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Abstract. In this paper, we present the Riesz potentials Iα and the generalized Riesz potentials
Iαν as the families of positive linear operators, depending on parameter α > 0. We investigate
their pointwise convergence and convergence in the norm as α → 0. We investigate also the
order of approximation of these families and show in particular that the order of approximation
at the Lipschitz points is independent from Lipschitz degree.

1. Introduction

The Riesz potentials Iα and the generalized Riesz potentials Iαν are defined in
terms of Fourier and Fourier-Bessel transforms, F and Fν , by the formulas

F (Iα f ) (x) = |x|−α F(f ) (x) , x ∈ R
n , α > 0 , (1.1)

Fν (Iαν f ) (x) = |x|−α Fν(f ) (x) , x ∈ R
n
+ , α > 0 , (1.2)

where the equalities are understood in the sense of distribution theory. These potentials

are interpreted as a negative fractional powers of the Laplace operator (−Δ) = −
n∑

k=1

∂2

∂x2
k
,

and the singular Laplace-Bessel differential operator (−Δν) = −
(

n∑
k=1

∂2

∂x2
k
+ 2ν

xn

∂
∂xn

)
,

respectively. The boundedness properties of these potentials and their inverses on the
relevant Lp (Rn, dm) spaces were studied by many authors (see [13], [12], [11], [2], [4],
[5] and references therein).

In this paper, we consider the potentials Iα and Iαν as families of linear positive
operators depending on a parameter α > 0, then we investigate the approximation
properties of these families as α tends to zero. Note that the classical Riesz and Bessel
kernels as approximations of the identity has been studied by T. Kurokawa [8]. (See
Remark 3.5 at the end of Section 3).

The paper is organized as follows. In Section 2 we give background with the basic
notations, definitions and auxiliary lemmas. The main results of the paper are given in
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Sections 3 and 4. In particular, in Section 3, it has been shown that lim
α→0

(Iαν f ) (x) =

f (x) , if x is the ”Lebesgue point” of f ∈ Lp, ν
(
Rn

+, x2ν
n dx

)
. The same statement

is true also for the classical Riesz potentials. In Section 4 we investigate the order
of approximation of a given function f by means of the Riesz potentials, using the
modulus of continuity of f . We show also that the order of approximation at the
Lipschitz points is independent from the Lipschitz degree of function f .

2. Preliminaries

Let x = (x1, . . . , xn−1, xn) ≡ (x′, xn) ∈ Rn; Rn
+ = {x ∈ Rn : xn > 0} . We

denote by Lp, ν ≡ Lp, ν
(
Rn

+
)

the class of measurable functions f on Rn
+ with the norm

‖f ‖p, ν =

⎛
⎜⎝∫

R
n
+

|f (x)|p x2ν
n dx

⎞
⎟⎠

1/p

< ∞,

where ν > 0 is a fixed parameter, 1 � p < ∞ and dx = dx1...dxn. The notation
Lp ≡ Lp (Rn) will be used for the Lebesgue space of functions with the norm ‖f ‖p =(∫

Rn
|f (x)|p dx

)1/p

. We set Sn−1
+ = {x ∈ Rn

+ : |x| = 1} and
∣∣Sn−1

+

∣∣ =
∫

Sn−1
+

θ2ν
n dθ.

The Fourier-Bessel transform of the function f : Rn
+ → C is defined by

(Fνf ) (y) =
∫
R

n
+

f (x) e−i x′·y′Jν− 1
2
(xnyn) x2ν

n dx, y ∈ R
n
+.

Here x′ · y′ = x1y1 + · · · + xn−1yn−1, Jλ (τ) = 2λΓ (λ + 1) τ−λJλ (τ) , Jλ (τ) is
the Bessel function of the first kind. The Fourier-Bessel harmonic analysis is adopted
to the generalized convolution

(f ⊗ g) (x) =
∫
R

n
+

f (y)
(
Tyg (x)

)
y2ν
n dy, x ∈ R

n
+,

where Ty is the generalized translation operator, acting according to the law

Tyg (x) =
Γ
(
ν + 1

2

)
Γ (ν)Γ

(
1
2

)
π∫
0

g

(
x′ − y′,

√
x2
n − 2xnyn cosα + y2

n

)
sin2ν−1 αdα (2.1)

(see [9], [7], [16],[4], [5] and [1]). The translation operator (2.1) represents the ordinary
(Euclidean) translation in x′ = (x1, . . . , xn−1) ∈ Rn−1 and the generalized (Bessel)
translation in xn−variable. It is known that (see, e.g. [10])

a) ‖Tyf ‖p, ν � ‖f ‖p, ν , ∀y ∈ R
n
+, 1 � p < ∞; (2.2)

b) ‖Tyf − f ‖p, ν → 0 as |y| → 0.
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By using (2.2)-a) and the Riesz-Thorin interpolation theorem, it is not difficult to prove
the corresponding Young inequality for the generalized convolution :

‖f ⊗ g‖r, ν � ‖f ‖p, ν ‖g‖q, ν , 1 � p, q, r � ∞,
1
p

+
1
q

=
1
r

+ 1. (2.3)

Given a function g : Rn
+ → C, we introduce the generalized maximal function

Mνg (x) = sup
r>0

1
rn+2νω (n, ν)

∫
B+

r

|Txg (y)| y2ν
n dy,

where

B+
r = {y : y ∈ R

n
+, |y| < r} and ω (n, ν) =

∫
B+

1

y2ν
n dy.

LEMMA 2.1. (See [14], [6]). Let f ∈ Lp, ν. Then

‖Mνf ‖p, ν � c ‖f ‖p, ν , 1 < p � ∞;

m {x : |Mνf (x)| > λ} � c ‖f ‖1, ν
/
λ , ∀λ > 0,

where m (E) =
∫
E
x2ν
n dx, E ⊂ Rn

+.

We now give the notion of “dν−point” of f : R
n
+→ C . Remind that a point

x ∈ Rn is called d−point of function f : Rn→ C , if

lim
h→0

1
hnΩn

∫
|y−x|�h

f (y) dy = f (x) , where Ωn =
∫
|x|<1

dx.

Analogously we give the following

DEFINITION 2.2. A point x ∈ Rn
+ is called dν−point of function f : Rn

+→ C, if

lim
r→0

1
rn+2νω (n, ν)

∫
B+

r

(
Tyf (x) − f (x)

)
y2ν
n dy = 0. (2.4)

By making use of the Lemma 2.1 and relevant maximal function technique (see
[13], p. 5–9) one can be prove that almost all points of Rn

+ are the dν−points of
f ∈ Lp, ν. Note that the definition of d−point associated with nonizotropic distance is
given in [3].

TheRiesz potentials Iα f and the generalizedRiesz potentials Iαν f , initially defined
in terms of Fourier and Fourier-Bessel transforms by (1.1) and (1.2) respectively, can
be represented as the integral operators of convolution type. Namely,

(Iα f ) (x) = cn(α)
∫
Rn

|y|α−n f (y − x) dy,
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where

cn(α) =
Γ
(

n−α
2

)
2απ n

2 Γ
(α

2

) , 0 < α < n, (2.5)

and

(Iαν f ) (x) = cn, ν (α)
∫
R

n
+

|y|α−n−2ν
(
Tyf (x)

)
y2ν
n dy,

where

cn, ν (α) =
Γ
(

n+2ν−α
2

)
2α−1π

n−1
2 Γ

(α
2

)
Γ
(
ν + 1

2

) , 0 < α < n + 2ν. (2.6)

The operator Iα f is well defined for f ∈ Lp (Rn) , 1 � p < ∞, if 0 < α < n
p ,

and the operator Iαν f is well defined for f ∈ Lp, ν, 1 � p < ∞, if 0 < α < n+2ν
p

(see, [13], [12], [4] and [5]).

LEMMA 2.3. For any r > 0

lim
α→0

cn, ν (α)
∫
B+

r

|y|α−n−2ν y2ν
n dy = 1. (2.7)

Proof. Setting Sn−1
+ = {y : y ∈ Rn

+, |y| = 1} and by passing to polar coordinates
y = ρθ, 0 < ρ < r, θ = (θ1, . . . , θn−1, θn) ∈ Sn−1

+ , we have∫
B+

r

|y|α−n−2ν y2ν
n dy =

rα

α

∫
Sn−1

+

θ2ν
n dθ =

rα

α
∣∣Sn−1

+

∣∣ .
Since (see [7], p. 15)

∣∣Sn−1
+

∣∣ def=
∫

Sn−1
+

θ2ν
n dθ = π

(n−1)
2

Γ
(
ν + 1

2

)
Γ
(

n+2ν
2

) ,

we have ∫
B+

r

|y|α−n−2ν y2ν
n dy =

1
α

rαπ
(n−1)

2
Γ
(
ν + 1

2

)
Γ
(

n+2ν
2

) , (2.8)

and therefore, by (2.6) and (2.8),

cn, ν (α)
∫
B+

r

|y|α−n−2ν y2ν
n dy =

Γ
(

n+2ν−α
2

)
rα

Γ
(

n+2ν
2

)
2αΓ

(
1 + α

2

) . (2.9)

Now the relation (2.7) is a simple consequence of (2.9). �

REMARK 2.4. It follows from (2.6) that

lim
α→0

cn, ν (α)
α

=
Γ
(

n+2ν
2

)
π

(n−1)
2 Γ

(
ν + 1

2

) ,
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and therefore,

cn, ν (α) ∼ cα as α → 0 ; c = Γ
(

n + 2ν
2

)/
π

(n−1)
2 Γ

(
ν +

1
2

)
. (2.10)

The similar arguments show that

lim
α→0

cn(α)
∫

|y|<r

|y|α−n dy = 1, ∀r > 0, and cn(α) ∼ cα as α → 0.

(here c = Γ
(

n
2

)/
2πn/2 ).

This Remark will be used below.
Here and below the letter c is used for a constant that can be different at each

occurrence. The notation C designates the class of all continuous functions on Rn , and
C (K) stands for the space of continuous functions on compact K with the sup-norm. We
will write “ϕ (α) = o (1) as α → 0 ” if lim

α→0
ϕ (α) = 0, and “ϕ (α) = O (ψ (α)) as

α → 0 ” if |ϕ (α)| � cψ (α) as α → 0.

3. The approximation properties of the families Iαν f and Iα f

In this section we investigate a convergence of the families Iαν f and Iα f as
α → 0.

THEOREM 3.1. Let f ∈ Lp, ν , 1 � p < ∞.

(i) If lim
x→x0

f (x) = l, l ∈ C, then lim
α→0

(Iαν f ) (x0) = l. (3.1)

In particular, if f is continuous at x0 ∈ R
n
+ , then lim

α→0
(Iαν f ) (x0) = f (x0) .

(ii) If f is real function and lim
x→x0

f (x) = ±∞ , then lim
α→0

(Iαν f ) (x0) = ±∞.

(iii) If f ∈ Lp, ν ∩ C for some 1 � p < ∞, then for any compact K ⊂ Rn
+

lim
α→0

‖Iαν f − f ‖C(K) = 0.

Proof. (i) Since Iαν is a linear operator, it can be assumed that f is a real valued
function and −∞ < l < ∞. Now the condition lim

x→x0

f (x) = l yields that for any ε > 0

one can find δ > 0 such that |x − x0| < δ implies

|Tyf (x0) − l| < ε , ∀y ∈ B+
δ . (3.2)

We have

(Iαν f ) (x0) − l = cn, ν (α)
∫
R

n
+

|y|α−n−2ν
(
Tyf (x0)

)
y2ν
n dy − l
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= cn, ν (α)
∫
B+
δ

|y|α−n−2ν
(
Tyf (x0) − l

)
y2ν
n dy

+l

⎛
⎜⎝cn, ν (α)

∫
B+
δ

|y|α−n−2ν y2ν
n dy − 1

⎞
⎟⎠

+cn, ν (α)
∫

R
n
+\B+

δ

|y|α−n−2ν
(
Tyf (x0)

)
y2ν
n dy

≡ i1 (α) + i2 (α) + i3 (α) .

By the Lemma 2.3, lim
α→0

i2 (α) = 0.

Using (3.2) and Lemma 2.3 we have

|i1 (α)| � cn, ν (α)
∫
B+
δ

|y|α−n−2ν |Tyf (x0) − l| y2ν
n dy

� εcn, ν (α)
∫
B+
δ

|y|α−n−2ν y2ν
n dy = O (1) ε as α → 0.

Since ε > 0 is arbitrary we have that lim
α→0

i1 (α) = 0.

Let us estimate i3 (α) . By making use of the Hölder’s inequality (cf. (2.3) with
r = ∞ ), and (2.2) we have

|i3 (α)| � cn, ν (α) ‖Tyf (x0)‖p, ν

⎛
⎜⎝∫

B+
r

|y|p′(α−n−2ν) y2ν
n dy

⎞
⎟⎠

1/p′

� Ap (α) cn, ν (α) ‖f ‖p, ν δ
α−(n+2ν)/p,

where 1
p + 1

p′ = 1, , and

Ap (α) =

⎧⎨
⎩

1 , if p = 1∣∣Sn−1
+

∣∣1/p′ (
(n + 2ν) (p′ − 1) − αp′

)−1/p′

, if p > 1.
(3.3)

Since Ap (α) = O (1) as α → 0 and lim
α→0

cn, ν (α) = 0, it follows that lim
α→0

i3 (α) = 0.

Thus, (3.1) is proved for a finite l.
(ii) The following calculations show that (3.1) is true also for l = ±∞. Let

lim
x→x0

f (x) = +∞ (the case of l = −∞ is proved analogously). For a given M > 0
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there exists δ > 0 such that Tyf (x0) > M for any y ∈ B+
δ . Using this observation we

get

(Iαν f ) (x0) = cn, ν (α)
∫
B+
δ

|y|α−n−2ν
(
Tyf (x0)

)
y2ν
n dy

+cn, ν (α)
∫

R
n
+\B+

δ

|y|α−n−2ν
(
Tyf (x0)

)
y2ν
n dy

� Mcn, ν (α)
∫
B+
δ

|y|α−n−2ν y2ν
n dy

−cn, ν (α)
∫

R
n
+\B+

δ

|y|α−n−2ν |Tyf (x0)| y2ν
n dy.

By the Hölder’s inequality,∫
R

n
+\B+

δ

|y|α−n−2ν |Tyf (x0)| y2ν
n dy � Ap (α) ‖f ‖p, ν δ

α−(n+2ν)/p,

where Ap (α) is defined as in (3.3). Now it follows that

(Iαν f ) (x0) � Mcn, ν (α)
∫
B+
δ

|y|α−n−2ν y2ν
n dy − Ap (α) cn, ν (α) ‖f ‖p, ν δ

α−(n+2ν)/p.

Owing to Lemma 2.3, the last expression yields

lim inf
α→0

(Iαν f ) (x0) � M, ∀M > 0,

and therefore
lim
α→0

(Iαν f ) (x0) = +∞.

(iii) Let f ∈ Lp, ν ∩ C, 1 � p < ∞ and K ⊂ R
n
+ be any compact set. Since f

is continuous on Rn
+ and uniformly continuous on K , given ε > 0 there exists δ > 0

such that sup
x∈K

|Tyf (x) − f (x)| < ε for any y ∈ B+
δ . For given x ∈ K we have

(Iαν f ) (x) − f (x) = cn, ν (α)
∫
B+
δ

|y|α−n−2ν
(
Tyf (x) − f (x)

)
y2ν
n dy

+f (x)

⎛
⎜⎝cn, ν (α)

∫
B+
δ

|y|α−n−2ν y2ν
n dy − 1

⎞
⎟⎠

+cn, ν (α)
∫

R
n
+\B+

δ

|y|α−n−2ν
(
Tyf (x)

)
y2ν
n dy. (3.4)
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Further,

‖Iαν f − f ‖C(K) � εcn, ν (α)
∫
B+
δ

|y|α−n−2ν y2ν
n dy

+ ‖f ‖C(K)

∣∣∣∣∣∣∣cn, ν (α)
∫
B+
δ

|y|α−n−2ν y2ν
n dy − 1

∣∣∣∣∣∣∣+ Ap (α) ‖f ‖p, ν cn, ν (α) ,

where Ap (α) is defined by (3.3). Now by making use of Lemma 2.3 and the fact that
lim
α→0

cn, ν (α) = 0 we have

lim
α→0

‖Iαν f − f ‖C(K) = 0.

The proof of the theorem is completed. �
The following analog of the Theorem 3.1 for the potentials Iα can be proved by

the same way.

THEOREM 3.2. Let f ∈ Lp , 1 � p < ∞ .
(i) If lim

x→x0

f (x) = l, then lim
α→0

(Iα f ) (x0) = l.

In particular, if f is continuous at x0 ∈ Rn, then lim
α→0

(Iα f ) (x0) = f (x0) .

(ii) If f is real function and lim
x→x0

f (x) = ±∞, then lim
α→0

(Iα f ) (x0) = ±∞.

(iii) If f ∈ Lp ∩ C for some 1 � p < ∞, then for any compact K ⊂ Rn

lim
α→0

‖Iα f − f ‖C(K) = 0.

The following statement strengthens the part (i) of Theorem 3.1, and shows that
the family Iαν f , α > 0 converges to f as α → 0 at the dν−points of f ∈ Lp, ν (i.e.
almost everywhere).

THEOREM 3.3. Let f ∈ Lp, ν , 1 � p < ∞. Then

lim
α→0

(Iαν f ) (x) = f (x)

for any dν−point x of f (i.e., almost everywhere).

Proof. Let x be a dν−point of f . Then owing to (2.4), given ε > 0 there exists
δ > 0 such that for 0 < ρ � δ∣∣∣∣∣∣∣

∫
B+
ρ

(
Tyf (x) − f (x)

)
y2ν
n dy

∣∣∣∣∣∣∣ � ω (n, ν) ρn+2νε. (3.5)

The last two terms of the right hand side of the equality (3.4) tend to zero as α → 0
by the same argument as in proof of the Theorem 3.1 Let us show that the first term in
(3.4) tends to zero at any dν−point of f ∈ Lp, ν. Setting

A (α) = cn, ν (α)
∫
B+
δ

|y|α−n−2ν
(
Tyf (x) − f (x)

)
y2ν
n dy,
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and passing to the polar coordinates, y = tθ, θ ∈ Sn−1
+ , 0 < t � δ, we get

A (α) = cn, ν (α)

δ∫
0

∫
Sn−1

+

tα−n−2ν
(
Ttθ f (x) − f (x)

)
θ2ν

n tn+2ν−1dtdθ. (3.6)

Set

F (ρ) =

ρ∫
0

→
∫

Sn−1
+

(
Ttθ f (x) − f (x)

)
θ2ν

n tn+2ν−1dtdθ, 0 < ρ � δ.

By virtue of (3.5) we have

|F (ρ)| � ω (n, ν) ρn+2νε. (3.7)

Taking in mind that

dF (ρ) =

⎛
⎜⎜⎝
∫

Sn−1
+

(
Tρθ f (x) − f (x)

)
θ2ν

n dθ

⎞
⎟⎟⎠ρn+2ν−1dρ,

we have from (3.6)

A (α) = cn, ν (α)

δ∫
0

ρα−n−2νdF (ρ)

= cn, ν (α)
(
ρα−n−2νF (ρ)

∣∣δ
0
− (α − n − 2ν)

) δ∫
0

F (ρ)ρα−n−2ν−1dρ.

By (3.7),
lim
ρ→0

ρα−n−2νF (ρ) = 0

for any α > 0, and therefore,

A (α) = cn, ν (α) F (δ) δα−n−2ν + cn, ν (α) (n + 2ν − α)

δ∫
0

F (ρ)ρα−n−2ν−1dρ.

We have by (3.7)∣∣∣∣∣∣
δ∫
0

F (ρ)ρα−n−2ν−1dρ

∣∣∣∣∣∣ � ω (n, ν) ε
δ∫
0

ρα−1dρ = ω (n, ν)
δα

α
ε.

Since cn, ν (α) = o (1) as α → 0 and 1
α cn, ν (α) = O (1) as α → 0 (cf. (2.10)) ,

it follows that
A (α) = o (1) + O (1) ε = O (1) ε as α → 0.
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The last estimate shows that lim
α→0

A (α) = 0 and the proof of the theorem is com-

pleted. �

By the same way it may be proved the following theorem on convergence of
(Iα f ) (x) as α → 0 in every d−point of f ∈ Lp, 1 � p < ∞.

THEOREM 3.4. Let f ∈ Lp (Rn) , 1 � p < ∞. Then

lim
α→0

(Iα f ) (x) = f (x)

for any d−point x of f (i.e., almost everywhere).

REMARK 3.5. The statement of Theorem 3.4 has been proved by T. Kurokawa
[8], using another method.

4. An estimate of approximation

In this section we estimate the order of approximation of a function f by means
of the families Iα f and Iαν f as α → 0 .

Let K ⊂ Rn be a compact and ωf (δ) be the modulus of continuity of f on K,
that is (see [15])

ωf (δ) = sup
|y|<δ

‖f (x + y) − f (x)‖C(K) .

THEOREM 4.1. Let f ∈ Lp ∩ C, 1 � p < ∞. Then there exists c = const such
that

‖Iα f − f ‖C(K) � cωf (α) as α → 0. (4.1)

Proof. For x ∈ K we can write ( cf. (3.4))

|(Iα f ) (x) − f (x)| � cn(α)
∫

|y|�1

|y|α−n |f (x + y) − f (x)| dy

+ |f (x)|

∣∣∣∣∣∣∣cn(α)
∫

|y|�1

|y|α−n dy − 1

∣∣∣∣∣∣∣
+cn(α)

∫
|y|>1

|y|α−n |f (x + y)| dy. (4.2)

We estimate each integral separately. To estimate the first expression on the right of
(4.2), we will use the following well known property of the modulus of continuity:

|f (x + y) − f (x)| � ωf (|y|) � ωf (α)
(

1 +
|y|
α

)
, α > 0.
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By making use of this estimate and Remark 2.4 we have

cn(α)
∫

|y|�1

|y|α−n |f (x + y) − f (x)| dy �

cn(α)ωf (α)

⎛
⎜⎝ 1
α

∫
|y|�1

|y|α−n+1 dy +
∫

|y|�1

|y|α−n dy

⎞
⎟⎠ � cωf (α) as α → 0. (4.3)

Further,

cn(α)
∫

|y|�1

|y|α−n dy−1 =
Γ
(

n−α
2

)
Γ
(

n
2

) 1

2αΓ
(α

2 + 1
)−1 =

Γ
(

n−α
2

)− Γ
(

n
2

)
2αΓ

(α
2 + 1

)
Γ
(

n
2

)
2αΓ

(α
2 + 1

) .

Since by L’Hospital law the limit

lim
α→0

Γ
(

n−α
2

)− Γ
(

n
2

)
2αΓ

(α
2 + 1

)
α

exists and is finite, we have

cn(α)
∫

|y|�1

|y|α−n dy − 1 = O(1)α as α → 0. (4.4)

Finally, the Hölder’s inequality with 1
p + 1

p′ = 1 yields

cn(α)
∫
|y|>1

|y|α−n |f (x + y)| dy � ‖f ‖p

(
p′
(

n
p
− α

))−1/p′

cn(α)

� c ‖f ‖p cn(α) � c ‖f ‖p α. (4.5)

(More simple calculations show that the same estimate is true when p = 1 ).
Now the estimation (4.1) follows from (4.3), (4.4) and (4.5), by taking into account

the following inequality:

α � 2
ωf (1)

ωf (α) , (α < 1). �

Our next goal is to estimate the order of approximation of function f at the
Lipschitz points. It follows from estimation (4.1) that if f ∈ Lipβ , then

‖Iα f − f ‖C(K) � cαβ as α → 0.

However the next theorem shows that the order of approximation at Lipschitz point is
independent from the Lipschitz degree β . We state this interesting result for general-
ized Riesz potentials Iαν . Note that the same statement is also true for classical Riesz
potentials Iα .
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DEFINITION 4.2. A point x ∈ Rn
+ is called a Lipschitz point of degree β > 0 of

function f : Rn
+→ C, if there exists δ > 0 and c > 0 such that the inequality

sup
|y|�h

|Tyf (x) − f (x)| � chβ .

holds for any h, 0 < h � δ.

THEOREM 4.3. Let f ∈ Lp, ν ∩ C, 1 � p < ∞ , and x ∈ Rn
+ be a Lipschitz point

(of degree β > 0 ) of function f . Then

(Iαν f ) (x) − f (x) = O (1)α as α → 0.

Proof. For the simplicity of the calculations, suppose δ = 1 in the Definition 4.2.
As in (3.4) we have

(Iαν f ) (x) − f (x) = cn, ν (α)
∫
B+

1

|y|α−n−2ν
(
Tyf (x) − f (x)

)
y2ν
n dy

+f (x)

⎛
⎜⎝cn, ν (α)

∫
B+

1

|y|α−n−2ν y2ν
n dy − 1

⎞
⎟⎠

+cn, ν (α)
∫

R
n
+\B+

1

|y|α−n−2ν
(
Tyf (x)

)
y2ν
n dy

≡ j1 (α) + j2 (α) + j3 (α) . (4.6)

Since x is a Lipschitz point (of degree β ) we get

|Tyf (x) − f (x)| � c |y|β , y ∈ B+
1 ,

and therefore

|j1 (α)| � ccn, ν (α)
∫
B+

1

|y|α−n−2ν+β |yn|2ν dy

= c
∣∣Sn−1

+

∣∣ cn, ν (α)
1

α + β
(2.10)
= O (1)α as α → 0. (4.7)

Let us estimate j3 (α) . Using the Hölder inequality we have

|j3 (α)| � cn, ν (α) ‖f ‖p, ν

⎛
⎜⎝ ∫

R
n
+\B+

1

|y|(α−n−2ν)p′ y2ν
n dy

⎞
⎟⎠

1/p′

= Ap (α) ‖f ‖p cn, ν (α) ,

where Ap (α) is defined by (3.3). Owing to (2.10) and (3.3) we get

j3 (α) = O (1)α as α → 0. (4.8)
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Let us estimate now the term j2 (α) . By passing to the polar coordinates we have∫
B+

1

|y|α−n−2ν |yn|2ν dy =

∣∣Sn−1
+

∣∣
α

,

where ∣∣Sn−1
+

∣∣ = ∫
Sn−1

+

θ2ν
n dθ =

π
n−1

2 Γ
(
ν + 1

2

)
Γ
(

n+2ν
2

) .

The simple calculations show that

j2 (α) ≡ cn, ν (α)
∫
B+

1

|y|α−n−2ν |yn|2ν dy − 1

=
Γ
(

n+2ν−α
2

)− 2αΓ
(
1 + α

2

)
Γ
(

n+2ν
2

)
2αΓ

(
1 + α

2

)
Γ
(

n+2ν
2

)
By making use of the L’Hospital law we have

lim
α→0

j2 (α)
α

=
1

Γ
(

n+2ν
2

) lim
α→0

Γ
(

n+2ν−α
2

)− 2αΓ
(
1 + α

2

)
Γ
(

n+2ν
2

)
α

= −1
2

(
Γ′ ( n+2ν

2

)
Γ
(

n+2ν
2

) + 2 ln 2 + Γ′ (1)

)
.

Therefore,
j2 (α) = O (1)α as α → 0. (4.9)

Finally, using (4.6), (4.7), (4.8) and (4.9) we get

(Iαν f ) (x) − f (x) = O (1)α as α → 0.

The proof is completed. �
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