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Abstract. For any Banach space X the n -th James constants Jn(X) and the n -th Khintchine
constants Kn

p,q(X) are investigated and discussed. Some new properties of these constants are
presented. The main result is an estimate of the n -th Khintchine constants Kn

p,q(X) by the n -th
James constants Jn(X) . In the case of n = 2 and p = q = 2 this estimate is even stronger and
improvs an earlier estimate proved by Kato-Maligranda-Takahashi [25].

Introduction

Several constants of a Banach space X = (X, ‖.‖) are used in the description of
its geometric properties. The James constant J(X) , the Jordan-von Neumann constant
CNJ(X) , the n -th James constants Jn(X) and the n -th Khintchine constants Kn

p,q(X)
are examples of such constants. We will derive some properties of these constants and
also investigate the relations among them.

Our main results are about estimates of the Jordan-von Neumann constant by the
James constant and also the n -th Khintchine constants by the n -th James constants.

In Section 1 we collect and discuss some properties of the constants J(X) and
CNJ(X) . Moreover, we prove a new estimate which improves the Kato-Maligranda-
Takahashi [25] estimate (see Theorem 1). In Section 2 we consider the n -th James
constants Jn(X) and collect their properties as the measure of B-convexity of a Banach
space X . We calculate them for Lp spaces by using Clarkson’s inequalities (see
Theorem 2). The n -th strong James constants Js

n(X) are also considered and a non-
trivial estimate of Jn(X) by Js

n(X) is proved (see Theorem 3). Our conjecture is that
Js
n(X) < Jn(X) for n � 3 .

In Section 3 the n -th Khintchine constants Kn
p,q(X) are considered with their

properties. We also calculate or estimate these constants for some classes of Banach
spaces.

In Section 4 the main result on an estimate of the n -th Khintchine constants Kn
p,q(X)

by the n -th James constants Jn(X) is presented and proved (see Theorem 4). Finally,
several facts concerning the constants Jn(X) and their close relation to the notion of

Mathematics subject classification (2000): 46B20, 46E30, 46A45, 46B25.
Key words and phrases: Banach spaces, James constant, Jordan-von Neumann constant, uniformly

non-square spaces, n -th James constants, B-convex spaces, Khintchine constants, type.

c© � � , Zagreb
Paper MIA-11-01

1



2 L. MALIGRANDA, L. I. NIKOLOVA, L.-E. PERSSON AND T. ZACHARIADES

type of an infinite dimensional Banach space X are pointed out (see e. g. Proposition
4). In particular, we prove the following formula: p(X) = sup{ ln n

ln Jn(X) , n � 2} , where
p(X) = sup{p : X is of type p} (see Theorem 5).

Finally, in the last Section 5 we investigate the relation between the n -th James
and the n -th Khintchine constants for isomorphic Banach spaces (see Theorem 6).

Throughout this paper we assume that X = (X, ‖.‖) is a real Banach space with
dimX � 2 . BX will denote the closed unit ball {x ∈ X : ‖x‖ � 1} of X and
SX = {x ∈ X : ‖x‖ = 1} is its unit sphere.

1. An estimate of the Jordan-von Neumann constant by the James constant

The James non-square constant of a Banach space X is the number J(X) defined
by

J(X) = sup{min(‖x + y‖, ‖x− y‖) : x, y ∈ BX},
and the Jordan-von Neumann constant CNJ(X) of X is defined by

CNJ(X) = sup

{‖x + y‖2 + ‖x − y‖2

2(‖x‖2 + ‖y‖2)
: x, y ∈ X not both zero

}
.

These constants have been studied by several authors (see e.g. Casini [4], Gao-Lau
[11], [12], Kato-Maligranda-Takahashi [25] and Kato-Maligranda [24]). Let us collect
some properties of these constants:

(i) J(X) = sup{min(‖x + y‖, ‖x− y‖) : x, y ∈ SX}.
(ii)

√
2 � J(X) � 2 and 1 � CNJ(X) � 2.

(iii) X is Hilbert space =⇒ J(X) =
√

2 and the converse is not true; CNJ(X) =
1 ⇐⇒ X is a Hilbert space.

(iv) J(X) < 2 ⇐⇒ CNJ(X) < 2 ⇐⇒ the space X is uniformly non-square, i.e.,
there exists a δ ∈ (0, 1) such that for any x, y ∈ SX either ‖x + y‖/2 � 1 − δ or
‖x − y‖/2 � 1 − δ .

(v) J(X∗∗) = J(X), max{√2, 2J(X) − 2} � J(X∗) � J(X)/2 + 1, and there
exists a two-dimensional Banach space X such that J(X∗) �= J(X) , where X∗ and X∗∗

are dual and the second dual of X; CNJ(X∗) = CNJ(X) .

(vi) If 1 � p � ∞ and dimLp(μ) � 2 , then J(Lp(μ)) = max{21/p, 21−1/p} and
CNJ(Lp(μ)) = max{22/p−1, 21−2/p} = 2|1−2/p| .

Kato-Maligranda-Takahashi [25] proved that

J(X)2/2 � CNJ(X) � J(X)2

(J(X) − 1)2 + 1
. (1)

Moreover, if X is not uniformly non-square, then we have equalities in (1) and there
exists a two-dimensional Banach space X for which J(X)2/2 < CNJ(X) .
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To improve the second inequality in (1) we will need the following lemma.

LEMMA 1. Let X be a normed space and x, y ∈ X with ‖x‖ � ‖y‖ . Then

min(‖x + y‖, ‖x− y‖) � ‖y‖ + [J(X) − 1] ‖x‖. (2)

Proof. Let x �= 0 (otherwise we have even equality). Then

‖x + y‖ = ‖‖x‖‖x‖x +
‖x‖
‖y‖y +

(
1 − ‖x‖

‖y‖
)

y‖

� ‖x‖‖ x
‖x‖ +

y
‖y‖‖ +

(
1 − ‖x‖

‖y‖
)
‖y‖

= ‖x‖‖ x
‖x‖ +

y
‖y‖‖ + ‖y‖ − ‖x‖

= ‖y‖ +
(
‖ x
‖x‖ +

y
‖y‖‖ − 1

)
‖x‖,

and, similarly, ‖x − y‖ � ‖y‖ +
(
‖ x
‖x‖ − y

‖y‖‖ − 1
)
‖x‖ , which gives

min (‖x + y‖, ‖x− y‖) � ‖y‖ +
[
min

(
‖ x
‖x‖ +

y
‖y‖‖, ‖

x
‖x‖ − y

‖y‖‖
)
− 1

]
‖x‖

� ‖y‖ + [J(X) − 1] ‖x‖.
Our improvement of (1) reads:

THEOREM 1. For any Banach space X we have

CNJ(X) � J(X)2

4
+ 1 +

J(X)
4

(√
J(X)2 − 4J(X) + 8 − 2

)
� J(X)2

2
+ 2 − J(X) � J(X)2

(J(X) − 1)2 + 1.
(3)

Proof. If J(X) = 2 , then we have equalities in (3). Therefore, we assume
that J(X) < 2 . To prove the first inequality in (3), let x, y ∈ X , not both zero and
‖x‖ � ‖y‖. Then for x′ = x

‖x‖+‖y‖ , y′ = y
‖x‖+‖y‖ , we have that

A :=
‖x + y‖2 + ‖x − y‖2

2 (‖x‖2 + ‖y‖2)
=

‖x′ + y′‖2 + ‖x′ − y′‖2

2 (‖x′‖2 + ‖y′‖2)
.

Since ‖x′ ± y′‖ = ‖x±y‖
‖x‖+‖y‖ � 1 it follows that

A � 1 + ‖x′ − y′‖2

2 (‖x′‖2 + ‖y′‖2)
and A � ‖x′ + y′‖2 + 1

2 (‖x′‖2 + ‖y′‖2)
.

Thus,

A � 1 + min (‖x′ + y′‖, ‖x′ − y′‖)2

2 (‖x′‖2 + ‖y′‖2)
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and, hence, by Lemma 1,

A � 1 + [ ‖y′‖ + (J(X) − 1) ‖x′‖ ]2

2 (‖x′‖2 + ‖y′‖2)
.

Note that ‖x′‖ + ‖y′‖ = 1 and ‖x′‖ = ‖x‖
‖x‖+‖y‖ � 1

2 , which gives that

A � 1 + [ 1 + (J(X) − 2) ‖x′‖ ]2

2
[
‖x′‖2 + (1 − ‖x′‖)2

] .

Now, consider the function

f (u) =
1 + [1 + (J − 2) u]2

u2 + (1 − u)2
for u ∈ [0,

1
2
] with J < 2.

Note that the derivative

f ′(u) =
2J
[
(2 − J)u2 − (4 − J)u + 1

]
[u2 + (1 − u)2]2

is zero at u1 = 4−J−
√

J2−4J+8
2(2−J) ∈ (0, 1

2 ) and u2 = 4−J+
√

J2−4J+8
2(2−J) > 1 . Therefore, for

u ∈ [0, 1
2 ] , we have that

f (u) � f (u1) =
J2

2
+ 2 +

J
2

√
J2 − 4J + 8 − J.

The second estimate in (3) follows easily from the following equivalences:

J2

4
+ 1 +

J
4

(√
J2 − 4J + 8 − 2

)
� J2

2
+ 2 − J

⇐⇒ J
√

J2 − 4J + 8 � J2 − 2J + 4

⇐⇒ J2(J2 − 4J + 8) � (J2 − 4J + 4)2

⇐⇒ 16J � 4J2 + 16

⇐⇒ 0 � 4(J − 2)2.

To prove the third estimate in (3) consider the function

g(t) =
t2

2
+ 2 − t − t2

(t − 1)2 + 1
for t ∈ [

√
2, 2]

and observe that the derivative g′(t) = t−1+2 (t−1)t
[(t−1)2+1]2 > 0 and, thus, g is increasing

with g(t) � g(2) = 0. The proof of (3) is complete.

The estimates (3) were proved independently in 2003 by Maligranda [31, Theo-
rem 1] and Nikolova-Persson-Zachariades [37, p. 8] (see also [38]) as an improvement
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of the upper Kato-Maligranda-Takahashi estimate in (1). Maligranda even formulated
the following conjecture (cf. [31] and [32]):

The estimate CNJ(X) � J(X)2

4
+ 1 holds for any Banach space X. (4)

Recently Saejung [42] published a paper with a contribution to the proof of this
Maligranda conjecture but his “proof” contains only a proof of the first estimate in
(3) and, thus, the conjecture is not really proved. Also Takahashi [43] announced the
estimate (3). Up to now we were able only to prove estimates (3) and therefore we can
still ask to prove or disprove the Maligranda conjecture.

2. B-convexity and the n -th James constants

Let us start with the notion of the uniformly non- l1n and B-convexity of a Banach
space X . These notions were introduced by James [15] and Beck [1].

For every natural number n � 2 we say, as inGiesy-James [14], that aBanach space
X is uniformly non- l1n if there exists a δ ∈ (0, 1) such that for every x1, . . . , xn ∈ BX

it holds that ‖∑n
k=1 θkxk‖ � n(1 − δ) for some choice of signs θ1, θ2, . . . , θn .

A Banach space X is called B-convex if it is uniformly non- l1n for some n � 2 .
In the connection to these two notions we consider the n -th James constants (or

the measure of uniformly non- l1n , or sometimes called the measure of B-convexity). For
given n ∈ N the n -th James constant Jn(X) of a Banach space X is defined by

Jn(X) := sup

{
min
θk=±1

∥∥∥∥∥
n∑

k=1

θkxk

∥∥∥∥∥ : x1, . . . , xn ∈ BX

}
.

Note that J1(X) = 1 , J2(X) is just the James constant J(X) discussed in Section
1 and Jn(l1) = Jn(l1m) = n for m � n (which can be seen by considering unit
vectors). We have also equality Jn(X) = inf{C > 0 : minθk=±1 ‖

∑n
k=1 θkxk‖ �

C maxk=1,2,...,n ‖xk‖ for all x1, x2, . . . , xn ∈ X}.
It is clear that X is uniformly non- l1n if and only if Jn(X) < n and X is B-convex

if and only if Jn(X) < n for some n � 2 .

The n -th James constants were studied by several authors e.g. Giesy [13, p.
117], Pisier [40, pp. 1-3], Woyczyński [46, pp. 340-343], Kalton [20, p. 248],
Kalton-Peck-Roberts [22, pp. 98-99], Kadets-Kadets [18, pp. 83-84], [19, p. 69] and
Diestel-Jarchow-Tonge [6, pp. 261-266]. It seems that these constants for the first time
explicitely appeared in 1966, in the paper by Giesy [13, p. 117], where he investigated
the numbers Gn(X) = sup

{
minθk=±1

1
n

∥∥∑n
k=1 θkxk

∥∥ : x1, . . . , xn ∈ BX

}
.

Let us collect some properties of n -th James constants:

(i) 1 � Jn(X) � n ; if dimX = ∞ , then Jn(X) �
√

n .

(ii) Jn(X) is increasing in n and subadditive in n , that is, Jm+n(X) � Jm(X) +
Jn(X) for all m, n ∈ N ; in particular, Jn+1(X) � Jn(X) + 1 .
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(iii) Jn(X) is submultiplicative sequence, i.e., Jmn(X) � Jm(X)Jn(X) for all
m, n ∈ N .

(iv) If X is a Hilbert space and dimX � n , then Jn(X) =
√

n ; the converse is not
true in general.

Before we give the proof of these properties let us prove a useful result concerning
n -James constants for finitely representable spaces. The notion of finitely representable
spaces was introduced by James in [16].

A Banach space X is said to be finitely representable in a Banach space Y if, for
every ε > 0 and for every finite-dimensional subspace X0 of X , there exists a subspace
Y0 of Y and an isomorphism T from X0 onto Y0 such that

1
1 + ε

‖x‖ � ‖Tx‖ � (1 + ε)‖x‖ for every x ∈ X0.

It is well-known that an infinite dimensional Banach space X is B -convex if and only
if l1 is finitely representable in X (see e.g. [6, p. 262] or [18, p. 69]).

PROPOSITION 1. If X is finitely representable in Y , then Jn(X) � Jn(Y) for every
n � 2 .

Proof. Let ε > 0 . Then there exists x1, . . . , xn ∈ BX such that Jn(X) − ε �
‖∑n

k=1 θkxk‖ for every θk = ±1 . Let X0 = [(xk)n
k=1] . Since X is finitely representable

in Y , there exists a linear one-to-one operator T from X0 into Y such that 1
1+ε ‖x‖ �

‖Tx‖ � (1 + ε)‖x‖ for every x ∈ X0 .
We put yk = T( 1

1+ε xk) for k = 1, . . . , n . Then yk ∈ BY for every k = 1, . . . , n
and for each θk = ±1 we have that∥∥∥∥

n∑
k=1

θkyk

∥∥∥∥ � 1
(1 + ε)2

∥∥∥∥
n∑

k=1

θkxk

∥∥∥∥ � 1
(1 + ε)2

(Jn(X) − ε).

Thus, Jn(Y) � 1
(1+ε)2 (Jn(X) − ε) for every ε > 0 and, hence, Jn(Y) � Jn(X) .

Proof. (i) The first part is clear. If dimX = ∞ then, according to Dvoretzky’s
theorem (see e.g. [7], [44]), it yields that l2 is finitely representable in X . Hence, from
Proposition 1 we obtain that

Jn(X) � Jn(l2) � min
θk±1

∥∥∥∥
n∑

k=1

θkek

∥∥∥∥
2

=
√

n,

where ek are unit vectors.
(ii) The first part is easy to prove by just taking zero as the (n + 1) -element. For

the proof of the second part we assume that m, n ∈ N and then for arbitrary ε > 0
there exist x0

1, . . . , x
0
m+n ∈ BX such that minθk=±1 ‖

∑m+n
k=1 θkx0

k‖ > Jm+n(X) − ε , i.e.
for any choice of signs θk = ±1 we have∥∥∥∥

m∑
k=1

θkx
0
k

∥∥∥∥+
∥∥∥∥

m+n∑
k=m+1

θkx
0
k

∥∥∥∥ > Jm+n(X) − ε.
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This means that

min
θk=±1

∥∥∥∥
m∑

k=1

θkx
0
k

∥∥∥∥ > Jm+n(X) − min
θk=±1

∥∥∥∥
m+n∑

k=m+1

θkx
0
k

∥∥∥∥− ε,

or

Jm(X) � min
θk=±1

∥∥∥∥
m∑

k=1

θkx
0
k

∥∥∥∥ > Jm+n(X) − min
θk=±1

∥∥∥∥
m+n∑

k=m+1

> θkx
0
k

∥∥∥∥− ε.

We have

Jm(X) � min
θk=±1

∥∥∥∥
m+n∑

k=m+1

θkx
0
k

∥∥∥∥ � Jm+n(X) − Jm(X) − ε

and, thus, Jm+n(X) � Jm(X) + Jn(X) since ε > 0 was arbitrary.
(iii) For the proof see Pisier [40, pp. 2-3], Kalton [20, p. 248], Woyczyński [46,

pp. 340-341], Kalton-Peck-Roberts [22, p. 99] and Diestel-Jarchow-Tonge [6, p. 261].
(iv) By the parallelogram law we have

min
θk±1

∥∥∥∥
n∑

k=1

θkxk

∥∥∥∥
2

�
∑

θk±1 ‖
∑n

k=1 θkxk‖2

2n
=

∑
θk±1

∑n
k=1 ‖xk‖2

2n
� n,

for x1, . . . , xn ∈ BX , and so Jn(X) � √
n . The equality follows from (i) in the infinite-

dimensional case. If dimX = n , then X is isometric to l2n and Jn(X) = Jn(l2n) �
√

n ,
which can be seen by considering the unit vectors. The proof is complete.

Some results concerning the n -th James constants for Lp spaces are presented in
the following theorem (cf. also Proposition 4):

THEOREM 2. If 1 � p � ∞ , then Jn(Lp(μ)) � max(n1/p, n1−1/p) . Moreover,
if 1 � p � 2 and dimLp(μ) � n , then Jn(Lp(μ)) = n1/p ; if 2 < p � ∞ and
dimLp(μ) = ∞ , then

√
n � Jn(Lp(μ)) � n1−1/p .

Proof. First, let 1 � p � 2 . In this case we have Clarkson’s inequality (cf. [5] or
[33])

‖x + y‖p
p + ‖x − y‖p

p � 2
(‖x‖p

p + ‖y‖p
p

)
,

which is valid for all x, y ∈ Lp(μ) . Then, by induction,

∑
θk±1

∥∥∥∥
n∑

k=1

θkxk

∥∥∥∥
p

p

� 2n
n∑

k=1

‖xk‖p
p for all x1, . . . , xn ∈ X.

In fact, by the Clarkson inequality and the induction assumption (for n− 1 ) we obtain
that

∑
θk±1

∥∥∥∥
n∑

k=1

θkxk

∥∥∥∥
p

p

=
∑
θk±1

∥∥∥∥
n−1∑
k=1

θkxk + xn

∥∥∥∥
p

p

+
∑
θk±1

∥∥∥∥
n−1∑
k=1

θkxk − xn

∥∥∥∥
p

p

� 2
∑
θk=±1

(∥∥∥∥
n−1∑
k=1

θkxk

∥∥∥∥
p

p

+ ‖xn‖p
p

)
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� 2

(
2n−1

n−1∑
k=1

‖xk‖p
p + 2n−1‖xn‖p

p

)

= 2n
n∑

k=1

‖xk‖p
p,

and, hence,

min
θk±1

∥∥∥∥
n∑

k=1

θkxk

∥∥∥∥
p

p

� 1
2n

∑
θk±1

∥∥∥∥
n∑

k=1

θkxk

∥∥∥∥
p

p

�
n∑

k=1

‖xk‖p
p. (5)

This implies that if x1, x2, . . . , xn ∈ BLp , then minθk±1 ‖
∑n

k=1 θkxk‖p � n1/p and,
hence, Jn(Lp(μ)) � n1/p .

Since dimLp(μ) � n we can find at least n pairwise disjoint subsets A1, . . . , An of
Ω such that 0 < μ(Ak) < ∞ for k = 1, . . . , n . Define xk =

χAk
μ(Ak)1/p for k = 1, . . . , n .

Then, for every choice of signs θ1, . . . , θn , we have that ‖∑n
k=1 θkxk‖p

p = n and, hence,
Jn(Lp(μ)) � n1/p .

For 2 � p < ∞ we use another Clarkson’s inequality (cf. [5] or [33])

‖x + y‖p
p + ‖x − y‖p

p � 2
(
‖x‖p′

p + ‖y‖p′
p

)p−1
,

from which we obtain the estimate

min
(‖x + y‖p

p, ‖x − y‖p
p

)
�
(
‖x‖p′

p + ‖y‖p′
p

)p−1

or
min
(
‖x + y‖p′

p , ‖x − y‖p′
p

)
� ‖x‖p′

p + ‖y‖p′
p .

These estimates give the required estimate for n -elements

min
θk=±1

∥∥∥∥
n∑

k=1

θkxk

∥∥∥∥
p

p

�
(

n∑
k=1

‖xk‖p′
p

)p−1

. (6)

In fact, by the first and second estimates above and the induction we obtain that

min
θk=±1

∥∥∥∥
n∑

k=1

θkxk

∥∥∥∥
p

p

= min
θk=±1

min

(∥∥∥∥
n−1∑
k=1

θkxk + xn

∥∥∥∥
p

p

,

∥∥∥∥
n−1∑
k=1

θkxk − xn

∥∥∥∥
p

p

)

� min
θk=±1

(∥∥∥∥
n−1∑
k=1

θkxk

∥∥∥∥
p′

p

+ ‖xn‖p′
p

)p−1

= min
θk=±1

[
min

(∥∥∥∥
n−2∑
k=1

θkxk + xn−1

∥∥∥∥
p′

p

+ ‖xn‖p′
p ,

∥∥∥∥
n−2∑
k=1

θkxk − xn−1

∥∥∥∥
p′

p

+ ‖xn‖p′
p

)]p−1
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�
[

min
θk=±1

∥∥∥∥
n−2∑
k=1

θkxk

∥∥∥∥
p′

p

+ ‖xn−1‖p′
p + ‖xn‖p′

p

]p−1

� . . .

� (
n∑

k=1

‖xk‖p′
p )p−1.

Hence, if x1, x2, . . . , xn ∈ BLp , then minθk±1 ‖
∑n

k=1 θkxk‖p � n1−1/p and we conclude
that Jn(Lp(μ)) � n1−1/p .

The estimate from below Jn(Lp(μ)) � √
n follows from the property (i) . The

proof is complete.

PROBLEM 1. Find the exact formula for Jn(Lp(μ)) when p > 2 and n � 3 .

It is well-known (see [6]) that a Banach space X is B-convex if and only if its dual
space X� is B-convex. In this connection and in view of the estimates (v) between the
James constants J(X) and J(X�) we can ask the following question:

PROBLEM 2. Find some relations between Jn(X) and Jm(X�) for m, n ∈ N and
n � 3 .

We can also consider the n -th strong James constants of a Banach space X defined
by

Js
n(X) := sup

{
min
θk=±1

∥∥∥∥
n∑

k=1

θkxk

∥∥∥∥ : x1, . . . , xn ∈ SX

}
.

Then, obviously Js
n(X) � Jn(X) and Js

3(X) < J3(X) for X = l∞2 (that is, when X = R
2

with the norm of x = (x1, x2) equal to ‖x‖ = max{|x1|, |x2|} ). In fact,

Js
3(l

∞
2 ) = 1 and J3(l∞2 ) � 2.

The first equality can be proved by considering two extreme cases x1 = (1, a), x2 =
(1, b), x3 = (1, c) and x1 = (1, a), x2 = (1, b), x3 = (c, 1) and the second estimate we
obtain by taking x1 = (1, 1), x2 = (−1, 1), x3 = (0, ε) with 0 < ε < 1 since then

J3(l∞2 ) � min{‖x1 + x2 + x3‖, ‖x1 + x2 − x3‖, ‖x1 − x2 + x3‖, ‖x1 − x2 − x3‖}
= min{2 + ε, 2 − ε, 2} = 2 − ε,

and our claim follows by letting ε → 0+ .
We don’t know any example of a Banach space X such that dimX � 3 and

Js
3(X) < J3(X) but we guess that only Js

2(X) = J2(X) for dimX � 2 . We easily see
that Js

n(l
1) = Js

n(l
1
m) = n for m � n and in the paper [34] it was proved that for the

Cesàro sequence spaces cesp, 1 < p � ∞ we have the equalities Js
n(cesp) = n for all

natural n � 2 , which means that they are not B-convex.

Our main result in this Section is to estimate Jn(X) by Js
n(X) constants.
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THEOREM 3. For any Banach space X and n � 2 we have the estimate

Jn(X) � 1
2

[
Js
n(X) − 1 +

√
(2n − Js

n(X) − 1)2 + 4n

]
. (7)

Proof. Denote for simplicity Js
n(X) = a . Let c = c(a) be a number from [0, 1]

which we will determine later on in a suitable way. For fixed x1, . . . , xn ∈ BX consider
two cases:

I. mink=1,2,...,n ‖xk‖ � c.
Then, for every choice of signs θk , we have that ‖∑n

k=1 θkxk‖ � c + n − 1.
II. mink=1,2,...,n ‖xk‖ > c.

There is a choice of signs θk such that

∥∥∥∥∑n
k=1 θk

xk
‖xk‖

∥∥∥∥ � Js
n(X) = a . Since

∥∥∥∥
n∑

k=1

θk

(
xk

‖xk‖ − xk

)∥∥∥∥ �
n∑

k=1

‖xk‖
(

1
‖xk‖ − 1

)

�
n∑

k=1

(
1
c
− 1

)
= n

(
1
c
− 1

)

it follows that for this choice of signs∥∥∥∥
n∑

k=1

θkxk

∥∥∥∥ �
∥∥∥∥

n∑
k=1

θk
xk

‖xk‖
∥∥∥∥+

∥∥∥∥
n∑

k=1

θk

(
xk

‖xk‖ − xk

)∥∥∥∥
�
∥∥∥∥

n∑
k=1

θk
xk

‖xk‖
∥∥∥∥+ n

(
1
c
− 1

)
� a + n

(
1
c
− 1

)
.

Putting these two cases together we obtain that∥∥∥∥
n∑

k=1

θkxk

∥∥∥∥ � max

{
c + n − 1, a + n

(
1
c
− 1

)}

and taking the supremum over all x1, . . . , xn ∈ BX we get that

Jn(X) � max

{
c + n − 1, a + n

(
1
c
− 1

)}
.

Denote the right hand side by f (c) and let us look for the minimum of this function on
[0, 1] . The minimum is attained at c = c0 when c + n − 1 = a + n

c − n . Considering
the function

g(c) = c2 − (a + 1 − 2n)c − n, c ∈ [0, 1]

we have that g(c0) = 0, g(0) = −n < 0 and g(1) = n − a � 0 . Thus c0 ∈ (0, 1] ;
more precisely, if a < n , then 0 < c0 < 1 and if a = n , then c0 = 1 . Also

c0 =
[
a + 1 − 2n +

√
(2n − a − 1)2 + 4n

]
/2 and, hence,

Jn(X) � c0 + n − 1 =
(
a − 1 +

√
(2n − a − 1)2 + 4n

)
/2,
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and the proof is complete.

Immediately from Theorem 3 (since a < n implies c0 < 1 ) we see that in the
definition of uniformly non- ln1 space we can have elements from the unit sphere or from
the unit ball (see also Kamińska-Turett [23, Lemma 2]).

COROLLARY 1. For any Banach space X and n � 2 it yields that Jn(X) < n if
and only if Js

n(X) < n .

We pose the following conjecture:

CONJECTURE. If Jn(X) < n , then Js
n(X) < Jn(X) for n � 3 and dimX � 3 .

3. Type and the n -th Khintchine constants of Banach spaces

For given n ∈ N , 0 < p, q � ∞ and a Banach space X , we define the n-th
Khintchine constants Kn

p,q(X) to be the smallest of all numbers C � 1 such that

(∫ 1

0

∥∥∥∥
n∑

k=1

rk(t)xk

∥∥∥∥
q

dt

) 1
q

� C

(
n∑

k=1

‖xk‖p

) 1
p

for every choice x1, . . . , xn ∈ X , where {rk}n
k=1 are the Rademacher functions. If

X = R with the absolute value as the norm, then we will write Kn
p,q(R) . Moreover, for

p = q we denote these constants by tp,n(X) as the numbers connected with the type
p of the space X and if p = q = 2 we denote them shortly by tn(X) as the numbers
connected with the type 2 of the space X . Note that t2(X) =

√
CNJ(X) .

REMARK 1. For 0 < q < ∞ we have equality∫ 1

0

∥∥∥∥
n∑

k=1

rk(t)xk

∥∥∥∥
q

dt =
1
2n

∑
θk=±1

∥∥∥∥
n∑

k=1

θkxk

∥∥∥∥
q

. (8)

A Banach space X is of type p , 1 � p � 2 , if Tp,q(X) := supn∈N
Kn

p,q(X) < ∞.
Pisier [39] proved in 1973 that a Banach space X has non-trivial type, i.e., is of type
p > 1 if and only if it is B-convex.

The Khintchine constants Kn
p,q(X) for some choices of p, q were studied by

several authors, e.g. Pisier [39], [40] in 1973, Enflo-Lindenstrauss-Pisier [8] in 1975
and Figiel-Lindenstrauss-Milman [10] in 1977 considered tn(X) , Maurey-Pisier [33]
in 1976, Woyczyński [46] in 1978, and Milman-Schechtman [36] in 1986 investigated
tp,n(X) for 1 � p � 2 . Let us collect some properties of these constants in the next
proposition:

PROPOSITION 2. The following properties for the n -th Khintchine constants hold
(i) 1 � Kn

p,q(R) � Kn
p,q(X) � n(1−1/p)+ .

(ii) Kn
p,q(X) are increasing in n, p, q , Kn

1,1(X) = 1 and Kn
p,q(X) � n

1
r − 1

p Kn
r,q(X)

for all 0 < q � ∞, 0 < r � p � ∞ .
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(iii) If 1 � q < ∞ , then Kn
p,q(X) are subadditive in n , that is, Km+n

p,q (X) �
Km

p,q(X) + Kn
p,q(X) for all m, n ∈ N .

(iv) If 0 < p � q < ∞ , then Kn
p,q(X) are submultiplicative in n , that is,

Kmn
p,q(X) � Km

p,q(X)Kn
p,q(X) for all m, n ∈ N .

(v) If X is a Hilbert space, then Kn
p,q(X) = 1 for 0 < p, q � 2 ; Kn

2,2(X) = 1
for n � 2 if and only if X is a Hilbert space.

(vi) If 1 � r < ∞ and 0 < p � r � q < ∞ , then Kn
p,q(Lr(μ)) = Kn

p,q(R) . In
particular, if 1 � r � ∞ and 0 < p � r � q � 2 , then Kn

p,q(L
r(μ)) = 1 .

Proof. (i) There exists x ∈ X with ‖x‖ = 1 . Take xk = akx, k = 1, . . . , n , with
arbitrary ak ∈ R . Then Kn

p,q(X) � Kn
p,q(R) . Moreover, for every x1, x2, . . . , xn ∈ X ,(∫ 1

0

∥∥∥∥
n∑

k=1

rk(t)xk

∥∥∥∥
q

dt

) 1
q

�
n∑

k=1

‖xk‖ � n(1−1/p)+

(
n∑

k=1

‖xk‖p

) 1
p

.

(ii) This follows from the properties of the lpn and Lp[0, 1] spaces.
(iii) This statement for tn(X) can be found in Pisier [40, p. 7] and for tp,n(X) in

Woyczyński [46, p. 344]. We can easily see that the subadditivity of Kn
p,q(X) holds if

q � 1 . This follows directly from the following two estimates(∫ 1

0

∥∥∥∥
m+n∑
k=1

rk(t)xk

∥∥∥∥
q

dt

)1/q

�
(∫ 1

0

∥∥∥∥
m∑

k=1

rk(t)xk

∥∥∥∥
q

dt

)1/q

+

(∫ 1

0

∥∥∥∥
m+n∑

k=m+1

rk(t)xk

∥∥∥∥
q

dt

)1/q

and (∫ 1

0

∥∥∥∥
m+n∑

k=m+1

rk(t)xk

∥∥∥∥
q

dt

)1/q

� Kn
p,q(X)

(
m+n∑

k=m+1

‖xk‖p

)1/p

.

(iv) This statement for tn(X) was proved by Pisier [39, pp. 991-992], [40, pp.
7-8], Enflo-Lindenstrauss-Pisier [8, p. 200] and Figiel-Lindenstrauss-Milman [10, p.
82] (see also Beauzamy [2, p. 313], Diestel-Jarchow-Tonge [6, p. 265], Wojtaszczyk
[45, p. 142]). For tp,n(X) it was proved by Maurey-Pisier [33, p. 71], Woyczyński [46,
p. 345] and Milman-Schechtman [36, p, 86] (see also Benyamini-Lindenstrauss [3, p.
443]).

We modify the proof in [36] and [3], where the statement (iv) was proved for p = q ,
and prove it for p � q . Let m, n ∈ N and x1, . . . , xmn ∈ X . For each k = 1, . . . , n
and t ∈ [0, 1] define

yk(t) :=
km∑

j=(k−1)m+1

rj(t)xj.

Then ∫ 1

0
‖yk(t)‖qdt � Km

p,q(X)q

⎛
⎝ km∑

j=(k−1)m+1

‖xj‖p

⎞
⎠

q/p

.
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The products {rk(s)rj(t)} have the same joint distribution as {rj(t)} . Hence, by the
Minkowski inequality (since q/p � 1 ),
∫ 1

0

∥∥∥∥
mn∑
j=1

rj(t)xj

∥∥∥∥
q

dt =
∫ 1

0

∫ 1

0

∥∥∥∥
n∑

k=1

rk(s)yk(t)
∥∥∥∥

q

dsdt

� Kn
p,q(X)q

∫ 1

0

( n∑
k=1

‖yk(t)‖p

)q/p

dt

� Kn
p,q(X)q

[
n∑

k=1

(∫ 1

0
‖yk(t)‖qdt

)p/q
]q/p

� Kn
p,q(X)q

⎧⎪⎨
⎪⎩

n∑
k=1

⎡
⎣Km

p,q(X)q

( km∑
j=(k−1)m+1

‖xj‖p

)q/p
⎤
⎦

p/q
⎫⎪⎬
⎪⎭

q/p

= Kn
p,q(X)qKm

p,q(X)q

( n∑
k=1

km∑
j=(k−1)m+1

‖xj‖p

)q/p

= Kn
p,q(X)qKm

p,q(X)q

( mn∑
j=1

‖xj‖p

)q/p

,

i.e., Kmn
p,q(X) � Km

p,q(X)Kn
p,q(X) .

(v) If X is a Hilbert space, then Kn
2,2(X) = 1 and the rest of the proof follows

from the properties (i) and (ii).
(vi) In fact, by using the Minkowski inequality twice we obtain that

∫ 1

0

∥∥∥∥
n∑

k=1

rk(t)xk

∥∥∥∥
q

r

dt =
∫ 1

0

(∫
Ω

∣∣∣∣
n∑

k=1

rk(t)xk(s)
∣∣∣∣
r

dμ(s)
)q/r

dt

�
[∫

Ω

(∫ 1

0

∣∣∣∣
n∑

k=1

rk(t)xk(s)
∣∣∣∣
q

dt

)r/q

dμ(s)

]q/r

� Kn
p,q

[∫
Ω

( n∑
k=1

|xk(t)|p
)r/p

dμ(s)

]q/r

� Kn
p,q

[
n∑

k=1

(∫
Ω
|xk(t)|r dμ(s)

)p/r
]q/p

= Kn
p,q

(
n∑

k=1

‖xk‖p
r

)q/p

.

Hence Kn
p,q(L

r(μ)) � Kn
p,q and the reversed inequality follows from (i) . The proof is

complete.
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COROLLARY 2. For any Banach space X, 0 < p � q < ∞ and n � 2 we have

Kn+1
p,q (X) � K2

p,q(X)Kn
p,q(X) and Kn

p,q(X) �
[
K2

p,q(X)
]n−1

. (9)

In fact, using properties (ii) and (iv) in Proposition 2 we obtain that

Kn+1
p,q (X) � K2n

p,q(X) � K2
p,q(X)Kn

p,q(X)

and then

Kn
p,q(X) � K2

p,q(X)Kn−1
p,q (X) �

[
K2

p,q(X)
]2

Kn−2
p,q (X) � . . . �

[
K2

p,q(X)
]n−1

.

PROBLEM 3. Is Kn
p,q(X) a submultiplicative function of n for p > q > 0 ?

Let us note that Pisier [41] proved the equality Kn
2,2(l

p
m) = [min(m, n)]1/p−1/2 for

1 � p � 2 and by using this equality he proved that for any n � 2 and any C ∈ [1,
√

n]
there exists a Banach space X such that Kn

2,2(X) = C .

4. An estimate of the n-th Khintchine constants by the n-th James constants

Our main result is an estimate of the n -th Khintchine constants by the n -th James
constants. For the proofwe need the following crucial lemma (corresponding to Lemma
1), which has been proved in Kutzarova-Nikolova-Zachariades [29, Lemma 6].

LEMMA 2. Let X be a normed space and n � 2 . Then, for every x1, x2, . . . , xn ∈
X , with ‖xn‖ � ‖xk‖ for k = 1, 2, . . . , n − 1 , there exist θ1, . . . , θn ∈ {−1, 1} such
that ∥∥∥∥

n∑
k=1

θkxk

∥∥∥∥ �
n−1∑
k=1

‖xk‖ + [Js
n(X) − n + 1] ‖xn‖.

Proof (see also [29]). If xn = 0 the statement in the lemma is clear. Let xn �= 0 .
Then there exists a choice of signs θ1, . . . , θn such that ‖∑n

k=1 θk
xk

‖xk‖‖ � Js
n(X) and,

hence, we have that∥∥∥∥
n∑

k=1

θkxk

∥∥∥∥ =
∥∥∥∥

n∑
k=1

θk

(
1 − ‖xn‖

‖xk‖
)

xk +
n∑

k=1

θk
‖xn‖
‖xk‖xk

∥∥∥∥
�

n∑
k=1

(
1 − ‖xn‖

‖xk‖
)
‖xk‖ + ‖xn‖

∥∥∥∥
n∑

k=1

θk
xk

‖xk‖
∥∥∥∥

�
n−1∑
k=1

‖xk‖ + [Js
n(X) − n + 1] ‖xn‖.

Our main result reads:
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THEOREM 4. Let X be a Banach space X, 1 � p, q � ∞ and n � 2 . Then

Jn(X)

n
1
p

� Kn
p,q(X) � 1

2
n−1

q

[
2

(n−1)p′
q (n − 1) + c

p′
q

n

] 1
p′

, (10)

where cn = aq
n + 2n−1 − 1 and an = [Js

n(X) − n + 1]+ . For p = 1 the right hand side
in (10) if it is as usual interpreted is equal to 1 .

Proof. It is clear that

min
θk=±1

∥∥∥∥
n∑

k=1

θkxk

∥∥∥∥ �

⎛
⎝ 1

2n

∑
θk=±1

∥∥∥∥∑ θkxk

∥∥∥∥
q
⎞
⎠

1
q

� Kn
p,q(X)

(
n∑

k=1

‖xk‖p

) 1
p

� Kn
p,q(X) n

1
p ,

which gives the left hand side inequality of (10). It is also clear that Jn(X) � Kn
∞,q(X) .

To prove the upper estimate in (10) we may suppose, without loss of generality,
that x1, . . . , xn ∈ X are not all zero, ‖xn‖ � ‖xk‖ for every k = 2, 3, . . . , n − 1 and∑n−1

k=1 ‖xk‖ = 1 .
Let 1 < p < ∞ and 1 � q < ∞ . By using Lemma 2 and Minkowski’s inequality, we
obtain that

1

2
1
q

[∑
θk±1

∥∥∥∥∑ θkxk

∥∥∥∥
q] 1

q

�
[(n−1∑

k=1

‖xk‖ + an‖xn‖
)q

+ (2n−1 − 1)
(n−1∑

k=1

‖xk‖ + ‖xn‖
)q
] 1

q

�
[
2n−1

(
n−1∑
k=1

‖xk‖
)q] 1

q

+
[
aq

n‖xn‖q + (2n−1 − 1)‖xn‖q
] 1

q

= 2
n−1

q + c
1
q
n ‖xn‖.

Hence

Kn
p,q(X) � 2

n−1
q + c

1
q
n ‖xn‖

2
n−1

q (
∑n

k=1 ‖xk‖p)
1
p

.

Moreover, according to Hölder’s inequality,

1 =
n−1∑
k=1

‖xk‖ � (n − 1)
1
p′ (

n−1∑
k=1

‖xk‖p)
1
p ,
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where 1
p + 1

p′ = 1 , and, thus,
∑n−1

k=1 ‖xk‖p � (n − 1)1−p . We conclude that

Kn
p,q(X) � 2

n−1
q + c

1
q
n ‖xn‖

2
n−1

q (‖xn‖p + (n − 1)1−p)
1
p

.

We consider the function f (t) = 2
n−1

q +c
1
q
n t

2
n−1

q (tp+(n−1)1−p)
1
p

for t � 0 . It is easy to see that

f (t) � f (t0) , where t0 = c
1

q(p−1)
n

(n−1)2
n−1

q(p−1)

. Thus, we obtain that

Kn
p,q(X) � 1

2
n−1

q

[
2

(n−1)p′
q (n − 1) + c

p′
q

n

] 1
p′

.

Therefore the right hand side inequality of (10) holds,
If p = 1 , then the estimate Kn

1,q(X) � 1 is clear and the right hand side is equal to

2(1−n)/q max{2(n−1)/q, . . . , 2(n−1)/q, c1/q
n } = 1.

If p = ∞ , then p′ = 1 and 1 =
∑n−1

k=1 ‖xk‖ � (n − 1) maxk=1,...,n−1 ‖xk‖ from
which it follows that

max
k=1,...,n

‖xk‖ = max
k=1,...,n−1

‖xk‖ � 1
n − 1

and, thus,

Kn
∞,q(X) � 2

n−1
q + c

1
q
n ‖xn‖

2
n−1

q maxk=1,...,n ‖xk‖
�

2
n−1

q + c
1
q
n

1
n−1

2
n−1

q 1
n−1

.

This gives the required estimate Kn
∞,q(X) � n − 1 + c

1
q
n

2
n−1

q
.

If q = ∞ , then

max
θk=±1

∥∥∥∥
n∑

k=1

θkxk

∥∥∥∥ �
n−1∑
k=1

‖xk‖ + ‖xn‖ = 1 + t,

and

Kn
p,∞(X) � 1 + t

(
∑n

k=1 ‖xk‖p)1/p
� 1 + t

[tp + (n − 1)]1/p
:= g(t).

The function g has maximum at t0 = 1
n−1 and, hence, g(t) � g(t0) = n1/p′ , which is

again the right hand side of (10) and the proof is complete.

We will now point out some direct consequences of Theorem 4.

COROLLARY 3. If n � 2 , then

Jn(X)√
n

� tn(X) = Kn
2,2(X) � 2

1−n
2

{
2n−1n − 1 + [Js

n(X) − n + 1]2+
}

.
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In particular, J(X)2

2 � CNJ(X) = K2
2,2(X)2 � J(X)2

2 + 2 − J(X) .

Pisier [39] proved that a Banach space X is uniformly non- l1n if and only if
Kn

2,2(X) <
√

n . By using the the estimates (10) we can state similar result for the n -th
Khintchine constants Kn

p,q(X) .

COROLLARY 4. An infinite dimensional Banach space X is uniformly non- l1n if
and only if Kn

p,q(X) < n1/p′ for 1 < p � ∞, 1 � q < ∞ .

COROLLARY 5. Let X be a Banach space. For n � 2 and 1 < p � ∞, 1 � q < ∞
fixed we have that Jn(X) = n if and only if Kn

p,q(X) = n1/p′ .

The assertion of the following proposition is known for p = 1 and means that
the Banach space X is B-convex (cf. [14] and [6]). Note that a Banach space X is
B-convex if and only if limn→∞

Jn(X)
n = 0 . We extend this result to 1 � p < 2 .

PROPOSITION 3. Let X be an infinite dimensional Banach space and 1 � p < 2 .
The following conditions are equivalent

(i) X is of type strictly bigger than p .

(ii) limn→∞
Jn(X)
n1/p = 0 .

(iii) infn�2
Jn(X)
n1/p < 1 .

(iv) lp is not finitely representable in X .

Proof. (i) ⇒ (ii). Let X be of type r for some p < r � 2 . Then, according to
the first estimate in (10), we obtain that supn�2

Jn(X)

n
1
r

< ∞ . Hence, limn→∞
Jn(X)

n
1
p

=

limn→∞[ Jn(X)

n
1
r

n
1
r− 1

p ] = 0.

(ii) ⇒ (iii). This implication is obvious.
(iii) ⇒ (iv). Since Jn(lp) = n1/p we conclude that lp is not finitely representable in
X . In fact, if it is so, then by Proposition 1 we will have that n1/p = Jn(lp) � Jn(X) for
every n , which contradicts the assumption (iii).
(iv) ⇒ (i). We use the Maurey-Pisier theorem (cf. [33]): If X is an infinite dimensional
Banach space, then lp(X) is finitely representable in X and even more: lr is finitely
representable in X for every r ∈ [p(X), 2] , where

p(X) := sup{p � 1 : X is of type p}.
From this fact we conclude that p < p(X) and, thus, X is of type strictly bigger than
p . The proof is complete.

COROLLARY 6. If X be an infinite dimensional Banach space, 1 < p � 2 and
supn�2

Jn(X)
n1/p < ∞ , then X is of type r for every 1 < r < p .

Proof. The result follows from Proposition 3 since for 1 < r < p we have that
limn→∞

Jn(X)
n1/r = limn→∞

Jn(X)
n1/p n1/p−1/r = 0 .
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THEOREM 5. If X is an infinite dimensional Banach space, then

lim
n→∞

ln n
ln Jn(X)

= sup
n�2

ln n
ln Jn(X)

= p(X). (11)

Proof. Define l(X) := supn�2
ln n

ln Jn(X) and note also that from the estimates
√

n �
Jn(X) � n we obtain that 1 � ln n

ln Jn(X) � 2 and, hence, 1 � l(X) � 2 .
We suppose that p(X) < l(X) . Let p(X) < r < l(X) . Then there exists m � 2

such that r < ln m
ln Jm(X) . We conclude that Jm(X)

m
1
r

< 1 and, thus, according to Proposition

3, X is of type bigger than r which is a contradiction. Hence l(X) � p(X) . Now we
suppose that lim infn→∞ ln n

ln Jn(X) < p(X) . Let lim infn→∞ ln n
ln Jn(X) < s < p(X) . Then

there exists a subsequence {nk} such that ln nk
ln Jnk (X) < s , i.e. 1 <

ln Jnk (X)

n
1/s
k

which means

that ln Jn(X)
n1/s does not converge to 0 . Thus, again by using Proposition 3, we find that X

is not of type bigger than s which is a contradiction. Hence p(X) � lim infn→∞ ln n
ln Jn(X)

and so

p(X) � lim inf
n→∞

ln n
ln Jn(X)

� lim sup
n→∞

ln n
ln Jn(X)

� sup
n�2

ln n
ln Jn(X)

= l(X) � p(X),

which means that

lim
n→∞

ln n
ln Jn(X)

= sup
n�2

ln n
ln Jn(X)

= p(X)

and the proof is complete.
We should mention here that the first equality in (11) follows also from the well-

known property of submultiplicative sequences. In fact, if {an} is a submultiplicative
sequence, then limn→∞ ln an

ln n exists and is equal to infn�2
ln an
ln n .

Note that Woyczyński [46, p. 347] proved the following related result: if X is an
infinite dimensional Banach space and 0 < p < ∞ , then p(X) = limn→∞ ln n

ln[n1/pKn
p,p(X)]

,

and Milman-Schechtman [36, p. 87] for p(X) � p � 2 that

p(X) = lim
n→∞

ln n

ln[n1/pKn
p,2(X)]

or, equivalently,

lim
n→∞

ln Kn
p,2(X)

ln n
=

1
p(X)

− 1
p
.

PROPOSITION 4. If p � 2 , then

Jn(Lp(μ)) � min

⎡
⎣n1−1/p,

(∫ 1

0

∣∣∣∣
n∑

k=1

rk(t)
∣∣∣∣
p

dt

)1/p
⎤
⎦ .
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The first estimate was proved already in Theorem 2. The other estimate follows
from Theorem 4 and the Figiel-Iwaniec-Pełczyński estimate [9]:

Jn(Lp(μ)) � n1/pKn
p,p(L

p(μ)) = Kn
p,p(R) �

(∫ 1

0

∣∣∣∣
n∑

k=1

rk(t)
∣∣∣∣
p

dt

)1/p

.

Note that for n = 2 and n = 3 the constant n1−1/p is smaller than (
∫ 1

0 |∑n
k=1 rk(t)|pdt)1/p

and for large n we have reverse inequality. Moreover, limn→∞
Jn(Lp)

n = 1
2 .

5. Banach-Mazur distance and stability under norm perturbations

For isomorphic Banach spaces X and Y , the Banach-Mazur distance between X
and Y , denoted by d(X, Y) , is defined to be the infimum of ‖T‖‖T−1‖ taken over all
bicontinuous linear operators T from X onto Y (cf. [39]).

We follow considerations in the paper by Kato-Maligranda-Takahashi [25], where
the results for n = 2 were proved.

THEOREM 6. If X and Y are isomorphic Banach spaces, then for any n � 2

Jn(X)
d(X, Y)

� Jn(Y) � Jn(X)d(X, Y) and
Kn

p,q(X)
d(X, Y)

� Kn
p,q(Y) � Kn

p,q(X)d(X, Y).

In particular, if the spaces X and Y are isometric, then for any n � 2 Jn(X) = Jn(Y)
and Kn

p,q(X) = Kn
p,q(Y) .

Proof. Let x1, . . . , xn ∈ BX be arbitrary. For each ε > 0 there exists an isomor-
phism T from X onto Y such that ‖T‖‖T−1‖ � (1 + ε)d(X, Y) . Put

yk =
Txk

‖T‖ , k = 1, . . . , n.

Then yk ∈ BY , k = 1, . . . , n since ‖yk‖ = ‖Txk‖
‖T‖ � ‖xk‖ � 1 and xk = ‖T‖T−1(yk) .

We obtain

min
θk=±1

∥∥∥∥
n∑

k=1

θkxk

∥∥∥∥
X

= ‖T‖ min
θk=±1

∥∥∥∥T−1(
n∑

k=1

θkyk)
∥∥∥∥

X

� ‖T‖‖T−1‖ min
θk=±1

∥∥∥∥
n∑

k=1

θkyk

∥∥∥∥
Y

� ‖T‖‖T−1‖Jn(Y) � (1 + ε)d(X, Y)Jn(Y),

and, since x1, . . . , xn ∈ BX were arbitrary, Jn(X) � (1 + ε)d(X, Y)Jn(Y) , which gives
the first estimate. The second estimate follows by just interchanging X and Y . The
other two estimates for Kn

p,q(·) constants can be proved similarly.

COROLLARY 7. If X and Y are isomorphic Banach spaces and X is B-convex,
then also Y is B-convex.
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COROLLARY 8. Let X = (X, ‖ · ‖) be a non-trivial Banach space and let X1 =
(X, ‖ · ‖1) , where ‖ · ‖1 is an equivalent norm on X satisfying, for some a, b > 0 and
all x ∈ X, a‖x‖ � ‖x‖1 � b‖x‖ . Then

a
b
Jn(X) � Jn(X1) � b

a
Jn(X) and

a
b
Kn

p,q(X) � Kn
p,q(X1) � b

a
Kn

p,q(X).

The proof follows immediately from Theorem 6 and the fact that d(X, X1) � b/a.

We illustrate the above corollary by the following example:

EXAMPLE 1. For 1 � p � 2 and λ � 1 let Xλ ,p be the space Lp[0, 1] with the
norm ‖x‖λ ,p = max{‖x‖p, λ‖x‖1} . Then

Jn(Xλ ,p) = min{n, λn1/p}, and Kn
p,p(Xλ ,p) = min{n1−1/p, λ}.

The inequalities from above follow from the estimates ‖x‖p � ‖x‖λ ,p � λ‖x‖p for
all x ∈ Lp and Corollary 8. The equalities we are getting by taking functions xk,n =
aχ[ k−1

n , k
n ) for k = 1, 2, . . . , n, n = 2, 3, . . . with a = min(n1/p, n/λ ) , since

‖xk,n‖λ ,p = max{ a
n1/p

, λ
a
n
} =

a
min(n1/p, n/λ )

= 1

and ∑
θk=±1

∥∥∥∥
n∑

k=1

θkxk,n

∥∥∥∥
λ ,p

= max(a, λa) = λa.

Thus Jn(Xλ ,p) � λa and Kn
p,p(Xλ ,p) � aλ

n1/p = min{λ , n1−1/p} , which means we have
estimates from below, and consequenly equalities.
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[9] T. FIGIEL, T. IWANIEC AND A. PEŁCZYŃSKI, Computing norms and critical exponents of some operators
in Lp -spaces, Studia Math. 79 (1984), 227–274.

[10] T. FIGIEL, J. LINDENSTRAUSS AND V. D. MILMAN, The dimension of almost spherical sections of convex
bodies, Acta Math. 139 (1977), 53–94.

[11] J. GAO AND K. S. LAU, On the geometry of spheres in normed linear spaces, J. Austral. Math. Soc. Ser.
A 48 (1990), 101–112.

[12] J. GAO AND K. S. LAU, On two classes of Banach spaces with uniform normal structure, Studia Math.
99 (1991), 41–56.

[13] D. P. GIESY, On a convexity condition in normed linear spaces, Trans. Amer. Math. Soc. 125 (1966),
114–146.

[14] D. P. GIESY AND R. C. JAMES, Uniformly non l(1) and B-convex Banach spaces, Studia Math. 48 (1973),
61–69.

[15] C. JAMES, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542–550.
[16] R. C. JAMES, Some self-dual properties of normed linear spaces, In: Symposium on Infinite-Dimensional

Topology (Louisiana State Univ., Baton Rouge 1967), Ann. Math. Studies 69, Princeton Univ. Press,
Princeton 1972, 159–175.

[17] P. JORDAN AND J. VON NEUMANN, On inner products in linear metric spaces, Ann. of Math. 36 (1935),
719–723.

[18] V. M. KADETS AND M. I. KADETS, Rearrangements of Series in Banach Spaces, Amer. Math. Soc.,
Providence, RI 1991.

[19] M. I.KADETS ANDV.M.KADETS, Series inBanach spaces. Conditional andUnconditional Convergence,
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