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ON BEHAVIOUR OF THE RIESZ AND GENERALIZED

RIESZ POTENTIALS AS ORDER TENDS TO ZERO

A. D. GADJIEV, A. ARAL AND ILHAM A. ALIEV

Abstract. In this paper, we present the Riesz potentials Iα and the generalized Riesz potentials
Iαν as the families of positive linear operators, depending on parameter α > 0. We investigate
their pointwise convergence and convergence in the norm as α → 0. We investigate also the
order of approximation of these families and show in particular that the order of approximation
at the Lipschitz points is independent from Lipschitz degree.
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