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(communicated by P. Bullen)

Abstract. We consider means of the form μ = 3√f , where f is a cubic symmetric form in
n variables, and we show that if n � 4 and μ is internal on the points (x1, · · · , xn) where
xi = 0 or 1, then μ is internal for all points (x1, · · · , xn) with xi � 0 for all i . We highlight
the similarity between this internality problem and the parallel problem pertaining to copositive
symmetric cubic forms.

1. Introduction

An n -dimensional mean, or simply a mean, is usually defined to be a function
μ : [0,∞)n −→ R that is internal in the sense that it satisfies the internality property

min{x1, · · · , xn} � μ(x1, · · · , xn) � max{x1, · · · , xn} (1)

for all x1, · · · , xn � 0 ; see [4] and [3, Chapter 8.7, page 266]. All means considered in
this note are also symmetric and homogeneous in the sense that

μ(xσ(1), · · · , xσ(n)) = μ(x1, · · · , xn) for all permutations σ of x1, · · · , xn,

μ(λx1, · · · , λxn) = λμ(x1, · · · , xn) for all λ > 0.

Means of the form Q/S and
√

Q , where S = x1 + · · · + xn and Q is a (real)
symmetric quadratic form in x1, · · · , xn , are characterized in [6, Theorems 3 and 5],
and means of the more general form αS ±√

Q are characterized in [1, Theorem 3]. In
all of these cases, the internality property (1) is reduced to a set of simple conditions
on α and on the coefficients of Q . Using [6, Theorem 5] and [1, Theorem 3], one can
easily check that for the functions Q/S and αS ± √

Q to be internal, it is sufficient
that they satisfy the internality property (1) at the two test n -tuples v(1) and v(n) only,
where v(j) is defined by

v(j) = (

j︷ ︸︸ ︷
1, · · · , 1 ,

n−j︷ ︸︸ ︷
0, · · · , 0 ). (2)
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On the other hand, 2-dimensional means of the form C(x, y)/Q(x, y) , where C and Q
are symmetric forms of degree 3 and 2, respectively, are characterized in [2, Theorem
1 (iii)] and it is seen there that internality at the test tuples (1, 1) and (1, 0) does not
guarantee internality for all x, y � 0 ; see [2, Section 6].

In this note, we consider functions of the form μ = 3
√

f (x1, · · · , xn) , where f
is a symmetric cubic form, and we show that if n � 4 , then such a μ is internal if it
satisfies the internality property (1) for the test tuples v(1), · · · , v(n) given in (2). The
proof uses a very weak theorem of calculus and does not generalize to n � 5 . However,
the authors believe that the same result holds for all n , and discuss a similar situation
that pertains to co-positive forms and that supports this belief.

2. A weak lemma from calculus

Let R[x] be the ring of polynomials in one variable x and with real coefficients,
and let f (x) ∈ R[x] . If all the coefficients of f are non-negative, then f (x) � 0 for
all x � 0 . Equivalently, if the derivatives f (j)(a) are non-negative for all j � 0 , then
f (x) � 0 for all x � a . Repeated application of this simple fact yields Theorem2 which
is the main result of this paper. This theorem states that if the symmetric cubic form
f (x1, · · · , xn) satisfies the internality property (1) for the test tuples v(1), · · · , v(n) , and
if n � 4 , then f is internal. To prove this theorem, we assume that the symmetric
cubic form f (x1, · · · , xn) satisfies (1) for v(1), · · · , v(n) , and fixing x1 � · · · � xn−1 ,
we let

F(xn) = x3
n − f (x1, · · · , xn), G(xn) = f (x1, · · · , xn) − x3

1.

We are to show that F(xn) � 0 and G(xn � 0 for all xn � xn−1 . Interestingly, it
turns out that if n � 4 , then the derivatives F(j) and G(j) (0 � j � 3 ) are non-negative
at xn = xn−1 . This trivially implies that F(xn) � 0 and G(xn) � 0 for all xn � xn−1 .
It also turns out that if n � 5 , then the internality of f at v(1), · · · , v(n) does not
imply that F(j) and G(j) (0 � j � 3 ) are non-negative at xn = xn−1 . However, the
authors believe that no matter what n is, the internality of f at v(1), · · · , v(n) does
imply that F(xn) � 0 for all xn � xn−1 . This belief is supported by examining the
similar situation for co-positive symmetric cubic forms, where it is well-known that a
symmetric cubic form f (x1, · · · , xn) is non-negative for all xj � 0 if it is non-negative
for v(1), · · · , v(n) ; see [5, Theorem 3.7] and [7]. However, fixing x1 � · · · � xn−1 as
before and letting H(xn) = f (x1, · · · , xn), we see that internality at these test n -tuples
implies that the derivatives H(j) (0 � j � 3 ) are non-negative at xn = xn−1 only if
n � 4 . In view of this, and in view of the extremely weak nature of our main tool,
Lemma 1, the failure of our proof for n � 5 should not be discouraging. We thus
emphasize that the real value of Theorem 2 is in its statement, and not in its proof, and
we hope that this first step would motivate a better approach that works for all n .

To facilitate calculations and to prepare for a computer-assisted verification, we
set

Ω(n) = {(x1, · · · , xn) ∈ R
n : 0 < x1 � · · · � xn}, (3)

S(n) = {(r1, · · · , rt) ∈ Z
t : 0 < r1 � · · · � rt � n − 1},
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andwe define the operator Δ(n)
s : R[x1, . . . , xn] → R[x1, . . . , xn] for s ∈ S(n) inductively

by

Δ(n)
s =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

the identity if s is the empty sequence
n∑

j=n−r+1

∂/∂xj if s is the singleton (r) ,

Δ(n)
u Δ(n)

v if s = (r1, · · · , rt+1), v = (r1, · · · , rt), u = (rt+1) .

It is clear that Δ(n)
s (f ) vanishes if s = (r1, · · · , rt) and t > deg f .

LEMMA 1. Let f = f (x1, · · · , xn) be a (not necessarily symmetric) form in the

variables x1, · · · , xn . If Δ(n)
s (f )(1, · · · , 1) � 0 for all s ∈ S(n) , then f (x1, · · · , xn) � 0

for all (x1, · · · , xn) ∈ Ω(n) .

Proof. If n = 1 , then S(n) consists of the empty sequence, and the assumption
f (1) = Δ(1)

Φ (f )(1) � 0 implies, by homogeneity, that f (x1) � 0 for all x1 � 0 .
Suppose the lemma is true for n − 1 , and let f = f (x1, · · · , xn) be a form for

which Δ(n)
s (f )(1, · · · , 1) � 0 for all s ∈ S(n) . To prove that f (x1, · · · , xn) � 0 for all

(x1, · · · , xn) ∈ Ω(n) , let

f j(x1, · · · , xn−1) =
∂ jf

∂xj
n

(x1, · · · , xn−1, xn−1).

Then it is sufficient to prove that f j(x1, · · · , xn−1) � 0 for all j � 0 and for all
(x1, · · · , xn−1) ∈ Ω(n−1) . By the inductive assumption, it is sufficient to prove that
Δ(n−1)

s f j(1, · · · , 1) � 0 for all j � 0 and for all s ∈ S(n) This follows immediately
from the fact that if s = (r1, · · · , rt) ∈ S(n−1), then

u = (

j︷ ︸︸ ︷
1, · · · , 1 , r1, · · · , rt) ∈ S(n)

and

Δ(n−1)
s (f j)(1, · · · , 1) = Δ(n)

u (f )(1, · · · , 1).

This completes the proof. �

3. The proof of the main theorem

We now use Lemma 1 to prove our main result.

THEOREM 2. Let f = f (x1, · · · , xn) be a symmetric cubic form and suppose that
3√f has the internality property (1) at the test n -tuples v(1), · · · , v(n) given in (2). If
n � 4 , then 3√f is internal.
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Proof. It is easy to see that the vector space Vn of symmetric cubic forms in n
variables is generated by the three forms

A = An =
n∑

j=1

x3
j , B = Bn =

⎛
⎝ n∑

j=1

x2
j

⎞
⎠

⎛
⎝ n∑

j=1

xj

⎞
⎠ , C = Cn =

⎛
⎝ n∑

j=1

xj

⎞
⎠

3

. (4)

In fact, A, B, C form a basis of Vn when n � 3 , and A, B form a basis of V2 . Thus a
symmetric cubic form f is of the form

f = aA + bB + cC, (5)

where c may be assumed 0 if n = 2 . Let

Jk = f (v(k)) = ak + bk2 + ck3.

Then the assumption that 3√f satisfies (1) for v(1), · · · , v(n) means that

Jn = 1 and 0 � Jk � 1 for k = 1, · · · , n − 1.

We shall prove that these inequalities imply internality of 3√f . In fact, letting x stand
for (x1, · · · , xn) , we shall prove the following statements:

1. The inequalities Jk � 0 for k = 1, · · · , n imply that f (x) � 0 ∀ x ∈ Ω(n) .
2. The inequalities Jn � 1 and Jk � 0 for k = 1, · · · , n − 1 imply that f (x) �

x3
1 ∀ x ∈ Ω(n) .

3. The inequalities Jk � 1 for k = 1, · · · , n imply that f (x) � x3
n ∀ x ∈ Ω(n) .

Let Δs(h)(1, · · · , 1) be denoted by δs(h) . To prove the first claim, we show
that δs(f ) � 0 for every s ∈ S(n) by expressing it as a positive linear combination
of J1, · · · , Jn . This is done in the column δs(f ) of the accompanying tables and is
computer-verified. Note that f is as given in (5) and that c is taken to be 0 when
n = 2 . Thus we have proved that if f is non-negative for the test tuples (2), then it is
non-negative for all non-negative tuples, a statement that is true for all n [5, Theorem
3.7].

The second claim follows immediately from observing that δs(f ) � δs(x3
1) for

every s ∈ Ω(n) . This is done by comparing the columns δs(f ) and δs(x3
1) and using

the inequality Jn � 1 .
Similarly, the third claim follows from observing that δs(f ) � δs(x3

n) for every
s ∈ S(n) . Again, this is done by comparing the columns δs(f ) and δs(x3

n) and using
the inequality Jk � 1 for every k .

n = 2
J2 = 2a + 4b, J1 = a + b

s δs(f ) δs(x3
n) δs(x3

1)
Φ 2a + 4b = J2 1 1
1 3a + 6b = (3/2)J2 3 0
11 6a + 8b = 4J1 + J2 6 0
111 6a + 6b = 6J1 6 0

Table 1. n = 2
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n = 3
J3 = 3a + 9b + 27c, J2 = 2a + 4b + 8c, J1 = a + b + c

s δs(f ) δs(x3
n) δs(x3

1)
Φ 3a + 9b + 27c = J3 1 1
1 3a + 9b + 27c = J3 3 0
2 6a + 18b + 54c = 2J3 3 0
11 6a + 10b + 18c = 2J2 + 2J1 6 0
12 6a + 14b + 36c = J3 + J2 + J1 6 0
22 12a + 28b + 72c = 2(J3 + J2 + J1) 6 0
111 6a + 6b + 6c = 6J1 6 0
112 6a + 8b + 12c = J2 + 4J1 6 0
122 6a + 12b + 24c = 3J2 6 0
222 12a + 24b + 48c = 6J2 6 0

Table 2. n = 3

n = 4
J4 = 4a + 16b + 64c, J3 = 3a + 9b + 27c, J2 = 2a + 4b + 8c, J1 = a + b + c

s δs(f ) δs(x3
n) δs(x3

1)
Φ 4a + 16b + 64c = J4 1 1
1 3a + 12b + 48c = (3/4)J4 3 0
2 6a + 24b + 96c = (3/2)J4 3 0
3 9a + 36b + 144c = (9/4)J4 3 0
11 6a + 12b + 24c = 3J2 6 0
12 6a + 16b + 48c = (1/2)J4 + 2J2 6 0
13 6a + 20b + 72c = J4 + J2 6 0
22 12a + 32b + 96c = J4 + 4J2 6 0
23 12a + 40b + 144c = 2(J4 + J2) 6 0
33 18a + 60b + 216c = 3(J4 + J2) 6 0
111 6a + 6b + 6c = 6J1 6 0
112 6a + 8b + 12c = J2 + 4J1 6 0
113 6a + 10b + 18c = 2J2 + 2J1 6 0
122 6a + 12b + 24c = 3J2 6 0
123 6a + 14b + 36c = J3 + J2 + J1 6 0
133 6a + 18b + 54c = 2J3 6 0
222 12a + 24b + 48c = 6J2 6 0
223 12a + 28b + 72c = 2(J3 + J2 + J1) 6 0
233 12a + 36b + 108c = 4J3 6 0
333 18a + 54b + 162c = 6J3 6 0

Table 3. n = 4

�
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4. Summary and concluding remarks

Let f be a symmetric cubic form in n variables x = (x1, · · · , xn) and let μ = 3√f .
Let v(1), · · · , v(n) be the test tuples defined in (2).

We have shown that if μ satisfies the internality condition (1) for v(1), · · · , v(n) ,
and if n � 4 , then μ satisfies (1) for all x � 0 . The proof we gave for n � 4 breaks
down when n � 5 .

Our proof for n � 4 was also used to answer the similar question whether

f (v(i)) � 0 for 1 � i � n

implies that

f (x) � 0 for all x � 0

and was shown to fail for n � 5 . However, this question does have an affirmative
answer for all n as shown in [5, Theorem 3.7] and [7]. We remark that the case n � 3
of this problem had already been established in [9], and that the case when f is quartic
is investigated in [8].

The authors expect [10] to be useful for settling the problem described above.
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