

(x + 1) cos

(
π

x + 1

)
− x cos

(π
x

)
> 1, (4)

but just for x �
√

3 � 1.732050808. . ., while A. Mahajan’s generalization yields a
better interval of validity for (4), namely x > 1.407014637. . .. In 1987L. Lorch and M.
E.Muldoon [16] proved that the largest interval of validity for (4) is (1,∞) and for (3) is
(x1,∞) where x1 is the largest root of ϕ1(x+1) = ϕ1(x) and ϕ1(x) = x[Jp(π/x)−1].
In the next theorem our aim is to extend inequality (3) for the function λp. In the case of
c > 0 we use the method of L. Lorch and M. E. Muldoon [16] mutatis mutandis, while
for c < 0 we give a different proof. As we can see the analogous of inequality (4)
for the hyperbolic cosine function holds just if x ∈ (−1, 0), otherwise the inequality is
reversed.

THEOREM 5. If κ , c > 0 then

(x + 1)λp

(
π

x + 1

)
− xλp

(π
x

)
> 1 (6)

holds for all x < −x2 −1 or x > x2, where x2 is the largest root of ϕ2(x+1) = ϕ2(x)
and ϕ2(x) = x[λp(π/x) − 1]. Moreover if κ > 0 and c < 0, then (6) holds for all
x ∈ (−1, 0), while if x < −1 or x > 0, then (6) is reversed.

Proof. Let us consider the function ϕ3 : R \ {−1, 0} → R defined by

ϕ3(x) = (x + 1)λp

(
π

x + 1

)
− xλp

(π
x

)
− 1.

It is easy to verify that ϕ3(x − 1/2) = ϕ3(−x − 1/2) for all x �= −1, 0. Thus clearly
the graph of the function ϕ3 is symmetric with respect to the straight line x = −1/2.
Now let us distinguish the cases when c > 0 and c < 0.

Suppose that c > 0. It is known from part (iv) of Proposition 2.16 [7] that

[x−pvp(x)]′ = −c · x−pvp+1(x) (7)
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holds for all κ > 0 and c, x ∈ R. Observe that using (1) and (2) we easily obtain
λp(x) = 2pΓ(κ)x−pvp(x). Thus from (7) one has

λ ′
p(x) = −c · 2pΓ(κ)x−pvp+1(x),

λ ′′
p (x) = −c · 2pΓ(κ)x−p−1[vp+1(x) − cxvp+2(x)],

so λp is a (decreasing and) concave function for all sufficiently small positive x, say
x ∈ (0,α). Due to L. Lorch and M. E. Muldoon [16] we know that if the function f is
concave on (0, β ], then

f (r)
r

− f (s)
s

>

(
1
r
− 1

s

)
f (0) for all 0 < r < s � β . (8)

Moreover if f is continuous, then this inequality remains true for certain r and
s, one or both possibly greater than β , provided that for every s > β we restrict our
attention to those values of r less than the smallest value of r for which (8) becomes
an equality. Thus from (8) we obtain that

λp(r)
r

− λp(s)
s

>

(
1
r
− 1

s

)
λp(0) for all 0 < r < s < α.

Putting r = π/(x + 1) and s = π/x, we obtain ϕ3(x) > 0 for all x > x2. Clearly by
the symmetry of the function ϕ3 we have ϕ3(x) > 0 for all x < −x2 − 1.

Now assume that c < 0. If x ∈ (−1, 0), then

ϕ3(x) =(x + 1) ·
∑
n�0

bn

(
π

x + 1

)2n

− x ·
∑
n�0

bn

(π
x

)2n
− 1

=(x + 1) ·
∑
n�1

bn

(
π

x + 1

)2n

− x ·
∑
n�1

bn

(π
x

)2n

=
∑
n�1

bnπ2n

[
1

(x + 1)2n−1
− 1

x2n−1

]
> 0.

From the symmetry of the function ϕ3 it is enough to show that ϕ3(x) < 0 for all
x > 0. By Proposition 2.17, [7] we know that the generalized and normalized Bessel
function of the first kind of order p satisfies

(4κ)u′p(x) = (−c)up+1(x), (9)

for all x ∈ R and κ �= 0,−1,−2, . . .. From l’Hospital’s rule and (9) it is easy to verify
that

lim
x→∞ϕ3(x) = lim

x→∞ x

[
λp

(
π

x + 1

)
− λp

(π
x

)]

= lim
x→∞ π

[
x2

(x + 1)2
λ ′

p

(
π

x + 1

)
− λ ′

p

(π
x

)]

= lim
x→∞ 2π

(
− c

4κ

) [ x2

(x + 1)3
λp+1

(
π

x + 1

)
− 1

x
λp+1

(π
x

)]
= 0.
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Inwhat followswe want to prove that the function ϕ3 is strictly concave on (0,∞).
Thus using the above mentioned limit (the graph of the function ϕ3 is tangent to the
x -axis at infinity) we may conclude that ϕ3 is strictly negative, which completes the
proof. For this let us consider the function ϕ4(x) = x3λ ′′

p (x). Since from (9)

ϕ′
4(x) = 2b1(p)x2[3λp+1(x) + 12b1(p + 1)x2λp+2(x) + 4b1(p + 1)b1(p + 2)x4λp+3(x)],

so ϕ′
4(x) > 0 for all real x > 0, it follows that ϕ4 is strictly increasing (here

b1(p) = (−c)/(4κ) ). Finally

ϕ′′
3 (x) =

π2

(x + 1)3
λ ′′

p

(
π

x + 1

)
− π2

x3
λ ′′

p

(π
x

)
,

hence the required result follows. �
REMARK 2.8. Taking b = 1 and c = −1 in Theorem 5 we get the hyperbolic

counterpart of inequalities (3) and (4), namely

(x + 1)Ip

(
π

x + 1

)
− xIp

(π
x

)
> 1 for all x ∈ (−1, 0), p > −1,

and in particular for p = −1/2

(x + 1) cosh

(
π

x + 1

)
− x cosh

(π
x

)
> 1.

When x < −1 or x > 0 both inequalities are reversed.

3. Redheffer’s inequality

In 1969 R. Redheffer [23] established the following well-known inequality

J1/2(x) =
sin x

x
� π2 − x2

π2 + x2
for all x ∈ R. (10)

Throughout this paper, it should be understood that functions such as (sin x)/x,
which have removable singularities at x = 0, have had these singularities removed in
statements like (10). Recall that in 2004 E. Neuman [19, Theorem 2.2] using Gauss-
Gegenbauer quadrature formula proved that if p > −1/2, then for all |x| � π/2

1
3(p+1)

[
2p+1+(p+2) cos

(√
3

2(p+2)
x

)]
� Jp(x) � cos

(
x√

2(p+1)

)
. (11)

Note that clearly when p = −1/2 we have equality in (11). Observe that
Jκ−1(x

√
c) = λp(x), thus changing in the previous inequality p with κ − 1 and

x with x
√

c, we deduce that [9, Theorem 4.2] if c ∈ [0, 1] and κ � 1/2, then for all
|x| � π/2

1
3κ

[
2κ − 1 + (κ + 1) cos

(√
3c

2(κ + 1)
x

)]
� λp(x) � cos

(√
c

2κ
x

)
. (12)
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Using (10) we can found an other lower bound for the function λp, which is valid
for all real numbers. Here the key tool is the Sonine integral formula [27, p. 373], which
expresses any Bessel function in terms of an integral involving a Bessel function of
lower order.

THEOREM 13. If c � 0 and κ � 3/2, then for all x ∈ R

λp(x) � π2 − cx2

π2 + cx2
.

Proof. From the Sonine integral formula [27, p. 373] for Bessel functions

Jq+p+1(x) =
xp+1

2pΓ(p + 1)

∫ π/2

0
Jq(x sin θ) sinq+1 θ cos2p+1 θ dθ, p, q > −1, x ∈ R

we obtain immediately the following formula which will be useful in the sequel

Jq+p+1(x) =
2

B(p+1, q+1)

∫ π/2

0
Jq(x sin θ) sin2q+1 θ cos2p+1 θ dθ, p, q > −1,

(14)
where x ∈ R and B(p, q) = Γ(p)Γ(q)/Γ(p+q) is thewell-knownEuler’s beta function.
Changing in (14) p with p − 1/2 and taking q = 1/2 one has for all p > −1/2,
x ∈ R

Jp+1(x) =
2

B
(
p + 1

2 ,
3
2

) ∫ π/2

0
J1/2(x sin θ) sin2 θ cos2p θ dθ . (15)

Using (10) it follows that for all θ ∈ [0, π/2] and x ∈ R

J1/2(x sin θ) sin2 θ cos2p � π2 − x2 sin2 θ
π2 + x2 sin2 θ

sin2 θ cos2p � π2 − x2

π2 + x2
sin2 θ cos2p,

thus using (15), and (10) again we obtain

Jp+1(x) � π2 − x2

π2 + x2
for all x ∈ R and p � −1/2.

Finally using again Jκ−1(x
√

c) = λp(x) and changing in the previous inequality
p with κ − 2 and x with x

√
c, we get the required result. �

REMARK 3.7. Recently C. P. Chen, J. W. Zhao and F. Qi [11] by using mathematical
induction and infinite product representation of cosine function established the following
Redheffer-type inequality

J−1/2(x) = cos x � π2 − 4x2

π2 + 4x2
for all x ∈

[
−π

2
,
π
2

]
. (8)

Observe that if we use (14) again, by changing p with p − 1/2 and taking
q = −1/2 one has for all p > −1/2, x ∈ R

Jp(x) =
2

B
(
p + 1

2 ,
1
2

) ∫ π/2

0
J−1/2(x sin θ) cos2p θ dθ . (9)
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Following the proof of Theorem 13 it is easy to verify that from (8) and (9) we
have

Jp(x) = cos x � π2 − 4x2

π2 + 4x2
for all p � −1

2
and x ∈

[
−π

2
,
π
2

]
.

Thus, if we change p with κ − 1 and x with x
√

c, we get an other lower bound
for the function λp. Namely, if c � 0 and κ � 1/2, then for all x ∈ [−π/2, π/2] one
has

λp(x) � π2 − 4cx2

π2 + 4cx2
.

It is worth mentioning that for c ∈ [0, 1], κ � 1/2, the lower bound from (12) is better
than the above lower bound, since direct application of (8) yields

λp(x) � cos

(√
c

2κ
x

)
� π2 − 2cx2/κ

π2 + 2cx2/κ
� π2 − 4cx2

π2 + 4cx2
.

4. Cusa’s inequality and related inequalities

Nicolaus da Cusa (1401-1464) using geometrical constructions discovered the
inequality

sin x
x

� 2 + cos x
3

⇔ J1/2(x) �
2 + J−1/2(x)

3
for all x ∈

[
−π

2
,
π
2

]
, (10)

where the comment about removable singularities applies just as in (10). Willebrod
Snellius (1581-1626) in his book entitled “Cyclometicus” found a proof for (10), but
his proof was quite obscure (for further details please see the book of J. Sándor [25]).
The first scientist who found an acceptable (geometrical) proof for (10) was Christian
Huygens (1629-1695). Huygens in his book “De circuli magnitudine inventa” used
(10) in the approximation of π (for the history of this see [10], [13]). In 1999 F. Qi, L.
H. Cui and S. L. Xu [21, p. 521] using Tchebysheff’s integral inequality proved that

sin x
x

� 1 + cos x
2

for all x ∈
[
−π

2
,
π
2

]
. (11)

Recently, there has been a keen interest in Missouri Journal of Mathematical
Sciences, regarding inequalities on J1/2(x) = (sin x)/x (see the paper [25] and the
references therein). We note that in fact inequalities (10) and (11) may be used for a
simple proof of the well known fact that

lim
x→0

sin x
x

= 1.

On the other hand it is known that [18, p. 238]

2(1 + a cos x)
π

� sin x
x

� 1 + a cos x
a + 1

for all x ∈
[
−π

2
,
π
2

]
and a ∈

(
0,

1
2

]
. (12)

This trigonometric inequality represent a partial answer to the problem E 1277
proposed by A. Oppenheim and was proved by W. B. Carver in American Mathematical
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Monthly 65, (1958), 206–209 . As a generalization of this inequality, using the same
idea as in the proof of Theorem 13, we recently proved [8, Corollary 2.18] that if
a ∈ (0, 1/2], c � 0 and κ � 1/2, then inequality

1 + 2aκλp(x)
a(2κ − 1) + π/2

� λp+1(x) � 1 + 2aκλp(x)
a(2κ − 1) + (a + 1)

(13)

holds for all |x√c| � π/2. In what follows our aim is to improve (13) using (10) and
(11). First note that Cusa’s inequality (10) is better than the right hand side of (12).
For this observe that

d
da

(
1 + a cos x

1 + a

)
=

cos x − 1
(1 + a)2

� 0 for all x ∈
[
−π

2
,
π
2

]
and a ∈

(
0,

1
2

]
.

Thus the function

a 	→ 1 + a cos x
1 + a

is decreasing on (0, 1/2], and hence the asserted result follows. Secondly observe that
when |x| � x3 � 0.7197987821 . . . , inequality (11) is better than the left hand side of
(12) for all a ∈ (0, 1/2]. This is justified by the following inequality

1 + cos x
2

− 2(1 + a cos x)
π

� 1 + cos x
2

− 2
π

(
1 +

cos x
2

)
� 0,

where |x| � x3 and x3 is the largest root of 4 − π = (π − 2) cos x. Thus a slightly
improvement of (13) is the following result. Since the proofs of these inequalities go
along the lines introduced in [8], they are not included in this paper.

THEOREM 14. If c � 0 and κ � 1/2, then we have

1 + 2κλp(x)
2κ + 1

� λp+1(x) � 1 + κλp(x)
κ + 1

for all x
√

c ∈
[
−π

2
,
π
2

]
. (15)

In what follows let us discuss the hyperbolic counterpart of inequality (11). As
we can see the well known Tchebysheff integral inequality is also useful here. For the
reader’s convenience let us recall this inequality. If f , g : [a, b] → R are integrable
functions, both increasing or both decreasing and p : [a, b] → R is a positive integrable
function, then∫ b

a
p(t)f (t) dt

∫ b

a
p(t)g(t) dt �

∫ b

a
p(t) dt

∫ b

a
p(t)f (t)g(t) dt . (16)

Note that if one of the functions f or g is decreasing and the other is increasing,
then (16) is reversed. Using the same idea as in the proof of inequality (11), putting
p(t) = 1, f (t) = sinh t, g(t) = t, t ∈ [a, b] = [0, x], x ∈ [0,∞) in (16), we have∫ x

0
sinh t dt

∫ x

0
t dt �

∫ x

0
dt
∫ x

0
t sinh t dt .

A direct calculation yields

sinh x
x

� 1 + cosh x
2

⇔ I1/2(x) �
1 + I−1/2(x)

2
for all x ∈ R. (17)
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Looking for a generalization of (17) we obtain the following result.

THEOREM 18. If c � 0 and κ � 1/2, then we have

λp+1(x) � 1 + 2κλp(x)
2κ + 1

for all x ∈ R. (19)

Proof. As a generalization of (16) bellow, recently Sz. András and Á. Baricz
proved [4, Lemma 1] that if c, x ∈ R and 2p > 2q > −(b + 1), then

λp(x) =
∫ 1

0
λq(tx)

2t2q+b(1 − t2)p−q−1

B
(
q + b+1

2 , p − q
) dt . (20)

From this it follows that if p > q > −1, then

Ip(x) =
2

B(q + 1, p − q)

∫ 1

0
Iq(tx)t2q+1(1 − t2)p−q−1 dt, (21)

and in particular taking q = −1/2 (changing p with p + 1 and taking q = 1/2
respectively), we get that for all p > −1/2 and x ∈ R

Ip(x) =
2

B
(
p + 1

2 ,
1
2

) ∫ π/2

0
I−1/2(x sin θ) cos2p θ dθ, (22)

Ip+1(x) =
2

B
(
p + 1

2 ,
3
2

) ∫ π/2

0
I1/2(x sin θ) sin2 θ cos2p θ dθ . (23)

Now changing in (17) x with x sin θ and multiplying both sides of (17) with
sin2 θ cos2p θ, after integration we obtain

Ip+1(x) � 1 + 2(p + 1)Ip(x)
2p + 3

for all p � −1/2 and x ∈ R. Finally observe that Iκ−1(x
√−c) = λp(x), thus the

proof is complete. �
REMARK 4.15. Note that recently the author proved [8, Corollary 2.18] that if

c ∈ [0, 1] and κ � 1/2, then λp+1(x) � λp(x) for all x ∈ [−π, π]. The left hand
side of inequality (15) when c ∈ [0, 1], κ � 1/2 and x ∈ [−π/2, π/2] provides an
improvement of the above mentioned inequality, since under the same assumptions

λp+1(x) � 1 + 2κλp(x)
2κ + 1

� λp(x).

Here we used the fact that λp(x) � 1 under hypothesis. For this let us recall the
following integral representation formula obtained by Á. Baricz and E. Neuman [9,
Lemma 2.1]

λp(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2

B
(
p + b

2 ,
1
2

)
1∫

0

(1 − t2)p+ b−2
2 cos(tx

√
c) dt, c � 0

2

B
(
p + b

2 ,
1
2

)
1∫

0

(1 − t2)p+ b−2
2 cosh(tx

√−c) dt, c � 0,

(16)
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which is valid for all x ∈ R and κ > 1/2. Since

2
∫ 1

0
(1 − t2)p+ b−2

2 dt = B

(
p +

b
2
,
1
2

)

it follows that λp(x) � 1 when c � 0, κ > 1/2 and x ∈ R. Because J−1/2(x) =
cos x � 1 for all x ∈ R, from (9) it follows that Jp(x) � 1 for all p � −1/2. Now
using again the formula Jκ−1(x

√
c) = λp(x), we obtain λp(x) � 1 for all c � 0,

κ � 1/2 and x ∈ R.
Following the above argument it is clear that λp(x) � 1 for all c � 0, κ � 1/2

and x ∈ R. This means that inequality (19) improves the inequality λp+1(x) � λp(x),
where c � 0, κ > 0 and x ∈ R, obtained by the author [8, Corollary 2.18].

An other immediate application of the integral representation formula (16) is the
following result.

THEOREM 17. If c � 0 and κ � 1, then λp+1(x) �
√
λp(x) for all x ∈ R.

Moreover if c ∈ [0, 1] and κ ∈ [1/2, 1], then λp+1(x) �
√
λp(x) also holds for all

x ∈ [−π/2, π/2].

Proof. Let us consider the function ϕ5(x) = λ 2
p+1(x)− λp(x). Since this function

is even, it is enough to show the required inequality for x � 0 and x ∈ [0, π/2],
respectively. Applying (9) for p and p + 1, we obtain

2ϕ′
5(x) = (−c)xλp+1(x)

[
2λp+2(x)
κ + 1

− 1
κ

]
.

Now if c � 0 and κ � 1, then in view of Remark 4.15 clearly λp+2(x) � 1 �
(κ + 1)/(2κ), and thus ϕ5 is increasing. Hence ϕ5(x) � ϕ5(0) = 0. Finally suppose
that c ∈ [0, 1] and κ ∈ [1/2, 1]. From (12) it follows that λp+1(x) � 0, provided
x ∈ [−π/2, π/2]. Now using again Remark 4.15 one has λp+2(x) � 1 � (κ+1)/(2κ),
and thus ϕ5 is increasing. This completes the proof. �

REMARK 4.17. Taking b = 1, c = 1 and p = −1/2 in Theorem 17 we obtain
the inequality sin x � x

√
cos x, x ∈ [−π/2, π/2], which was established by J. Sándor

[25].

5. Extensions of Jordan’s inequality

The following inequality is known as Jordan’s inequality [18, p. 33]

1 � sin x
x

� 2
π

for all x ∈
[
−π

2
,
π
2

]
. (18)

It has been studied by several mathematicians in order to sharpen this basic analytic
inequality. In this section we present two recent results related to Jordan’s inequality
and we extend them to generalized Bessel functions, in order to obtain other lower and
upper bounds for the function λp. Recall that Redheffer’s inequality (10) and Jordan’s
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inequality (18) do not imply each other. Recently, J. Sándor [24, 25, 26] proved that
the function J1/2(x) = (sin x)/x is concave on [0, π/2] and from this he deduced the
following improvement of Jordan’s inequality:

2
π

+
2
π2

(π − 2x) � sin x
x

� 2
π

+
π − 2
π2

(π − 2x) for all x ∈
[
0,
π
2

]
. (19)

J. Sándor’s idea was that, since J1/2 is concave, its graph lies above the line
segment joining the points (0, 1) and (π/2, 2/π) on the graph of J1/2 on [0, π/2].

From this follows the right hand side of (19). Now from the left hand side just
consider the tangent line to J1/2 at the point (π/2, 2/π), which line lies above the
graph of J1/2 on [0, π/2]. The inequality (19) was recently also proved by X. Zhang,
G. Wang and Y. Chu [28] using the monotone form of l’Hospital’s rule established by
G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen [3] (see also their book [2]).
There is an other improvement of Jordan’s inequality proved by F. Qi and Q. D. Hao
[22] (see also [21, p. 522]) using the intricate technique of calculus, namely

2
π

+
π − 2
π3

(π2 − 4x2) � sin x
x

� 2
π

+
1
π3

(π2 − 4x2) for all x ∈
[
−π

2
,
π
2

]
. (20)

This new refinement of Jordan’s inequality was rediscovered too by X. Zhang, G.
Wang and Y. Chu [28] using also the monotone form of l’Hospital’s rule. The right
hand side of (20) was also proved by L. Debnath and C. J. Zhao [12] using a completely
different method. Moreover L. Zhu [29] using also the monotone form of l’Hospital’s
rule extended (20) in the following way for −π/2 � x � r � π/2

sin r
r

+
r − sin r

r3
(r2 − x2) � sin x

x
� sin r

r
+

sin r − r cos r
2r3

(r2 − x2). (21)

For these, and related details, see the survey papers of J. Sándor [24] and F. Qi [20].
It is known that inequalities (19) and (20) cannot be compared on the whole interval
[0, π/2] (see the discussion bellow). Observe that (11) in particular case for p = 1/2
becomes the following:

ϕ6(x) :=
2
9

[
2+

5
2

cos

(√
3
5
x

)]
�sin x

x
� cos

(
x√
3

)
for all x ∈

[
−π

2
,
π
2

]
. (22)

This result of E. Neuman, which is actually a refinement of Jordan’s inequality
(18), does not appear in any paper related to sharpenings of Jordan’s inequality, even if
direct computations and numerical experiments in Derive6 show the followings:

(1) The right hand side of (22) is better than the right hand side of (20) for all
x ∈ [−x4, x4], where x4 � 1.204850991 . . . is the root of the equation cos(x/

√
3) =

3/π − 4x2/π3 on [0, π/2]. The situation is reversed when x ∈ [−π/2,−x4] or x ∈
[x4, π/2].

(2) The right hand side of (22) is better than the right hand side of (19) for all
x ∈ [0, x5], where x5 � 1.475028163 . . . is the root of the equation cos(x/

√
3) =

1 − 2(π − 2)x/π2 on [0, π/2]. Further the situation is reversed when x ∈ [x5, π/2].
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(3) The right hand side of (20) is better than the right hand side of (19) for all
x ∈ [π(π − 3)/2, π/2]. Moreover the situation is reversed for all x ∈ [0, π(π − 3)/2].
Note that π(π − 3)/2 � 0.2224132208. . ..

(4) If x ∈ [−x6, x6], then cos(x/
√

3) � 2/π, where x6 � 1.525398501 . . . is
the root of the equation cos(x/

√
3) = 2/π. When x ∈ [−π/2,−x6] or x ∈ [x6, π/2]

the above inequality is reversed. Note that π/2 � 1.570796327. . ..
(5) The left hand side of (22) is better than the left hand side of (20) for all

x ∈ [−x7, x7], where x7 � 1.563220278 . . . is the root of the equation ϕ6(x) =
1 − 4(π − 2)x2/π3 on [0, π/2]. The situation is reversed when x ∈ [−π/2,−x7] or
x ∈ [x7, π/2].

(6) The left hand side of (22) is better than the left hand side of (19) for all x ∈
[0, x8], where x8 � 1.497945837 . . . is the root of the equation ϕ6(x) = 4(π − x)/π2

on [0, π/2]. The situation is reversed when x ∈ [x8, π/2].
(7) The left hand side of (20) is better than the left hand side of (19) for all

x ∈ [0, (π/2)(4 − π)/(π − 2)]. Note that (π/2)(4 − π)/(π − 2) � 1.181142066. . ..
Further the situation is reversed when x ∈ [(π/2)(4 − π)/(π − 2), π/2].

(8) If x ∈ [−π/2, π/2], then ϕ6(x) � 1.
From the above discussion follows that it is worth extending inequalities (19) and

(20) for the generalized and normalized Bessel functions. Before we state our first main
result in this section let us recall the monotone form of the well-known l’Hospital rule
[3]:

LEMMA 23. For α, β ∈ R let f , g : [α, β ] → R be continuous on [α, β ], and
differentiable on (α, β). Further let g′(x) �= 0 for all x ∈ (α, β). If f ′/g′ is (strictly)
increasing (decreasing) on (α, β), then so are

x 	→ f (x) − f (α)
g(x) − g(α)

and x 	→ f (x) − f (β)
g(x) − g(β)

.

Our first main result in this section reads as follows.

THEOREM 24. The following assertions are true:
(1) If κ � 1/2 and c ∈ [0, 1], then for all x ∈ [0, π/2] one has

λp

(π
2

)
+
[
1−λp

(π
2

)] π−2x
π

� λp(x)

� λp

(π
2

)
+
[( cπ

2κ

)
λp+1

(π
2

)] π−2x
π

.

(5.8)

(2) If κ > 0 and c ∈ [0, 1], then for all x ∈ [−π/2, π/2] one has

λp

(π
2

)
+
[( c

4κ

)
λp+1

(π
2

)] π2−4x2

4
� λp(x)

� λp

(π
2

)
+
[
1−λp

(π
2

)] π2−4x2

π2
.

(5.9)

Proof. (1) Since if κ � 1/2 and c ∈ [0, 1], then for all x ∈ [0, π/2] the function
λp is concave [8, Corollary 2.18], it follows that its graph lies above the line segment
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joining the points (0, 1) and (π/2, 2/π) on the graph of λp on [0, π/2]. This property
implies the left hand side of (5.8). For the right hand side it suffices to consider the
tangent line to λp at the point (π/2, 2/π), which lies above the graph of λp on [0, π/2].

(2)Since the function λp is even, clearly it is enough to show (5.9) for x ∈ [0, π/2].
Let us consider the functions ϕ7,ϕ8 : [0, π/2] → [0,∞), defined by ϕ7(x) = λp(x) −
λp(π/2) and ϕ8(x) = π2/4−x2. From (9) we obtain ϕ′

7(x)/ϕ′
8(x) = [cλp+1(x)]/(4κ).

Because if c ∈ [0, 1] and κ � 1/2 the function λp is decreasing on [0, π/2] (see [8,
Corollary 2.18]), it follows that ϕ′

7/ϕ′
8 is decreasing on [0, π/2]. Clearly ϕ7(π/2) =

ϕ8(π/2) = 0, thus from monotone form of l’Hospital’s rule, i.e. Lemma 23 we get that
ϕ7/ϕ8 is decreasing too on [0, π/2]. All that remains to show is that from l’Hospital’s
rule

lim
x→ π

2

ϕ7(x)
ϕ8(x)

= lim
x→ π

2

ϕ′
7(x)

ϕ′
8(x)

= lim
x→ π

2

( c
4κ

)
λp+1(x) =

( c
4κ

)
λp+1

(π
2

)
.

Now the inequality (5.9) follows from the monotonicity and the limiting values of
ϕ7/ϕ8. �

REMARK 5.10. Putting c = 1, b = 1 and p = −1/2 in (5.8) we get

1 − 2
π

x � cos x � 2

(
1 − 2

π
x

)
for all x ∈

[
0,
π
2

]
. (11)

The left hand side of (11) is known as Kober’s inequality [14]. Taking c = 1 ,
b = 1 and p = 1/2 in (5.8) (in (5.9) respectively)we reobtain (19) ((20) respectively).
Observe that changing x with π/2 − x in (19) we obtain the following inequality

1− 2
π

x +
π − 2
π2

x(π − 2x) � cos x � 1− 2
π

x +
2
π2

x(π− 2x) for all x ∈
[
0,
π
2

]
, (12)

which was proved by F. Qi and Q. D. Hao [22], X. Zhang, G. Wang and Y. Chu [28]
using different methods. Now taking c = 1, b = 1 and p = −1/2 in (5.9) we obtain

π
4
− 1

π
x2 � cos x � 1 − 4

π2
x2 for all x ∈

[
−π

2
,
π
2

]
. (13)

Straightforward simplifications and easy computations show that the right hand
side of (13) is exactly the right hand side of (12), but the left hand side of (12) (which
is a refinement of Kober’s inequality) is better than the left hand side of (13) for all
x ∈ [0, π/2]. Further the right hand side of (13) is better than the right hand side of
(11) for all x ∈ [0, π/2].

Finally note that (5.8) can be proved also using Lemma 23. Just consider the func-
tions ϕ7 and ϕ9 : [0, π/2] → [0,∞), defined by ϕ9(x) = π/2−x. We know that if c ∈
[0, 1] and κ � 1/2, then λp is concave on [0, π/2], thus x 	→ ϕ′

7(x)/ϕ′
9(x) = −λ ′

p(x)
is increasing on [0, π/2]. Application of Lemma 23 gives that ϕ7/ϕ9 is increasing too
on [0, π/2], thus the required inequality (5.8) follows.

We end this section with the following extension of (21), which provides a gener-
alization of (5.9). As we can see the result of L. Zhu [29] is in fact a typical result for
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Bessel functions. Since the proofs of the next inequalities go along the lines introduced
in the proof of (5.9), we state the following result without proof.

THEOREM 14. If κ > 0 and c ∈ [0, 1], then for all −π/2 � x � r � π/2 we
have

λp (r) +
[( c

4κ

)
λp+1 (r)

]
(r2 − x2) � λp(x) � λp (r) +

[
1 − λp(r)

r2

]
(r2 − x2). (15)

Moreover if κ > 0 and c � 0, then (15) holds for all −∞ < x � r < ∞.

REMARK 5.16. Choosing c = 1, b = 1 and p = 1/2 in (15) we obtain (21).
Analogously taking c = −1, b = 1 and p = 1/2 in (15) we obtain the hyperbolic
counterpart of (21)

sinh r
r

+
r − sinh r

r3
(r2 − x2) � sinh x

x
� sinh r

r
+

sinh r − r cosh r
2r3

(r2 − x2),

whenever −∞ < x � r < ∞. Here we used the fact that

J3/2(x) = 3
(sin x

x3
− cos x

x2

)
and I3/2(x) = −3

(
sinh x

x3
− cosh x

x2

)
.

6. The sine and hyperbolic sine integral

Let

Si(x) =
∫ x

0

sin t
t

dt and Shi(x) =
∫ x

0

sinh t
t

dt

be the sine and hyperbolic sine integral, which play an important role in various topics
of Fourier analysis [30]. S. Koumandos [15] among other things recently proved that
the sine integral is sub-additive on [0,∞). In this section we prove that hyperbolic sine
integral is super-additive on [0,∞), moreover we show that these properties also holds
for the following integral, which generalize the sine and hyperbolic sine integrals. For
c ∈ R and κ > 0 let us consider

ςp(x) =
∫ x

0
λp(t) dt =

∑
n�0

(−c/4)n

(κ)nn!
· x2n+1

2n + 1
. (17)

Clearly when b = 1 , c = 1 , then ς−1/2(x) = sin x , ς1/2(x) = Si(x) , and when
b = 1 , c = −1 , then ς−1/2(x) = sinh x , ς1/2(x) = Shi(x). Our main result in this
section reads as follows.

THEOREM 18. If c ∈ [0, 1] and κ � 1/2 , then ςp is sub-additive on [0, π].
Moreover if c � 0 and κ > 0 , then ςp is super-additive on [0,∞).

Proof. It is well-known that if the function f , where f (0) = 0 has a continuous
derivative on [0,∞) and the function x 	→ f (x)/x is decreasing (increasing), then f
is sub-additive (super-additive). An easy calculation from (17) yields

d
dx

(
ςp(x)

x

)
=

xλp(x) − ςp(x)
x2

. (19)
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Let us consider the function ϕ10(x) = xλp(x) − ςp(x). It follows that ϕ′
10(x) =

xλ ′
p(x). If c ∈ [0, 1] and κ � 1/2 , then it is known [8, Corollary 2.18] that λp is

decreasing on [0, π] , thus ϕ10 is decreasing too on [0, π]. Hence ϕ10(x) � ϕ10(0) = 0
and therefore from (19) we obtain that x 	→ ςp(x)/x is decreasing on [0, π]. From this
the sub-additivity property of ςp follows.

If c � 0 and κ > 0 , then from the series representation of λp , clearly λp has
positive coefficients, and consequently is increasing on [0,∞). Thus the functions ϕ10

and x 	→ ςp(x)/x are also increasing on [0,∞) , which completes the proof. �

REMARK 6.4. We note that using Tchebysheff integral inequality (16) we can
deduce other inequalities involving ςp and λp. For example choosing p(t) = 1 ,
f (t) = λp+1(t) ( f (t) = tλp+1(t) respectively) and g(t) = t , t ∈ [a, b] = [0, x] ,
x ∈ [0,∞) in (16), we have that if κ > 0 and c < 0 , then

(−c)xςp+1(x) � (4κ)λp(x) and 2ςp(x) � xλp(x) for all x � 0.

Here we used the differentiation formula (9) and the fact that when κ > 0 and
c < 0 the functions x 	→ λp(x) and x 	→ xλp(x) are increasing on [0,∞).

In a recent paper H. Alzer and S.Koumandos [1] established sub- and super-additive
properties of Fejér’s sine polynomial

∑n
m=1(sin mx)/m. We note that if we consider

the sum
∑n

m=1 xλp(mx) , then it is easy to verify that it is sub-additive (super-additive
respectively) on [0, π/m] (on [0,∞) respectively) if c ∈ [0, 1] and κ � 1/2 (if c � 0
and κ > 0 respectively).
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