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NEW DISTORTION THEOREMS FOR SAKAGUCHI FUNCTIONS

M. ÇAĞLAR AND Y. POLATOĞLU

(communicated by S. Owa)

Abstract. Let A be the class of functions f (z) of the form f (z) = z +
∑∞

k=2 akz
k that are

analytic in the open unit disk D = {z ∈ C | |z| < 1} . In 1959, K. Sakaguchi [9] has considered

the subclass of A consisting of those f (z) which satisfy Re

(
zf ′(z)

f (z)−f (−z)

)
> 0 , where z ∈ D .

We call such a function a “Sakaguchi function”, and denote the class of those functions by Ss .
Various authors have studied this class ([6, 7, 9, 10]). We obtain new distortion theorems, Koebe
domain, k-quasiconformality, and the radius of convexity for the class Ss .

1. Introduction and definitions

Let A denote the class of all analytic functions defined on the open unit disk
D = {z ∈ C | |z| < 1} and normalized by f (0) = f ′(0) − 1 = 0 , and S∗ be the class
of starlike functions on D . A function f ∈ A is starlike with respect to symmetric
points in D , if for every r < 1 close to 1 and every z0 on |z| = r , the angular velocity
of f (z) about f (−z0) is positive at z = z0 as z traverses the circle |z| = r in the
positive direction. This class was introduced and studied by K. Sakaguchi [9], who
proved that the given defining condition is equivalent to

Re

(
zf ′(z)

f (z) − f (−z)

)
> 0. (1)

Let Ω be the family of functions w(z) regular in D and satisfying the conditions
w(0) = 0 and |w(z)| < 1 for z ∈ D . Denote by P the family of Carathéodory
functions

p(z) = 1 + p1z + p2z
2 + · · · (2)

regular in D and such that p(z) is in P if and only if

p(z) =
1 + w(z)
1 − w(z)

for some w(z) ∈ Ω and every z ∈ D .
The function f (z) is subordinate to F(z) in D , denoted by f ≺ F , if there exists

an w(z) ∈ Ω so that f (z) = F(w(z)) for all z ∈ D .
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For each r > 0 , let Dr := {z ∈ C | |z| < r} be the open disk of radius r . Then
the radius of convexity of f , denoted by r(f ) , is

r(f ) := sup{r > 0 | f (Dr) is convex}. (3)

If M is a class of functions f (z) regular in D , then the Koebe domain for M is
denoted by K(M) and it is the collection of points w such that w is in f (D) for every
function f (z) on D , i.e.,

K(M) =
⋂

f ∈M
f (D).

Suppose that the set M is invariant under rotations, so that eiα f (e−iαz) is in M
whenever f (z) is so. Then K(M) will be either the single point w = 0 or an open
disk |w| < R , in which case R is often easy to find. Indeed, suppose that we have a
sharp lower bound M(r) for |f (reiθ )| for all functions in M , and that M consists of
only univalent functions. Then

R = lim
r→1−

M(r) (4)

gives the disk |w| < R as the Koebe domain for the set M .
Suppose now that f : D → C is a sense-preserving homeomorphism (cf. [3]). For

each z ∈ D \ {∞, f −1(∞)} , let

H(z) = lim sup
r→0

L(z, r)
l(z, r)

,

where

L(z, r) = max
|z−w|=r

|f (z) − f (w)| and l(z, r) = min
|z−w|=r

|f (z) − f (w)|.

Then f is said k -quasiconformal, where 1 � k < ∞ , if H(z) is bounded in D \
{∞, f −1(∞)} and if H(z) � k almost everywhere in D [3]. Such a number k is
called the k -quasiconformality of f and is abbreviated by k -qc.

The following lemma, due to I. S. Jack [5], plays a crucial rôle in our investigation.

LEMMA 1.1. Let w(z) be regular in the open unit disk D , with w(0) = 0 . Then,
if |w(z)| attains its maximum value on the circle |z| = r < 1 at a point z0 , one has
z0w′(z0) = kw(z0) for some real k � 1 .

2. Main results

We will give now new distortion theorems, Koebe domain, k -qc, and the radius of
convexity for the class Ss.

THEOREM 2.1. If f ∈ Ss , then the odd starlike function

F(z) = f (z) − f (−z) = 2

(
z +

∞∑
k=1

a2k+1z
2k+1

)
(5)
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satisfies (
zf ′(z)

f (z) − f (−z)
+

zf ′(−z)
f (z) − f (−z)

− 1

)
≺ 2z2

1 − z2
, (6)

and the result is sharp as the function f (z) − f (−z) = 2z
1−z2 .

Proof. The function φ(z) = 2z
1−z maps |z| = r onto the disk centered at c(r) =

2r2

1−r2 with radius ρ(r) = 2r
1−r2 . Define the function w(z) by

f (z) − f (−z)
2z

= (1 − w(z))−2, (7)

where (1 − w(z))−2 has the value 1 at the origin. Then w(z) is analytic on D ,
w(0) = 0 , and

z
F′(z)
F(z)

=
zf ′(z)

f (z) − f (−z)
+

zf ′(−z)
f (z) − f (−z)

− 1 =
2zw′(z)
1 − w(z)

. (8)

Now, the subordination (2.2) is equivalent to |w(z)| < 1 for all z ∈ D . Indeed,
assume, on the contrary, that there exists a z0 ∈ D , max|z|=|z0| , such that |w(z)| attains
its maximum value on the circle |z| = r < 1 at the point z0 , i.e., |w(z0)| = 1 . Then,
by Lemma 1.1, we have z0w′(z0) = kw(z0) for some k � 1 , which implies that

z0
F′(z0)
F(z0)

=
z0f ′(z0)

f (z0) − f (−z0)
+

z0f ′(−z0)
f (z0) − f (−z0)

− 1

=
2kw(z0)

1 − w(z0)
= kφ(w(z0)) /∈ φ(D)

(2.5)

since |w(z0)| = 1 and k � 1 , contradicting (2.2). Hence |w(z)| < 1 for all z ∈ D .
On the other hand,

z
F′(z)
F(z)

=
zf ′(z)

f (z) − f (−z)
+

zf ′(−z)
f (z) − f (−z)

=
1 + w(z)
1 − w(z)

implies that

z
F′(z)
F(z)

=
zf ′(z)

f (z) − f (−z)
+

zf ′(−z)
f (z) − f (−z)

− 1 ≺ 2z
1 − z

,

which is required. The sharpness of the result follows from the fact that for F(z) =
f (z) − f (−z) = 2z

1−z2 , we get

z
F′(z)
F(z)

=
zf ′(z)

f (z) − f (−z)
+

zf ′(−z)
f (z) − f (−z)

− 1 =
2z2

1 − z2
. �

COROLLARY 2.2. If f ∈ Ss , then

r
1 + r2

� |f (z) − f (−z)| � r
1 − r2

(10)
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for |z| = r , and this result is sharp since the extremal function is

f∗(z) =
z

1 − z2
.

Proof. If F(z) is an odd starlike function, then [8]
r

1 + r2
� |F(z)| � r

1 − r2

for |z| = r , so, by Theorem 2.1, we obtain (2.6). �

COROLLARY 2.3. k -qc of the class Ss is 1
2 .

Poof. Using the inequality (2.6) for |z| = r , we get

1
2(1 + r2)

�
∣∣∣∣ f (z) − f (−z)

z − (−z)

∣∣∣∣ � 1
2(1 − r2)

,

and taking limit as r → 0 gives

H(z) � 1
2
. �

COROLLARY 2.4. If f ∈ Ss , then

1 − r
(1 + r2)(1 + r)

� |f ′(z)| � 1
(1 − r)2

(11)

for |z| = r.

Proof. By the definition of Sakaguchi and Carathéodory functions, we have

Re

(
zf ′(z)

f (z) − f (−z)

)
> 0 =⇒ zf ′(z) = (f (z) − f (−z))p(z) (12)

for some p(z) ∈ P . On the other hand, the well-known Carathéodory’s inequality [2]

1 − r
1 + r

� |p(z)| � 1 + r
1 − r

,

together with (2.8), yields (2.7) after simple calculations. �

COROLLARY 2.5. If f ∈ Ss , then

log
1 + r√
1 + r2

� |f (z)| � r
1 − r

.

Proof. Integrating (2.7) in Corollary 2.4 by [4, Theorem 7, p. 67], the result
follows. �

COROLLARY 2.6. The Koebe domain for the class Ss is the disk

|w| < log
√

2,

where w ∈ f (D) for f ∈ Ss.
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Proof. Follows immediately from (1.4) and Corollary 2.5. �

THEOREM 2.7. The radius of convexity of the class Ss is the only root rs of the
equation

r4 − 2r3 − 2r2 − 2r + 1 = 0

over the interval 0 < r < 1.

Proof. Let P(k) denote the class of functions p(z) having k -fold symmetry, i.e.,
functions of the form

p(z) = 1 + pkz
k + p2kz

2k + · · · = 1 +
∞∑
n=1

pnkz
nk

for which Re p(z) > 0 in D . Clearly, P(1) = P and

P(1) ⊃ P(2) ⊃ P(3) ⊃ · · · .

It is well-known that for p(z) ∈ P(k) , one has
∣∣∣∣p(z) − 1 + r2k

1 − r2k

∣∣∣∣ � 2rk

1 − r2k
,

which, for k = 2 , implies
∣∣∣∣p(z) − 1 + r4

1 − r4

∣∣∣∣ � 2r2

1 − r4
. (13)

On the other hand, taking logarithmic derivative in (2.8) gives

1 + z
f ′′(z)
f ′(z)

=
zf ′(z)

f (z) − f (−z)
+

zf ′(−z)
f (z) − f (−z)

+ z
p′(z)
p(z)

, (14)

and combining Theorem 2.1 and (2.9), we get

Re

(
zf ′(z)

f (z) − f (−z)
+

zf ′(−z)
f (z) − f (−z)

)
� 1 − r2

1 + r2
. (15)

Moreover, if p(z) ∈ P(1) , one has [1]

Re

(
z
p′(z)
p(z)

)
� − 2r

1 − r2
. (16)

Considering now (2.10), (2.11) and (2.12), we get

Re

(
1 + z

f ′′(z)
f ′(z)

)
� r4 − 2r3 − 2r2 − 2r + 1

1 − r4
.

Since the polynomial h(r) = r4 − 2r3 − 2r2 − 2r + 1 satisfies h(0) = 1 > 0
and h(1) = −4 < 0 , it has a root rs over (0, 1) , and a straightforward Mean Value
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Theorem argument shows that this is the only root of it over this interval. Thus, the
inequality

Re

(
1 + z

f ′′(z)
f ′(z)

)
> 0

is valid for |z| = r < rs , and taking into account (1.3), we conclude that the radius of
convexity for the class Ss is rs . �
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