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ON THE HYERS–ULAM–RASSIAS STABILITY
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(communicated by Th. M. Rassias)

Abstract. The purpose of this paper is to solve the generalized Hyers–Ulam stability problem for
a k –additive functional equation

Dm,if (x, y) = 0,

on the basis of direct method, where k=4m+i is a positive integer for each i = −1, 0, 1 and 2.

1. Introduction

In 1940, S. M. Ulam [28] gave a talk before the Mathematics Club of the University
of Wisconsin in which he discussed a number of unsolved problems. Among these was
the following question concerning the stability of homomorphisms.

We are given a group G and a metric group G′ with metric ρ(·, ·) . Given ε > 0 ,
does there exist a δ > 0 such that if f : G → G′ satisfies ρ(f (xy), f (x)f (y)) < δ for
all x, y ∈ G, then a homomorphism h : G → G′ exists with ρ(f (x), h(x)) < ε for all
x ∈ G ?

In 1941, D. H. Hyers [10] considered the case of approximately additive mappings
f : E → E′ , where E and E′ are Banach spaces and f satisfies Hyers inequality

‖f (x + y) − f (x) − f (y)‖ � ε

for all x, y ∈ E . It was shown that the limit L(x) = limn→∞
f (2nx)

2n exists for all x ∈ E
and that L : E → E′ is the unique additive mapping satisfying

‖f (x) − L(x)‖ � ε.

In 1978, Th. M. Rassias [23] provided a generalization of Hyers’ Theorem which
allows the Cauchy difference to be unbounded.

Let f : E → E′ be a mapping from a normed vector space E into a Banach space
E′ subject to the inequality

‖f (x + y) − f (x) − f (y)‖ � ε(‖x‖p + ‖y‖p) (1.1)
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for all x, y ∈ E , where ε and p are constants with ε > 0 and p < 1 . Then the limit
L(x) = limn→∞

f (2nx)
2n exists for all x ∈ E and L : E → E′ is the unique additive

mapping which satisfies

‖f (x) − L(x)‖ � 2ε

2 − 2p
‖x‖p (1.2)

for all x ∈ E . If p < 0 then inequality (1.1) holds for x, y �= 0 and (1.2) for x �= 0 .
Also, if the mapping from t to f (tx) is continuous in t , where t belongs to R , for
each fixed x in E , then L is R -linear.

In 1991, Z. Gajda [7] following the same approach as in Th. M. Rassias [23], gave
an affirmative solution to this question for p > 1 . It was shown by Z. Gajda [7], as well
as by Th. M. Rassias and P. Šemrl [24] that one cannot prove a Th. M. Rassias’ type
theorem when p = 1 . The inequality (1.1) that was introduced for the first time by Th.
M. Rassias [23] provided a lot of influence in the development of a generalization of the
Hyers–Ulam stability concept. This new concept of stability is known as generalized
Hyers–Ulam stability or Hyers–Ulam–Rassias stability of functional equations (cf. the
books of P. Czerwik[4], D. H. Hyers, G. Isac and Th. M. Rassias [12]).

P. Găvruta [8] provided a further generalization of Th. M. Rassias’ Theorem.
During the last two decades a number of papers and research monographs have been
published on various generalizations and applications of the generalized Hyers–Ulam
stability to a number of functional equations and mappings (see [9, 17, 18, 19, 25]).

Let both E1 and E2 be vector spaces. First, we introduce the following four
functional equations of different types in sequence

24m−1

[
2m∑
k=0

(
4m
2k

)
f (x+(m − k)y)

]
=

2m−1∑
k=0

(
4m

2k+1

)
f (2x+(2m−1−2k)y) (1.3)

for all 2 –dimensional vectors (x, y) ∈ E1 ×E1 , where m � 1. If m = 1 , this equation
reduces to

f (2x + y) + f (2x − y) = 2f (x + y) + 2f (x − y) + 12f (x), (1.4)

which is in fact a cubic functional equation and the authors [15] have proved that a
mapping f : E1 → E2 satisfies the equation (1.4) if and only if there exists a mapping
B : E1 × E1 × E1 → E2 such that f (x) = B(x, x, x) for all x ∈ E1, where B is
symmetric for each fixed one variable and additive for each fixed two variables. Further
they solved the generalized Hyers–Ulam stability problem for (1.4). In general we
are going to investigate the generalized Hyers–Ulam stability problem for the equation
(1.3).

Second, we consider the following functional equations

24m

[
2m∑
k=0

(
4m+1

2k

)
f (x+(m−k)y)

]
=

2m∑
k=0

(
4m+1
2k+1

)
f (2x+(2m−1−2k)y) (1.5)

for all 2 –dimensional vectors (x, y) ∈ E1 ×E1 , where m � 1. If m = 1 , this equation
reduces to

16[f (x + y) + 10f (x) + 5f (x − y)] = 5f (2x + y) + 10f (2x − y) + f (2x − 3y),
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which is equivalent to the following functional equation

f (x + 2y) + f (x − 2y) + 6f (x) = 4f (x + y) + 4f (x − y) + 24f (y) (1.6)

and has in fact as a solution f (x) = cx4 with c an arbitrary constant when f is a real
function. For this obvious reason, the above functional equation (1.6) is called a quartic
functional equation and every solution of the quartic functional equation is said to be
a quartic mapping [22]. In [3], Chung and Sahoo determined the general solution of
the quartic equation (1.6) without assuming any regularity conditions on the unknown
mapping f . On the other hand, it is easy to see that the solution f of (1.6) is even,
thus the above equation can be written in the following way

f (2x + y) + f (2x − y) + 6f (y) = 4f (x + y) + 4f (x − y) + 24f (x),

of which the general solution is determined by a symmetric biquadratic mapping B :
E1 ×E1 → E2 between real vector spaces E1, E2 such that f (x) = V(x) := B(x, x) for
all x ∈ E1 [16, 20].

Next, we will try to find the general solution of the following functional equations

24m+1

[
2m∑
k=0

(
4m+2
2k+1

)
f (x+(m−k)y)

]
=

2m+1∑
k=0

(
4m+2

2k

)
f (2x+(2m+1−2k)y) (1.7)

for all 2 –dimensional vectors (x, y) ∈ E1 ×E1 , where m � 0. If m = 0 , this equation
yields

f (2x + y) + f (2x − y) = 4f (x),

which is in fact a Cauchy–Jensen additive functional equation.
Finally we are going to investigate the generalized Hyers–Ulam stability problem

for the equations

24m+2

[
2m+1∑
k=0

(
4m+3
2k+1

)
f (x+(m−k)y)

]
=

2m+1∑
k=0

(
4m+3

2k

)
f (2x+(2m+1−2k)y) (1.8)

for all 2 –dimensional vectors (x, y) ∈ E1 ×E1 , where m � 0. If m = 0 , this equation
reduces to

12f (x) + 4f (x − y) = f (2x + y) + 3f (2x − y),

which is equivalent to the original quadratic functional equation

f (x + y) + f (x − y) = 2f (x) + 2f (y), (1.9)

and thus has general solution f (x) = B(x, x) for a unique symmetric biadditivemapping
B : E1 ×E1 → E2 ([1]). A stability problem for the quadratic functional equation (1.9)
was solved by a lot of authors [12, 13, 26, 27]. Furthermore, Jun and Lee [14] have
proved the Hyers–Ulam–Rassias stability of the Pexiderized quadratic equation (1.9).

In the present paper, we will solve the general solution of the equations (1.3), (1.5),
(1.7) and (1.8) and we are going to investigate the generalized Hyers–Ulam stability
problem for these equations collectively.
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2. General solution

Let S be a commutative semigroup with a zero element and Y a Banach space.
For functions f : S → Y, we define the linear difference operator Δhf by Δhf (x) :=
f (x + h) − f (x), x ∈ S . Similarly, we define Δ2

h1,h2
f (x) := Δh2 (Δh1 f (x)) and

Δn+1
h1,··· ,hn+1

f (x) := Δhn+1

(
Δn

h1,··· ,hn
f (x)

)
, n = 1, 2, · · · . Here we consider k –additive

mapping Vk : Sk → Y, that is, Vk(x1, x2, · · · , xk) is additive in each of its variables
when the others are fixed. We say that Vk is symmetric provided Vk(x1, x2, · · · , xk) =
Vk(y1, y2, · · · , yk) whenever (y1, y2, · · · , yk) is any permutation of (x1, x2, · · · , xk) ∈
Sk. If Vk : Sk → Y is symmetric and k –additive, let Vk

∗ denote the diagonalization
of Vk so that Vk

∗(x) = Vk(x, x, · · · , x) and note that Vk
∗(rx) = rkVk

∗(x) whenever
x ∈ S and r ∈ Q .

Now, the following functional equations

Δn
hf (x) := Δn

h,··· ,hf (x) = 0, or Δn
h1,··· ,hn

f (x) = 0

were studied and proved by M. Fréchet [6] and by S. Mazur and W. Orlicz [21], and
then by D. Djoković [5]. The Hyers–Ulam stability of these equations controlled by a
constant was established by D. H. Hyers [11] and by M. Albert and J. A. Baker [2].

LEMMA 2.1. A mapping f : E1 → Y satisfies the functional equation (1.3)
((1.5), (1.7) and (1.8), respectively) for all x, y ∈ E1 if and only if there exists a
symmetric k –additive mapping Vk : Ek

1 → Y such that f (x) = Vk(x, x, · · · , x) for all
x ∈ E1, where k = 4m− 1 (4m, 4m + 1 and 4m + 2, respectively ) .

Proof. Let f : E1 → Y satisfy the functional equation (1.3). By putting x = 0 or
y = 0 in (1.3), it then follows easily that f (0) = 0 and f (2x) = 2kf (x) for all x ∈ E1,
where k = 4m − 1 (4m, 4m + 1 and 4m + 2, respectively). If we replace y by 2y in
(1.3), one has

2m∑
k=0

(
4m
2k

)
f (x + 2(m − k)y) =

2m−1∑
k=0

(
4m

2k + 1

)
f (x + (2m − 1 − 2k)y)

for all 2 –dimensional vectors (x, y) ∈ E1 × E1 . Substitution of x with x + 2my into
the above equation yields

2m∑
k=0

(
4m
2k

)
f (x + (4m − 2k)y) =

2m−1∑
k=0

(
4m

2k + 1

)
f (x + (4m − 1 − 2k)y),

which is written in the form of bounded 4m–th differences

Δ4m
y f (x) :=

4m∑
k=0

(−1)k

(
4m

4m− k

)
f (x + ky) = 0

for all 2 –dimensional vectors (x, y) ∈ E1 × E1 . Thus f is a mapping vanishing
identically its k th difference with equal increments, where k = 4m (4m + 1, 4m + 2
and 4m + 3, respectively). The other three cases for (1.5), (1.7), (1.8) are similar
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to the above argument. Since f (2x) = 2kf (x) for all x ∈ E1, we conclude from
[5, 21] that there exists a symmetric k –additive mapping Vk : Ek

1 → Y such that
f (x) = Vk(x, x, · · · , x) for all x ∈ E1, where k = 4m − 1 (4m, 4m + 1 and 4m + 2,
respectively).

The converse is obvious. �
Thus it is natural that a mapping T : E1 → Y is called k –additive if the mapping

T satisfies k –additive functional equation, so called,

Dm,iT(x, y) = 0,

for all 2 –dimensional vectors (x, y) ∈ E1 × E1, where k = 4m + i � 1 is a positive
integer for each i = −1, 0, 1 and 2.

3. Hyers-Ulam-Rassias stability

For convenience, we denote the perturbing terms of the equations (1.3), (1.5),
(1.7) and (1.8) by Dm,−1f (x, y), Dm,0f (x, y), Dm,1f (x, y) and Dm,2f (x, y) , respectively,
as follows:

Dm,−1f (x, y) :=

24m−1

[
2m∑
k=0

(
4m
2k

)
f (x + (m − k)y)

]
−

2m−1∑
k=0

(
4m

2k + 1

)
f (2x + (2m − 1 − 2k)y),

Dm,0f (x, y) :=

24m

[
2m∑
k=0

(
4m + 1

2k

)
f (x + (m − k)y)

]
−

2m∑
k=0

(
4m + 1
2k + 1

)
f (2x + (2m − 1 − 2k)y),

Dm,1f (x, y) :=

24m+1

[
2m∑
k=0

(
4m + 2
2k + 1

)
f (x+(m−k)y)

]
−

2m+1∑
k=0

(
4m + 2

2k

)
f (2x + (2m + 1 − 2k)y),

and

Dm,2f (x, y) :=

24m+2

[
2m+1∑
k=0

(
4m + 3
2k + 1

)
f (x+(m−k)y)

]
−

2m+1∑
k=0

(
4m + 3

2k

)
f (2x + (2m + 1 − 2k)y)

for all 2 –dimensional vectors (x, y) ∈ E1 × E1.
In the following theorem, we are going to investigate the generalized Hyers–Ulam

stability problem for (4m + i)–additive functional equation

Dm,if (x, y) = 0,

for each i = −1, 0, 1 and 2 subject to (4m + i) � 1 . That is, we are looking for
conditions that an approximate mapping f of which the perturbing term satisfies the
inequality

‖Dm,if (x, y)‖ � φi(x, y)
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differing by an approximate remainder φi is asymptotically close to a true mapping Ti

satisfying
Dm,iTi(x, y) = 0

for each i = −1, 0, 1 and 2. We will also construct the true mapping near a given
approximate mapping with small error controlled by φi .

Let X be a topological vector space and let Y be a Banach space unless we give
any specific reference.

THEOREM 3.1. Suppose that for a fixed i = −1, 0, 1, 2 and a fixed nonnegative

integer m with (4m + i) � 1 and m =

{
m � 1 if i = −1 or 0,

m � 0 if i = 1 or 2,
a mapping

f : X → Y satisfies

‖Dm,if (x, y)‖ � φi(x, y) (3.1)

for all x, y ∈ X and the approximate remainder φi : X2 → R+ is a mapping such that
the series

∞∑
k=0

φi(2kx, 2ky)
rm,i

k

( ∞∑
k=1

rm,i
kφi(

x
2k

,
y
2k

), respectively

)

converges for all x, y ∈ X, where rm,i := 24m+i . Then there is a unique mapping
Tm,i : X → Y which satisfies the equation

Dm,iTm,i(x, y) = 0,

that is, Tm,i is (4m + i)–additive mapping, and the inequality

‖f (x) − Tm,i(x)‖ � 1
rm,i

2

∞∑
k=0

φi(2kx, 0)
rm,i

k(
‖f (x) − Tm,i(x)‖ � 1

rm,i
2

∞∑
k=1

rm,i
kφi(

x
2k

, 0)

) (3.2)

for all x ∈ X . The mapping Tm,i is given by

Tm,i(x) = lim
n→∞

f (2nx)
rm,i

n

(
Tm,i(x) = lim

n→∞ rm,i
nf (

x
2n

)
)

(3.3)

for all x ∈ X.
If, moreover, f is continuous, then Tm,i(rx) = r4m+iTm,i(x) for all r ∈ R and all

x ∈ X.

Proof. Step 1. We show that the following inequality∥∥∥∥f (x) − f (2nx)
rm,i

n

∥∥∥∥ � 1
rm,i

2

n−1∑
k=0

φi(2kx, 0)
rm,i

k
(3.4)

holds for all positive integer n and all x ∈ X, where rm,i := 24m+i .
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Substituting y with 0 in (3.1), we obtain∥∥∥∥f (x) − f (2x)
rm,i

∥∥∥∥ � φi(x, 0)
rm,i

2
(3.5)

for all x ∈ X. To use induction argument we assume that the inequality (3.4) holds for
all positive integer n and all x ∈ X. The inequality (3.5) and triangle inequality yield∥∥∥∥f (x) − f (2n+1x)

rm,i
n+1

∥∥∥∥ �
∥∥∥∥f (x) − f (2nx)

rm,i
n

∥∥∥∥+
1

rm,i
n

∥∥∥∥f (2nx) − f (2 · 2nx)
rm,i

∥∥∥∥
� 1

rm,i
2

n−1∑
k=0

φi(2kx, 0)
rm,i

k
+

φi(2nx, 0)
rm,i

n+2

=
1

rm,i
2

n∑
k=0

φi(2kx, 0)
rm,i

k

(3.6)

for all x ∈ X. Thus it follows by induction argument that the inequality (3.4) holds for
all positive integer n and all x ∈ X.

Step 2. We claim that the sequence { f (2nx)
rm,in

} is Cauchy in the Banach space Y.
In fact, we see that for n > l > 0∥∥∥∥ f (2lx)
rm,i

l
− f (2nx)

rm,i
n

∥∥∥∥ �
∥∥∥∥ f (2lx)

rm,i
l

− f (2l+1x)
rm,i

l+1

∥∥∥∥+ · · · +
∥∥∥∥ f (2n−1x)

rm,i
n−1

− f (2nx)
rm,i

n

∥∥∥∥
� 1

rm,i
2

n−l−1∑
k=0

φi(2l+kx, 0)
rm,i

l+k

→ 0 as l → ∞.

(3.7)

Therefore, we may define a mapping Tm,i : X → Y by

Tm,i(x) = lim
n→∞

f (2nx)
rm,i

n

for all x ∈ X. Then by letting n → ∞ in (3.4), we arrive at the formula (3.2).
Step 3. We show that the mapping Tm,i is a solution of the equation Dm,if (x, y) = 0

for each i = −1, 0, 1 and 2.
If we substitute 2nx, 2ny for x, y in (3.1) respectively, and divide the resulting

inequality by rm,i
n, and then take the limit as n → ∞, then we see that

‖Dm,iTm,i(x, y)‖ = lim
n→∞

1
rm,i

n

∥∥∥Dm,if (2nx, 2ny)
∥∥∥

� lim
n→∞

φi(2nx, 2ny)
rm,i

n
= 0

for all x, y ∈ X. Hence we find that Tm,i satisfies the equation Dm,if (x, y) = 0 for each
i = −1, 0, 1 and 2.
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Step 4. Let’s prove the uniqueness of the mapping Tm,i satisfying the equation

Dm,iTm,i(x, y) = 0

and the inequality (3.2) for each i = −1, 0, 1 and 2.
Assume that there is another mapping S : X → Y which satisfies the equation

Dm,iS(x, y) = 0

and the inequality (3.2) for each i = −1, 0, 1 and 2. Since Tm,i and S are (4m + i)–
additive, we obtain that for each i = −1, 0, 1 and 2,

S(2nx) = rm,i
nS(x) and Tm,i(2nx) = rm,i

nTm,i(x)

for all x ∈ X and n ∈ N. Hence it follows from (3.2) that

‖S(x) − Tm,i(x)‖ =
1

rm,i
n
‖S(2nx) − Tm,i(2nx)‖

� 1
rm,i

n
(‖S(2nx) − f (2nx)‖ + ‖f (2nx) − Tm,i(2nx)‖)

� 2
rm,i

2

∞∑
k=0

φi(2n+kx, 0)
rm,i

n+k

→ 0 as n → ∞.

for all x ∈ X . Hence we find immediately the uniqueness of Tm,i .
Step 5. The proof of assertion indicated by parentheses in the theorem is similarly

verified by the following inequality due to (3.5) and (3.4)

∥∥∥f (x) − rm,i
nf (

x
2n

)
∥∥∥ � 1

rm,i
2

n∑
k=1

rm,i
kφi(

x
2k

, 0)

for all x ∈ X . In this case, a mapping Tm,i : X → Y is well defined by

Tm,i(x) = lim
n→∞ rm,i

nf (
x
2n

)

for all x ∈ X by the similar method to (3.7). In particular, it should be noted that
Tm,i(0) = 0 since

∑∞
k=1 rm,i

kφi(0, 0) < ∞ and thus f (0) = 0 according to the fact of
φi(0, 0) = 0 .

Step 6. We prove that Tm,i is homogeneous of degree 4m+ i for all real numbers.
For each r in R, we choose a sequence {qk} of rational numbers such that

{qk} → r as k → ∞. Then f (2nqkx) → f (2nrx) by continuity of f as k → ∞. Since
the mapping Tm,i(x) = V4m+i(x, x, · · · , x) is (4m+ i) -additive by Lemma 2.1, one gets
Tm,i(kx) = k4m+iTm,i(x) for all integers k. Thus we lead to the relation

Tm,i(x) = Tm,i(k · x
k
) = k4m+iTm,i(

x
k
)
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for all integers k �= 0. Consequently it follows easily that Tm,i(qx) = q4m+iTm,i(x) for
all rational number q. Hence we figure out

Tm,i(rx) = lim
n→∞

f (2nrx)
rm,i

n
= lim

n→∞ lim
k→∞

f (2nqkx)
rm,i

n

= lim
n→∞ lim

k→∞
qk

4m+if (2nx)
rm,i

n
= lim

n→∞
r4m+if (2nx)

rm,i
n

= r4m+iTm,i(x)

for all x ∈ X. Therefore Tm,i is homogeneous of degree (4m + i) for all real numbers,
as desired. This completes the proof of the theorem. �

From the main Theorem 3.1, we obtain the following corollary concerning the
Hyers-Ulam-Rassias stability of the equation Dm,if (x, y) = 0 .

COROLLARY 3.2. Let X and Y be a normed space and aBanach space respectively.
Under the same notations given in Theorem 3.1 , let ε � 0, p �= 4m + i be real numbers.
Suppose that a mapping f : X → Y satisfies

‖Dm,if (x, y)‖ � ε(‖x‖p + ‖y‖p) (3.8)

for all x, y ∈ X (for all x, y ∈ X \ {0} if p � 0 ). Then there is a unique mapping
Tm,i : X → Y which satisfies the equation

Dm,iTm,i(x, y) = 0

and the inequality

‖f (x) − Tm,i(x)‖ � ε‖x‖p

rm,i|2p − rm,i| (3.9)

for all x ∈ X (for all x ∈ X \ {0} if p � 0 ). The mapping Tm,i is given by

Tm,i(x) = lim
n→∞

f (2nx)
rm,i

n
if p < 4m + i(

Tm,i(x) = lim
n→∞ rm,i

nf (
x

rm,i
n
) if p > 4m + i

)

for all x ∈ X.
Furthermore, if f is continuous, then for each x ∈ X, Tm,i(rx) = r4m+iTm,i(x) for

all r ∈ R.

Proof. Taking φi(x, y) := ε(‖x‖p+‖y‖p) in Theorem3.1 for each i = −1, 0, 1 and
2 , we obtain the conclusions concerning the stability of the equation Dm,if i(x, y) = 0 .
If furthermore f is continuous, then the mapping Tm,i : X → Y satisfies Tm,i(rx) =
r4m+iTm,i(x) for all x ∈ X and all r ∈ R by the same reasoning as the proof of Theorem
3.1. �

The following corollary implies theHyers–Ulam stability of the equation Dm,if (x, y) =
0, which is an immediate consequence of Theorem 3.1.
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COROLLARY 3.3. Let X and Y be a normed space and a Banach space, respec-
tively, and let ε � 0 be a real number. Under the same notations given in Theorem
3.1 , suppose that a mapping f : X → Y satisfies

‖Dm,if (x, y)‖ � ε (3.10)

for all x, y ∈ X . Then there is a unique mapping Tm,i : X → Y defined by Tm,i(x) =
limn→∞

f (2nx)
rm,in

which satisfies the equation

Dm,iTm,i(x, y) = 0

and the inequality

‖f (x) − Tm,i(x)‖ � ε
rm,i(rm,i − 1)

(3.11)

for all x ∈ X.
Further, if f is continuous, then Tm,i(rx) = r4m+iTm,i(x) holds for all x ∈ X and

all r ∈ R.

Thus as an application of Corollary 3.3, we answer the Hyers–Ulam question as
follows: Given ε > 0, there exists a δ(ε) := rm,i(rm,i − 1)ε > 0 such that if a mapping
f : X → Y satisfies

‖Dm,if (x, y)‖ � δ
for all x, y ∈ X, then there is a (4m+ i)–additive mapping Tm,i : X → Y which satisfies
the equation

Dm,iTm,i(x, y) = 0

and the inequality
‖f (x) − Tm,i(x)‖ � ε

for all x ∈ X.
The following corollary states that a continuous approximate real function of the

equation Dm,if (x, y) = 0 can be approximated by a polynomial of degree (4m + i),
exactly.

COROLLARY 3.4. Let φi be a such mapping given in Theorem 3.1 . Suppose that
a mapping f : R → R satisfies

‖Dm,if (x, y)‖ � φi(x, y)

for all x, y ∈ R . If f is continuous, then there is a unique polynomial Tm,i : R → R

defined by Tm,i(x) = Tm,i(1)x4m+i which satisfies the equation

Dm,iTm,i(x, y) = 0

and the inequality

‖f (x) − Tm,i(1)x4m+i‖ � 1
rm,i

2

∞∑
k=0

φi(2kx, 0)
rm,i

k(
‖f (x) − Tm,i(1)x4m+i‖ � 1

rm,i
2

∞∑
k=1

rm,i
kφi(

x
2k

, 0)

)

for all x ∈ X.
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Proof. From Theorem 3.1, we obtain the conclusions concerning the stability of
the equation Dm,if (x, y) = 0 for each i = −1, 0, 1 and 2 . Under the assumption
that f is continuous, the mapping Tm,i : R → R satisfies Tm,i(xr) = x4m+iTm,i(r) for
all x ∈ X and all r ∈ R by the same reasoning as the proof of Theorem 3.1. Thus
Tm,i(x) = x4m+iTm,i(1) is a polynomial satisfying the results stated in the corollary. �

4. Stability of Eq. (1.3) in Banach modules

In the last part of this paper, let B be a unital Banach algebra with norm | · | , and
let BM1 and BM2 be left Banach B–modules with norms || · || and ‖ · ‖ respectively.

As an application of the main Theorem 3.1 we are going to prove the generalized
Hyers-Ulam stability problem of the functional equation (1.3) in Banach modules over
a unital Banach algebra.

THEOREM 4.1. Let φ−1 : BM1 × BM1 → R+ be the mapping satisfying the
conditions in Theorem 3.1 . Suppose that for some positive integer m, a mapping
f : BM1 → BM2 satisfies

‖Du
m,−1f (x, y)‖ : =

∥∥∥24m−1
[ 2m∑

k=0

(
4m
2k

)
f (ux+(m−k)uy)

]

− u4m−1
2m−1∑
k=0

(
4m

2k+1

)
f (2x+(2m−1−2k)y)

∥∥∥
� φ−1(ux, uy)

(4.1)

for all u ∈ B(|u| = 1) and for all x, y ∈ BM1. If f is continuous, then there is a unique
(4m − 1)–additive mapping T−1 : BM1 → BM2 defined by (3.3) with i = −1 which
satisfies the equation

Dm,−1T−1(x, y) = 0, T−1(bx) = b4m−1T−1(x) (4.2)

and the inequality (3.2) with i = −1 for all b ∈ B and for all x, y ∈ BM1 .

Proof. By Theorem 3.1 it follows from the inequality of the statement for u = 1
that there is a unique (4m− 1)–additive mapping T−1 : BM1 → BM2 defined by (3.3)
with i = −1 which satisfies the equation

Dm,−1T−1(x, y) = 0

and the inequality (3.2) with i = −1 for all x, y ∈ BM1. Under the assumption that f
is continuous, the mapping T−1 satisfies

T−1(rx) = r4m−1T−1(x), ∀x ∈ BM1, ∀r ∈ R.

Replacing x, y by 2nx, 2ny in (4.1), respectively, and dividing it by rm,−1
n, we figure

out

‖Du
m,−1T−1(x, y)‖ = lim

n→∞
‖Du

m,−1f (2nx, 2ny)‖
rm,−1

n
� lim

n→∞
‖φ−1(2nux, 2nuy)‖

rm,−1
n

= 0
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for all u ∈ B(|u| = 1) and for all x, y ∈ BM1. Thus one concludes that T−1 satisfies

0 = Du
m,−1T−1(x, 0)

= 24m−1
2m∑
k=0

(
4m
2k

)
T−1(ux) − u4m−1

2m−1∑
k=0

(
4m

2k + 1

)
T−1(2x),

which yields

T−1(ux) = u4m−1T−1(x) (4.3)

for all u ∈ B(|u| = 1) and for all x ∈ BM1.
The last equality is also true for u = 0 vacuously. Now for each element b ∈ B

(b �= 0) we figure out by (4.3)

T−1(bx) = T−1(|b| · b
|b|x) = |b|4m−1 · T−1(

b
|b|x)

= |b|4m−1 · b4m−1

|b|4m−1
· T−1(x) = b4m−1T−1(x)

for all b ∈ B(b �= 0) and all x ∈ BM1. So the mapping T−1 satisfies

T−1(bx) = b4m−1T−1(x)

for all b ∈ B and for all x ∈ BM1, as desired. This completes the proof of the
theorem. �

Since C is a Banach algebra, the Banach spaces M1 and M2 are considered as
Banach modules over C . Thus we have the following corollary.

COROLLARY 4.2. Let φ−1 be the mapping defined in Theorem 4.1 . Let M1 and
M2 be Banach spaces over the complex field C. Suppose that a mapping f : M1 → M2

satisfies
‖Du

m,−1f (x, y)‖ � φ−1(ux, uy)

for all u ∈ C(|u| = 1) and for all x, y ∈ M1 . If f is continuous, then there is a unique
(4m − 1)–additive mapping T−1 : M1 → M2 which satisfies the equation (4.2) and
the inequality (3.2) with m = −1 for all b ∈ C and for all x, y ∈ M1 .

THEOREM 4.3. Let φ−1 be the mapping defined in Theorem 4.1 . Suppose that a
mapping f : BM1 → BM2 satisfies∥∥∥∥∥24m−1u4m−1

[ 2m∑
k=0

(
4m
2k

)
f (x+(m−k)y)

]
−

2m−1∑
k=0

(
4m

2k+1

)
f (2ux+(2m−1−2k)uy)

∥∥∥∥∥
� φ−1(ux, uy)

for all u ∈ B(|u| = 1) and for all x, y ∈ BM1. If f is continuous, then there is a unique
(4m− 1)–additive mapping T−1 : BM1 → BM2 defined by (3.3) with m = −1 which
satisfies the equation (4.2) and the inequality (3.2) with m = −1 for all b ∈ B and
for all x, y ∈ BM1 .
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Proof. The proof is similar to that of Theorem 4.1. �
The generalized Hyers–Ulam stability problem in Banach modules over a unital

Banach algebra for other cases,

‖Du
m,0f (x, y)‖ � φ0(ux, uy),

‖Du
m,1f (x, y)‖ � φ1(ux, uy),

and ‖Du
m,2f (x, y)‖ � φ2(ux, uy)

is proved by the same manner as that of Theorem 4.1.
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