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JENSEN–STEFFENSEN’S AND RELATED

INEQUALITIES FOR SUPERQUADRATIC FUNCTIONS

S. ABRAMOVICH, S. BANIĆ, M. MATIĆ AND J. PEČARIĆ

(communicated by L. E. Persson)

Abstract. Refinements of Jensen-Steffensen’s inequality, Slater-Pečarić’s inequality and ma-
jorization theorems for superquadratic functions are presented.

1. Introduction

Jensen-Steffensen’s inequality states that if ϕ : I → R is convex, then

ϕ

(
1
Pn

n∑
i=1

ρiζi

)
� 1

Pn

n∑
i=1

ρiϕ (ζi) (1.1)

holds, where I is an interval in R, ζζζ = (ζ1,...,ζn) is any monotonic n -tuple in In and
ρρρ = (ρ1, ..., ρn) is a real n -tuple that satisfies

0 � Pj � Pn , j = 1, ..., n , Pn > 0 ,

Pj =
j∑

i=1

ρi , Pj =
n∑

i=j

ρi , j = 1, ..., n . (1.2)

In the sequel we assume without loss of generality that ρj �= 0, j = 1, ..., n .
In [3] the following necessary and sufficient conditions for the equality case in

Jensen-Steffensen’s inequality was stated:

THEOREM A. [3, Theorem 1] Let ϕ : I → R be a strictly convex function . Let
(ζ1, ..., ζn) be a monotonic n -tuple in In and (ρ1, ..., ρn) a real n -tuple satisfying
(1.2) and ρj �= 0 , j = 1, ..., n, n � 2 . Denote ζ = 1

Pn

∑n
i=1 ρiζi . Then

(a) In the case n = 2 Jensen-Steffensen’s inequality (1.1) becomes equality if and
only if ζ1 = ζ2.

(b) In the case n � 3 Jensen-Steffensen’s inequality (1.1) becomes equality if and
only if one of the following two cases occurs:
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(1) either ζ = ζ1 or ζ = ζn

(2) there exists k ∈ {3, ..., n − 2} such that ζ = ζk and

{
Pj (ζj − ζj+1) = 0, j = 1, ..., k − 1,

Pj (ζj − ζj−1) = 0, j = k + 1, ..., n.

In [6] Pečarić proved a refinement of Slater’s inequality established in [9]. It states
(in the discrete case) that under the same conditions leading to Jensen-Steffensen’s
inequality if

∑n
i=1 ρiϕ′ (ζi) �= 0 and if

M =
∑n

i=1 ρiζiϕ′ (ζi)∑n
i=1 ρiϕ′ (ζi)

∈ I,

then
n∑

i=1

ρiϕ (ζi) � Pnϕ (M) . (1.3)

In this article we refine the above theorems and we also refine theorems on ma-
jorization that were dealt with in [5] and [7]. These refinements are achieved by using
superquadratic functions which were introduced in [1] and [2].

First we quote some definitions and state a list of basic properties of superquadratic
functions.

DEFINITION 1. ([1, Definition 2.1]) A function ϕ : [0,∞) → R is superquadratic
provided that for all x � 0 there exists a constant C(x) ∈ R such that

ϕ (y) − ϕ (x) − ϕ (|y − x|) � C (x) (y − x) (1.4)

for all y � 0.

DEFINITION 2. A function ϕ : [0,∞) → R is said to be strictly superquadratic if
(1.4) is strict for all x �= y where xy �= 0 .

LEMMA A. ([2, Lemma 2.3]) Suppose that ϕ is superquadratic. Let xi � 0,
i = 1, ..., n and let x =

∑n
i=1 ρixi where ρi � 0 and

∑n
i=1 ρi = 1. Then

n∑
i=1

ρiϕ (xi) − ϕ (x) �
n∑

i=1

ρiϕ (|xi − x|) .

LEMMA B. ([1, Lemma 2.2]) Let ϕ be a superquadratic function with C(x) as
in Definition 1 . Then:
(i) ϕ(0) � 0,

(ii) If ϕ(0) = ϕ′(0) = 0, then C(x) = ϕ′(x) whenever ϕ is differentiable at x > 0.

(iii) If ϕ � 0, then ϕ is convex and ϕ(0) = ϕ′(0) = 0.
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As Hölder’s inequality is Jensen’s inequality for the convex functions f (x) = xp,
p � 1, so the inequalities satisfied by superquadratic functions are extensions of the
inequalities satisfied by the special superquadratic functions f (x) = xp, p � 2 (see
[1], [2] and [8]).

It is easy to verify that all the results for differentiable nonnegative superquadratic
functions also follow when the differentiability condition is removed. As in this case,
ϕ is anyways convex, and therefore all needed is to replace C(x) = ϕ′(x) (C(x) as
defined in Definition 1) with C (x) is any value from

[
ϕ′
− (x) ,ϕ′

+ (x)
]
.

COROLLARY 1. Let ϕ be a differentiable nonnegative strictly superquadratic
function. Then ϕ (x) > 0 for x > 0, ϕ′ (x) − ϕ′ (y) > 0 for x > y � 0, and ϕ is
strictly convex for x � 0 .

Proof. From Lemma B we know that if ϕ � 0 then ϕ′ (x) � 0 for x � 0 and that
C(x) = ϕ′(x). Assume that there is a point y > 0 such that ϕ(y) = 0. Let 0 < x < y.
Then from

ϕ (y) − ϕ (x) − ϕ (|y − x|) > ϕ′ (x) (y − x)

we get that
−ϕ (x) − ϕ (|y − x|) > ϕ′ (x) (y − x) � 0 ,

and as it is given that ϕ (x) � 0 this is a contradiction. Therefore ϕ (x) > 0 when
x > 0.

For all x, y > 0, such that x �= y, by Definition 1., we have

ϕ (y) − ϕ (x) − ϕ (|y − x|) > ϕ′ (x) (y − x) ,

ϕ (x) − ϕ (y) − ϕ (|y − x|) > ϕ′ (y) (x − y) .

Summing these two inequalities, as ϕ (x) > 0 for x > 0, we get[
ϕ′ (x) − ϕ′ (y)

]
(x − y) > 2ϕ (|y − x|) > 0 .

Hence, for x > y > 0 we get that ϕ′ (x) − ϕ′ (y) > 0.As a result ϕ is also strictly
convex for x � 0 .

The following Lemma 1 is used in the sequel. This lemma is an immediate
consequence of the definition of superquadratic functions.

LEMMA 1. Let ϕ be a superquadratic function with C(x ) as in Definition 1 .
Then for all probability measures μ and all non-negative μ−measurable functions f
and g∫

ϕ (g(s)) dμ(s) −
∫

ϕ (f (s)) dμ(s)

�
∫

ϕ (|g(s) − f (s)|) dμ(s) +
∫

C (f (s)) (g(s) − f (s))dμ(s)
(1.5)

holds. Moreover, if
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∫
C (f (s)) (g(s) − f (s))dμ(s) � 0, (1.6)

then ∫
ϕ (g(s)) dμ(s) −

∫
ϕ (f (s)) dμ(s) �

∫
ϕ(|g(s) − f (s)|)dμ(s).

Similarly, if ϕ is subquadratic (which means that −ϕ is superquadratic), then∫
ϕ (g(s)) dμ(s) −

∫
ϕ (f (s)) dμ(s)

�
∫

ϕ (|g(s) − f (s)|) dμ(s) +
∫

C (f (s)) (g(s) − f (s))dμ(s),

and if also ∫
C (f (s)) (g(s) − f (s))dμ(s) � 0,

then ∫
ϕ (g(s)) dμ(s) −

∫
ϕ (f (s)) dμ(s) �

∫
ϕ(|g(s) − f (s)|)dμ(s).

THEOREM B. [1, Theorem 2.4] Suppose that ϕ is superquadratic and C is as in
Definition 1 . If μ is a probabilitymeasure, f is a non-negative μ -measurable function
such that

∫
C (f (s)) dμ(s) �= 0, then

ϕ(m) +
∫

ϕ (|f (s) − m|) dμ(s)

�
∫

ϕ (f (s)) dμ(s) � ϕ (M) −
∫

ϕ (|f (s) − M|) dμ(s),

where
m =

∫
f (s)dμ(s) and M =

∫
f (s)C (f (s)) dμ(s)∫

C (f (s)) dμ(s)
.

A discrete version of this theorem is also used in the sequel. It can be obtained by
choosing a discrete measure μ on {1, . . . , n} , defined by μ(i) = ρi/

∑n
j=1 ρj, ρi � 0,

and the function f defined by f (i) = ζi.

REMARK 1. All our results hold also if instead of dealing with a superquadratic
function on [0,∞) , we deal with superquadratic functions on [0, L] , where x , y , xi ,
g(s) , f (s) , M , that appear in ϕ (x) , ϕ (y) , ϕ (xi) , ϕ (g(s)) , ϕ (f (s)) , ϕ (M) , above
and in the sequel are included in [0, L] for which ϕ is superquadratic.

An example for such ϕ (x) is

ϕ (x) =

{
xe−

1
x , x > 0;

0, x = 0.

This function is convex on [0,∞) , but superquadratic only on [0, L] , where 0.8955 �
L � 1, (see [4]).
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2. Jensen-Steffensen’s Inequality

The first theorem that we prove here is a refinement of Jensen-Steffensen’s in-
equality for nonnegative superquadratic functions. The proof uses the same technique
as in [3]. Steffensen’s coefficients in the case n = 2 , leads always to ρi > 0, and this
case was already dealt with in [1]. Therefore we deal in this chapter and in the next
chapter with n � 3 .

THEOREM 1. Let ϕ : [0,∞) → R be differentiable superquadratic and nonnega-
tive, let ζζζ be a nonnegative monotonic n -tuple in R

n,and ρρρ a real n -tuple satisfying
Steffensen’s coefficients, that is

0 � Pj � Pn , j = 1, ..., n , Pn > 0,

Pj =
j∑

i=1

ρi , Pj =
n∑

i=j

ρi , j = 1, ..., n. (2.1)

Let ζ be defined by
ζ =

1
Pn

n∑
i=1

ρiζi. (2.2)

Then

n∑
i=1

ρiϕ (ζi) − Pnϕ
(
ζ
)

�
k−1∑
j=1

Pjϕ (ζj+1 − ζj) + Pkϕ
(
ζ − ζk

)

+ Pk+1ϕ
(
ζk+1 − ζ

)
+

n∑
j=k+2

Pjϕ (ζj − ζj−1)

�
(

k∑
i=1

Pi+
n∑

i=k+1

Pi

)
ϕ

⎛
⎝
∑n

i=1 ρi

(∣∣∣ζi − ζ
∣∣∣)∑k

i=1 Pi +
∑n

i=k+1 Pi

⎞
⎠

� ((n − 1)Pn)ϕ

⎛
⎝
∑n

i=1 ρi

(∣∣∣ζi − ζ
∣∣∣)

(n − 1) Pn

⎞
⎠ , (2.3)

where k ∈ {1, ..., n − 1} satisfies

ζk � ζ � ζk+1. (2.4)

In case ϕ is, additionally, strictly superquadratic,

n∑
i=1

ρiϕ (ζi) − Pnϕ
(
ζ
)

> ((n − 1)Pn)ϕ

⎛
⎝
∑n

i=1 ρi

(∣∣∣ζi − ζ
∣∣∣)

(n − 1) Pn

⎞
⎠

holds for ζζζ > 000 unless one of the following two cases occurs:
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(1) either ζ = ζ1 or ζ = ζn ,
(2) there exists k ∈ {3, ..., n − 2} such that ζ = ζk and{

Pj (ζj − ζj+1) = 0, j = 1, ..., k − 1,

Pj (ζj − ζj−1) = 0, j = k + 1, ..., n.

In these two cases n∑
i=1

ρiϕ (ζi) − Pnϕ
(
ζ
)

= 0.

Proof. The following identities are used in the proof in a similar way as they were
used in [3]:

n∑
i=1

ρiϕ (ζi)−Pnϕ
(
ζ
)

=
k−1∑
j=1

Pj (ϕ (ζj) − ϕ (ζj+1)) +Pk

(
ϕ (ζk)−ϕ

(
ζ
))

+ Pk+1

(
ϕ (ζk+1)−ϕ

(
ζ
))

+
n∑

j=k+2

Pj (ϕ (ζj)−ϕ (ζj−1)) .
(2.5)

In the case k = 1 we assume
∑k−1

j=1 to be 0 , while in the case k = n − 1 we assume∑n
k+2 to be 0 .

In particular

0 =
n∑

i=1

ρiζi − Pnζ =
k−1∑
j=1

Pj (ζj − ζj+1) + Pk

(
ζk − ζ

)

+ Pk+1

(
ζk+1 − ζ

)
+

n∑
j=k+2

Pj (ζj − ζj−1)
(2.6)

and

Pn

(
ζ − ζ1

)
=

n∑
j=2

Pj (ζj − ζj−1) , Pn

(
ζn − ζ

)
=

n−1∑
j=1

Pj (ζj+1 − ζj) . (2.7)

Without loss of generality we assume that ζζζ is increasing, that is, ζj � ζj+1 , j =
1, ..., n − 1. It is obvious from (2.7) that in this case ζ1 � ζ � ζn .

As ϕ is differentiable superquadratic and nonnegative it follows that

ϕ (x) − ϕ
(
ζ
)

� ϕ′
(
ζ
)(

x − ζ
)

+ ϕ
(∣∣∣x − ζ

∣∣∣) (2.8)

holds.
From Lemma B we know that ϕ is also convex increasing. A convex increasing

superquadratic function ϕ satisfies the following inequalities for all y, z ∈ [0,∞) :

ϕ (y) − ϕ (z) � ϕ′ (z) (y − z) + ϕ (|y − z|)
� ϕ′

(
ζ
)

(y − z) + ϕ (|y − z|) , y � z � ζ ,

ϕ (z) − ϕ (y) � ϕ′ (y) (z − y) + ϕ (|z − y|)
� ϕ′

(
ζ
)

(z − y) + ϕ (|z − y|) , ζ � y � z. (2.9)
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From (2.8), (2.9), (2.4), (2.5), and (2.1), we get that

n∑
i=1

ρiϕ (ζi) − Pnϕ
(
ζ
)

�

⎡
⎣k−1∑

j=1

Pjϕ′ (ζj+1) (ζj−ζj+1)+Pkϕ′
(
ζ
)(

ζk−ζ
)

+ Pk+1ϕ′
(
ζ
)(

ζk+1 − ζ
)

+
n∑

j=k+2

Pjϕ′ (ζj−1) (ζj − ζj−1)

⎤
⎦

+

⎡
⎣k−1∑

j=1

Pjϕ (ζj+1−ζj)+Pkϕ
(
ζ−ζk

)
+Pk+1ϕ

(
ζk+1−ζ

)
+

n∑
j=k+2

Pjϕ (ζj−ζj−1)

⎤
⎦

�

⎡
⎣k−1∑

j=1

Pjϕ′
(
ζ
)

(ζj − ζj+1) + Pkϕ′
(
ζ
)(

ζk − ζ
)

+ Pk+1ϕ′
(
ζ
)(

ζk+1 − ζ
)

+
n∑

j=k+2

Pjϕ′
(
ζ
)

(ζj − ζj−1)

⎤
⎦

+

⎡
⎣k−1∑

j=1

Pjϕ (ζj+1−ζj)+Pkϕ
(
ζ−ζk

)
+Pk+1ϕ

(
ζk+1−ζ

) n∑
j=k+2

Pjϕ (ζj−ζj−1)

⎤
⎦ .

(2.10)

Using (2.6) we get from (2.10) that

n∑
i=1

ρiϕ (ζi) − Pnϕ
(
ζ
)

�
k−1∑
j=1

Pjϕ (ζj+1 − ζj) + Pkϕ
(
ζ − ζk

)

+ Pk+1ϕ
(
ζk+1 − ζ

)
+

n∑
j=k+2

Pjϕ (ζj − ζj−1) .

As ϕ is convex and Pj � 0, Pj � 0 , j = 1, ..., n and Pk + Pk+1 = Pn > 0, we
get that

n∑
i=1

ρiϕ (ζi) − Pnϕ
(
ζ
)

�

⎛
⎝ k∑

j=1

Pj +
n∑

j=k+1

Pj

⎞
⎠×

× ϕ

⎛
⎝
∑k−1

j=1 Pj(ζj+1−ζj)+Pk

(
ζ−ζk

)
+Pk+1

(
ζk+1−ζ

)
+
∑n

j=k+2 Pj(ζj−ζj−1)∑k
j=1 Pj+

∑n
j=k+1 Pj

⎞
⎠

=

⎛
⎝ k∑

j=1

Pj +
n∑

j=k+1

Pj

⎞
⎠ϕ

⎛
⎝
∑n

i=1 ρi

(∣∣∣ζi − ζ
∣∣∣)∑k

j=1 Pj +
∑n

j=k+1 Pj

⎞
⎠ . (2.11)

The identity in (2.11) follows from (2.7).
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Since ϕ is convex with ϕ (0) = 0, it yields that ϕ(x)
x is increasing and xϕ

(
1
x

)
is

decreasing on (0,∞) . Therefore, from

k∑
j=1

Pj +
n∑

j=k+1

Pj � (n − 1)Pn

we have that⎛
⎝ k∑

j=1

Pj+
n∑

j=k+1

Pj

⎞
⎠ϕ

⎛
⎝
∑n

i=1 ρi

(∣∣∣ζi−ζ
∣∣∣)∑k

j=1 Pj+
∑n

j=k+1 Pj

⎞
⎠ � ((n−1)Pn)ϕ

⎛
⎝
∑n

i=1 ρi

(∣∣∣ζi−ζ
∣∣∣)

(n − 1)Pn

⎞
⎠

holds and hence we get (2.3).
The assertion on the equality case is proved using the very detailed proof in Chapter

2 in [3] that leads to Theorem A.
The equality case follows since for differentiable strictly superquadratic ϕ we

have strict inequality in (1.4) when y �= x, yx �= 0 for C(x) = ϕ′ (x) . In this case we
get from (2.5) as Pk +Pk = Pn > 0 that the first inequality in (2.10) is strict for ζζζ > 000
unless (1) or (2) (as appeared in the statement of the theorem) holds.

The fact that the second inequality in (2.10) is strict unless (1) or (2) holds is
obtained from Corollary 1 that states that ϕ′(y) − ϕ′(x) > 0, y > x > 0 and that
ϕ′(x) > 0 and from (2.8) and (2.9). These two strict inequalities in (2.10) lead to strict
inequality in the first inequality in (2.3).

Hence, from the strict inequality (2.3) we get unless (1) or (2) holds that for
differentiable nonnegative strictly superquadratic function ϕ(x)

n∑
i=1

ρiϕ (ζi) − Pnϕ
(
ζ
)

> ((n − 1)Pn)ϕ

⎛
⎝
∑n

i=1 ρi

(∣∣∣ζi − ζ
∣∣∣)

(n − 1) Pn

⎞
⎠

holds.
In our case ϕ(0) = 0, therefore, when (1) or (2) holds, we get that

k−1∑
j=1

Pjϕ (ζj+1−ζj)+Pkϕ
(
ζ−ζk

)
+Pk+1ϕ

(
ζk+1−ζ

)
+

n∑
j=k+2

Pjϕ (ζj−ζj−1) = 0.

This means that in case (1) or (2)

n∑
i=1

ρiϕ (ζi) − Pnϕ
(
ζ
)

= 0.

Hence the proof of the Theorem 1 is complete.

REMARK 2. In the case ρi � 0, i = 1, ..., n, we have

k∑
j=1

Pj +
n∑

j=k+1

Pj � max {k, n − k}Pn. (2.12)
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Since the function xϕ
(

1
x

)
is decreasing (as mentioned in the proof of Theorem 1), we

get the following refinement of the last inequality in (2.3):
⎛
⎝ k∑

j=1

Pj +
n∑

j=k+1

Pj

⎞
⎠ϕ

⎛
⎝

∑n
i=1 ρi

∣∣∣ζi − ζ
∣∣∣∑k

j=1 Pj +
∑n

j=k+1 Pj

⎞
⎠

� (max {k, n − k}Pn)ϕ

⎛
⎝
∑n

i=1 ρi

∣∣∣ζi − ζ
∣∣∣

max {k, n − k}Pn

⎞
⎠ .

REMARK 3. Under the conditions of Theorem 1, in the caseρi � 0, i = 1, ..., n,
from Theorem B (its discrete version) and the convexity of ϕ we have

n∑
i=1

ρiϕ (ζi) − Pnϕ
(
ζ
)

�
n∑

i=1

ρiϕ
(∣∣∣ζi − ζ

∣∣∣) � Pnϕ

⎛
⎝
∑n

i=1 ρi

∣∣∣ζi − ζ
∣∣∣

Pn

⎞
⎠ .

Since the function xϕ
(

1
x

)
is decreasing and

n∑
i=1

ρi = Pn �
k∑

j=1

Pj +
n∑

j=k+1

Pj (2.13)

holds, we get that

Pnϕ

⎛
⎝
∑n

i=1 ρi

∣∣∣ζi − ζ
∣∣∣

Pn

⎞
⎠ �

⎛
⎝ k∑

j=1

Pk +
n∑

j=k+1

Pj

⎞
⎠ϕ

⎛
⎝
∑n

i=1 ρi

(∣∣∣ζi − ζ
∣∣∣)∑k

j=1 Pj +
∑n

j=k+1 Pj

⎞
⎠ .

Therefore, in this case Theorem1 is weaker than the left hand side inequality in Theorem
B (its discrete version).

3. Slater-Pečarić’s Inequality

We prove in the following theorem a Slater-Pečarić type of inequality for Stef-
fensen’s coefficients ρρρ = (ρ1, ..., ρn) and for nonnegative superquadratic functions.
The proof uses the same technique as used in [6].

THEOREM 2. Let ϕ : [0,∞) → R be a differentiable nonnegative superquadratic
function. Let ρρρ = (ρ1, ..., ρn) be a real n -tuple satisfying (2.1) and ζζζ= (ζ1, ..., ζn)
be a nonnegative increasing n -tuple. If

∑n
i=1 ρiϕ′ (ζi) �= 0 we define

M =
∑n

i=1 ρiζiϕ′ (ζi)∑n
i=1 ρiϕ′ (ζi)

,

then,
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Case A. for s satisfying ζs � M � ζs+1, s + 1 � n ,

n∑
i=1

ρiϕ (ζi) � Pnϕ (M) −
⎛
⎝ s−1∑

j=1

Pjϕ (ζj+1 − ζj) +

+ Psϕ (M−ζs) + Ps+1ρ (ζs+1−M) +
n∑

j=s+2

Pjϕ (ζj − ζj−1)

⎞
⎠

� Pnϕ (M) −
⎛
⎝ s∑

j=1

Pj +
n∑

j=s+1

Pj

⎞
⎠ϕ

( ∑n
i=1 ρi |ζi − M|∑s

j=1 Pj +
∑n

j=s+1 Pj

)

� Pnϕ (M) − ((n − 1)Pn)ϕ
(∑n

i=1 ρi |ζi − M|
(n − 1) Pn

)
. (3.1)

If ϕ is also strictly superquadratic, then the inequality

n∑
i=1

ρiϕ (ζi) < Pnϕ (M) − ((n − 1) Pn)ϕ
(∑n

i=1 ρi |ζi − M|
(n − 1)Pn

)

holds for ζζζ > 000 unless one of the following two cases occurs:
(1′) M = ζ1 ,
(2′) there exists s ∈ {3, ..., n} such that M = ζs and{

Pj (ζj − ζj+1) = 0, j = 1, ..., s − 1,

Pj (ζj − ζj−1) = 0, j = s + 1, ..., n.

In these two cases
n∑

i=1

ρiϕ (ζi) = Pnϕ (M) .

Case B. for M > ζn ,

n∑
i=1

ρiϕ (ζi) � Pnϕ (M) − (nPn)ϕ
(∑n

i=1 ρi |ζi − M|
nPn

)
. (3.1*)

When ϕ is also strictly superquadratic, (3.1∗) is strict.

Proof. First, from Lemma B we get that as ϕ is superquadratic nonnegative, it is
increasing and convex too. It was proved in [3] that when ρρρ is satisfying (2.1) and ζζζ
is increasing then

ζ1 �
∑n

i=1 ρiζi∑n
i=1 ρi

= ζ � ζn

holds.
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Similarly, as ϕ (ζ) is increasing and convex and as ζζζ is nonnegative increasing
we get that

∑n
i=1 ρiϕ′ (ζi) > 0 ,

∑n
i=1 ρiζiϕ′ (ζi) � 0 , and that

ζ1 �
∑n

i=1 ρiζiϕ′ (ζi)∑n
i=1 ρiϕ′ (ζi)

= M

holds too.
Case A. For ζ1 � M � ζn, we want to get a lower bound, to Pnϕ (M) −∑n

i=1 ρiϕ (ζi) . For this we use the following identity for k ∈ {1, ..., n − 1} :

Pnϕ (M)−
n∑

i=1

ρiϕ (ζi) =
k−1∑
j=1

Pj (ϕ (ζj+1)−ϕ (ζj)) +Pk (ϕ (M)−ϕ (ζk))

+ Pk+1 (ϕ (M)−ϕ (ζk+1))+
n∑

j=k+2

Pj (ϕ (ζj−1)−ϕ (ζj)) . (3.2)

As Pj � 0, Pj � 0, j = 1, ..., n, and ϕ is superquadratic we get from Lemma B that

k−1∑
j=1

Pj (ϕ (ζj+1) − ϕ (ζj)) + Pk (ϕ (M) − ϕ (ζk))

+ Pk+1 (ϕ (M) − ϕ (ζk+1)) +
n∑

j=k+2

Pj (ϕ (ζj−1) − ϕ (ζj))

�
k−1∑
j=1

Pjϕ′ (ζj) (ζj+1 − ζj) + Pkϕ′ (ζk) (M − ζk) + Pk+1ϕ′ (ζk+1) (M − ζk+1)

+
n∑

j=k+2

Pjϕ′ (ζj) (ζj−1 − ζj) +
k−1∑
j=1

Pjϕ (|ζj+1 − ζj|) + Pkϕ (|M − ζk|)

+ Pk+1ϕ (|ζk+1 − M|) +
n∑

j=k+2

Pjϕ (|ζj − ζj−1|) . (3.3)

We choose now k = s to be such that ζs � M � ζs+1 . Once we show that under our
conditions

s−1∑
j=1

Pjϕ′ (ζj) (ζj+1 − ζj) + Psϕ′ (ζs) (M − ζs)

+ Ps+1ϕ′ (ζs+1) (M − ζs+1) +
n∑

j=s+2

Pjϕ′ (ζj) (ζj−1 − ζj) � 0 ,
(3.4)
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then from (3.2), (3.3), (3.4) and from the convexity of ϕ we get that

Pnϕ (M) −
n∑

i=1

ρiϕ (ζi)

�
s−1∑
j=1

Pjϕ (|ζj+1−ζj|)+Psϕ |M−ζs|+Ps+1ϕ (|ζs+1−M|)+
n∑

j=s+2

Pjϕ (|ζj − ζj−1|)

�

⎛
⎝ s∑

j=1

Pj +
n∑

j=s+1

Pj

⎞
⎠×

× ϕ

(∑s−1
j=1 Pj (ζj+1−ζj)+Ps (M − ζs)+Ps+1 (ζs+1 − M) +

∑n
j=s+2 Pj (ζj−ζj−1)∑s

j=1 Pj +
∑n

j=s+1 Pj

)

=

⎛
⎝ s∑

j=1

Pj +
n∑

j=s+1

Pj

⎞
⎠ϕ

( ∑n
i=1 ρi |ζi − M|∑s

j=1 Pj +
∑n

j=s+1 Pj

)
.

Since ρ1 = P1 , ρn = Pn , and ρj = Pj − Pj−1 = Pj − Pj+1 , j = 2, . . . , n − 1 , the
last equality follows from the identities:

s∑
j=1

ρj (M − ζj) =
s−1∑
j=1

Pj (ζj+1 − ζj) + Ps (M − ζs) ,

n∑
j=s+1

ρj (ζj − M) = Ps+1 (ζs+1 − M) +
n∑

j=s+2

Pj (ζj − ζj−1) .

In the same way as in the proof of the Theorem 1, we conclude that

⎛
⎝ s∑

j=1

Pj+
n∑

j=s+1

Pj

⎞
⎠ϕ

( ∑n
j=1 ρi (|ζi−M|)∑s

j=1 Pj+
∑n

j=s+1 Pj

)
� ((n − 1)Pn)ϕ

(∑n
i=1 ρi (|ζi−M|)
(n − 1)Pn

)

holds and hence we get (3.1).
In order to complete the proof of (3.1) we only need to prove (3.4). For this we

use the following two identities:

n∑
i=1

ρiϕ′ (ζi) =
s−1∑
j=1

Pj
(
ϕ′ (ζj) − ϕ′ (ζj+1)

)
+ Psϕ′ (ζs)

+ Ps+1ϕ′ (ζs+1) +
n∑

j=s+2

Pj
(
ϕ′ (ζj) − ϕ′ (ζj−1)

)
(3.5)

and



JENSEN-STEFFENSEN’S AND RELATED INEQUALITIES FOR SUPERQUADRATIC FUNCTIONS 35

n∑
i=1

ρiϕ′ (ζi) ζi =
s−1∑
j=1

Pj

(
ϕ′ (ζj) ζj − ϕ′ (ζj+1) ζj+1

)
+ Psϕ′ (ζs) ζs

+ Ps+1ϕ′ (ζs+1) ζs+1+
n∑

j=s+2

Pj

(
ϕ′ (ζj) ζj − ϕ′ (ζj−1) ζj−1

)
. (3.6)

In the case s = 1 we assume
∑s−1

j=1 to be 0, and in case s = n− 1 we assume
∑n

s+2 to
be 0 .

Since
M

n∑
i=1

ρiϕ′ (ζi) =
n∑

i=1

ρiϕ′ (ζi) ζi,

by substituting (3.5) and (3.6) into the left side of (3.4) we get
s−1∑
j=1

Pjϕ′ (ζj) (ζj+1 − ζj) + Psϕ′ (ζs) (M − ζs)

+ Ps+1ϕ′ (ζs+1) (M − ζs+1) +
n∑

j=s+2

Pjϕ′ (ζj) (ζj−1 − ζj)

=
s−1∑
j=1

Pj (M − ζj+1)
(
ϕ′ (ζj+1) − ϕ′ (ζj)

)

+
n∑

j=s+2

Pj (ζj−1 − M)
(
ϕ′ (ζj) − ϕ′ (ζj−1)

)
� 0. (3.7)

The last inequality holds because ϕ is convex and ζs � M � ζs+1.Therefore
(3.4) is satisfied which is the reason for (3.1) to hold for nonnegative superquadratic
functions ϕ (ζ) which according to Lemma B are also increasing and convex.

The proof of the assertions on the equality case in the theorem follow similarly to
the proofs of the equality cases in Theorem 1.

Case B for M > ζn is proved similarly to Case A .
Hence the proof of Theorem 2 is complete.

Similarly, as in Remark 2 and Remark 3, we can observe the following:
REMARK 4. Since in the case ρi � 0, i = 1, ..., n, (2.12) holds and the function

xϕ
(

1
x

)
is decreasing, we get the following refinement of the last inequality in (3.1):

Pnϕ (M) −
⎛
⎝ s∑

j=1

Pj +
n∑

j=s+1

Pj

⎞
⎠ϕ

( ∑n
i=1 ρi |ζi − M|∑s

j=1 Pj +
∑n

j=s+1 Pj

)

� Pnϕ (M) − (max {s, n − s}Pn)ϕ
(∑n

i=1 ρi |ζi − M|
max {s, n − s}Pn

)
.

REMARK 5. Under the conditions of Theorem 2 together with the restriction that
ρi � 0, i = 1, ..., n, from Theorem B (its discrete version) and the convexity of ϕ we
have
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Pnϕ (M) −
n∑

i=1

ρiϕ (ζi) �
n∑

i=1

ρiϕ (|ζi − M|) � Pnϕ
(∑n

i=1 ρi |ζi − M|
Pn

)
.

Since xϕ
(

1
x

)
is decreasing, from (2.13) we get

Pnϕ
(∑n

i=1 ρi |ζi − M|
Pn

)
�

⎛
⎝ s∑

j=1

Pj +
n∑

j=s+1

Pj

⎞
⎠ϕ

( ∑n
i=1 ρi (|ζi − M|)∑s

j=1 Pj +
∑n

j=s+1 Pj

)
,

so we conclude that, in this case, Theorem 2 is weaker than the right hand side inequality
proven in Theorem B (its discrete version).

Summerizing Theorem 1 and Theorem 2 we get the following theorem:

THEOREM 3. Under the conditions of Theorem 1 and Theorem 2 , when M � ζn,

Pnϕ
(
ζ
)

+ (n − 1) Pnϕ

⎛
⎝
∑n

i=1 ρi

(∣∣∣ζi − ζ
∣∣∣)

(n − 1)Pn

⎞
⎠ �

n∑
i=1

ρiϕ (ζi)

� Pnϕ (M) − (n − 1) Pnϕ
(∑n

i=1 ρi (|ζi − M|)
(n − 1) Pn

)
(3.8)

holds.
If ζζζ > 000 and ϕ is also strictly superquadratic, strict inequality holds to the left

of
∑n

i=1 ρiϕ (ζi) in (3.8) unless one of the following two cases occurs:
(1) either ζ = ζ1 or ζ = ζn ,
(2) there exists k ∈ {3, ..., n − 2} such that ζ = ζk and{

Pj (ζj − ζj+1) = 0, j = 1, ..., k − 1,

Pj (ζj − ζj−1) = 0, j = k + 1, ..., n.

When (1) or (2) occurs,

Pnϕ
(
ζ
)

=
n∑

i=1

ρiϕ (ζi) .

Strict inequality holds to the right of
∑n

i=1 ρiϕ (ζi) in (3.8) unless one of the
following two cases occurs:
(1′) M = ζ1 ,
(2′) there exists s ∈ {3, ..., n} such that M = ζs and{

Pj (ζj − ζj+1) = 0, j = 1, ..., s − 1,

Pj (ζj − ζj−1) = 0, j = s + 1, ..., n .

When (1′) or (2′) occurs,
n∑

i=1

ρiϕ (ζi) = Pnϕ (M) .
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4. Majorization theorems

In the sequel we use the following version of Lemma 1.

LEMMA 2. Let w > 0 , f and g be nonnegative integrable functions on [a, b] .
Suppose that ϕ (x) is a differentiable superquadratic function on [0,∞) satisfying
ϕ (0) = ϕ′ (0) = 0 . Then, for a � ξ � b∫ ξ

a
(ϕ (g(s)) − ϕ (f (s))) w(s)ds

�
∫ ξ

a
ϕ (|g(s) − f (s)|) w(s)ds +

∫ ξ

a

dϕ (f (s))
df

(g (s) − f (s)) w(s)ds
(4.1)

holds. Moreover, if ∫ ξ

a

dϕ (f (s))
ds

(g(s) − f (s)) w(s)ds � 0 (4.2)

then, ∫ ξ

a
(ϕ (g(s)) − ϕ (f (s))) w(s)ds �

∫ ξ

a
ϕ (|g(s) − f (s)|) w(s)ds. (4.3)

Similarly, if ϕ is differentiable and subquadratic on [0,∞), and C (x) = ϕ′ (x) , then∫ ξ

a
(ϕ (g(s)) − ϕ (f (s))) w(s)ds

�
∫ ξ

a

dϕ (f (s))
df

(g(s) − f (s)) w(s)ds +
∫ ξ

a
ϕ (|g(s) − f (s)|) w(s)ds.

(4.4)

If also ∫ ξ

a

dϕ (f (s))
df

(g(s) − f (s)) w(s)ds � 0, (4.5)

then ∫ ξ

a
(ϕ (g(s)) − ϕ (f (s))) w(s)ds �

∫ ξ

a
ϕ (|g(s) − f (s)|) w(s)ds. (4.6)

Proof. According to Lemma B, if ϕ (x) is superquadratic and differentiable
satisfying ϕ (0) = ϕ′ (0) = 0, then C (x) = ϕ′ (x) . Hence Lemma 2 follows from
Lemma 1.

Now we state conditions for which (4.2) holds leading to (4.3) for superquadratic
functions. Analogously we state conditions for which (4.5) holds leading to (4.6) for
subquadratic functions.

The results follow by using the identity

R (ξ) =
∫ ξ

a

dϕ (f (s))
df

(g(s) − f (s)) w(s)ds

=
dϕ
df

(f (ξ)) H (ξ) −
∫ ξ

a
H(s)dϕ′ (f (s)) , (4.7)
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where H (ξ) is defined by

H (ξ) =
∫ ξ

a
(g(s) − f (s)) w(s)ds. (4.8)

In [5] Maligranda, Pečarić and Persson, and Pečarić and Abramovich in [7], es-
tablished conditions for which R (ξ) � 0 and conditions for R (ξ) � 0. There the
sign of R (ξ) was used to prove inequalities related to convex or concave functions.
Here the conditions leading to the sign of R (ξ) are used to prove inequalities related
to superquadratic functions and to subquadratic functions.

LEMMA D. ([5, Theorem2] and [7, Lemma 2]) Let w > 0 , f and g be integrable
functions on [a, b] . Suppose that ϕ (x) is differentiable on an interval I ⊇ f ([a, b]) .
Let R (ξ) and H (ξ) be as in (4.7) and (4.8) . Then we get that

R (b) � 0, (R (b) � 0)

when
H (b) = 0

in each of the cases (a) - (d) where
(a) ϕ is convex (concave) on I ⊇ f ([a, b]) , H(t) � 0 , a � t � b , f (t) decreases

on a � t � b .
(b) ϕ is convex (concave) on I ⊇ f ([a, b]) , H(t) � 0 , a � t � b , f (t) increases

on a � t � b .
(c) ϕ is concave (convex) on I ⊇ f ([a, b]) , H(t) � 0 , a � t � b , f (t) increases

on a � t � b .
(d) ϕ is concave (convex) on I ⊇ f ([a, b]) , H(t) � 0 , a � t � b , f (t) decreases

on a � t � b .
If we replace the condition H(b) = 0 by monotonicity conditions on ϕ, then we

get that R(ξ) � 0, (R(ξ) � 0) , for every ξ , a � ξ � b :
(a′) if ϕ increases (decreases) on I ⊇ f ([a, b]) in addition to condition (a) or

condition (c) ;
(b′) if ϕ decreases (increases) on I ⊇ f ([a, b]) in addition to condition (b) or
condition (d) .

From Lemma 2 and Lemma D we get the following immediate results which refine
inequalities given in [5] and [7].

THEOREM 4. Let w > 0 f , g be nonnegative integrable functions on [a, b] .
Suppose that ϕ (x) is a differentiable superquadratic (subquadratic) function on [0,∞),
satisfying C (x) = ϕ′ (x) (C(x) is as in Definition 1) . Then inequality (4.3) , ( ine-
quality (4.6)) holds for ξ = b in cases (a) - (d) in Lemma D, and for every ξ ,
a < ξ � b in cases (a′) - (b′) there.

In other words, for instance, under the conditions of Lemma D (a) and under the
condition of Lemma D (b) it was proved in [5] and [7] that for ϕ convex on I ⊇ f ([a, b])
the inequality ∫ b

a
(ϕ (g(s)) − ϕ(f (s))) w(s)ds � 0 (4.9)
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holds.
However, if ϕ is also superquadratic on [0 ,∞), we get whenever∫ b

a
ϕ (|g(s) − f (s)|) w(s)ds � 0 (4.10)

the “tighter inequality”∫ b

a
(ϕ (g(s)) − ϕ(f (s))) w(s)ds �

∫ b

a
ϕ (|g(s) − f (s)|) w(s)ds. (4.11)

Also, if ϕ is superquaratic and convex on [0,∞) , by using also Jensen’s inequality
we get ∫ b

a
(ϕ (g(s)) −ϕ(f (s))) w(s)ds �

∫ b

a
ϕ (|g(s) − f (s)|) w(s)ds

�
(∫ b

a
w(s)ds

)
ϕ

(∫ b
a |g(s) − f (s)|w (s) ds∫ b

a w(s)ds

)
.

(4.12)

This gives a better inequality then (4.9) whenever (4.10) holds, especially when
ϕ is nonnegative superquadratic.

If ϕ is convex and subquadratic we get under the conditions of Lemma D (c) that
(4.6) for ζ = b holds.

On the other hand, if ϕ is superquadratic and also concave, we get that (4.11)
holds too.

In the following we establish some examples:
Let w > 0 f , g be nonnegative integrable functions on [a, b] . If f /g is

decreasing, then it is easy to verify that

H(ξ) =
∫ ξ

a
(g(s) · Z − f (s)) w(s)ds � 0 , a � ξ � b,

where

Z =

∫ b
a f (t)w(t)dt∫ b
a g(t)w(t)dt

,

and if f /g is increasing then

H(ξ) =
∫ ξ

a
(g(s) · Z − f (s)) w(s)ds � 0 , a � ξ � b .

Therefore Theorem 4 holds in cases (a) , (c) and (a′) of Lemma D, when f /g is
increasing, and in cases (b) , (d) and (b′) of Lemma D, Theorem 4 holds when f /g
is decreasing.

In particular for a nonnegative concave function f (x), f (x)/x decreases (of course
there are nonconcave functions for which f (x)/x decreases), and for nonnegative
convex function f (x) satisfying f (0) = 0 , f (x)/x increases.

From these observations, we get the following examples of Theorem 4:
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EXAMPLE 1. Let w > 0, f be nonnegative, integrable and increasing on [a, b] ⊆
[0,∞) and let f (x)/x be decreasing on [a, b] . Using Theorem 4, if ϕ is differentiable
superquadratic on [0,∞) and convex on [f (a), f (b)], then∫ b

a
(ϕ (Z · s) − ϕ (f (s))) w(s)ds �

∫ b

a
ϕ (|Zs − f (s)|) w (s) ds (4.13)

holds, where

Z =

∫ b
a f (s)w(s)ds∫ b

a sw(s)ds
.

Moreover, if ϕ is superquadratic and convex on [0,∞) , then∫ b

a
(ϕ (Z · s) − ϕ (f (s))) w(s)ds �

∫ b

a
ϕ (|Zs − f (s)|) w(s)ds

�
(∫ b

a
w(s)ds

)
ϕ

(∫ b
a (|Zs − f (s)|) w(s)ds∫ b

a w(s)ds

)
. (4.14)

For instance, the function ϕ (x) = 2x2 log x − 3x2, x > 0, ϕ (0) = 0 is su-
perquadratic on x � 0 and convex on x � 1. Therefore, under the above assumptions
on f , if [f (a), f (b)] ⊂ [1,∞), we get for our ϕ that (4.13) holds. If instead we choose
ϕ to be ϕ(x) = xp, p � 2 then (4.14) holds.

EXAMPLE 2. Let w > 0, g be nonnegative and integrable on [a, b] ⊆ [0,∞). Let
g (x) /x be decreasing on [a, b] and

∫ b
a (g (x) − x) w (x) dx = 0.

If ϕ is concave on [a, b] and ϕ is differentiable superquadratic on [0,∞) , then from
Theorem 4 we get (4.11).

The following illustrates this case:
The function ϕ (x) = 2x2 log x − 3x2, x > 0, ϕ (0) = 0 is superquadratic on [0,∞)
and concave on [0, 1] . Let

g (x) =

⎧⎪⎨
⎪⎩

e2+n, 0 � x � 1
2e2+n

;

0,
1

2e2+n
� x � 1.

Then for a constant n which is large enough∫ 1

0
ϕ (|g (x) − x|) dx >

en (1 + 4n)
2

.

Hence as
∫ 1

0 (g (x) − x) dx = 0 and
∫ ξ

0 (g (x) − x) dx � 0, 0 � ξ � 1 we get for the
chosen ϕ (x) , g (x) and f (x) = x that∫ 1

0
(ϕ (g (x)) − ϕ (x)) dx �

∫ 1

0
ϕ (|g (x) − x|) dx >

en (1 + 4n)
2

> 0.
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[7] J. E. PEČARIĆ, S. ABRAMOVICH, On New Majorization Theorems, Rocky Mountain J. of Math., 27,

(1997), 903–911.
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