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THE REVERSE HARDY INEQUALITY WITH MEASURES

W. DESMOND EVANS, AMIRAN GOGATISHVILI AND BOHUMÍR OPIC

(communicated by L. Pick)

Abstract. In this paper we characterize the validity of the inequalities

‖g‖p,(a,b),λ � c

∥∥∥∥∥u(x)
∫

(a,x)
g(y) dμ

∥∥∥∥∥
q,(a,b),ν

and
‖g‖p,(a,b),λ � c

∥∥∥∥∥u(x)
∫

(x,b)
g(y) dμ

∥∥∥∥∥
q,(a,b),ν

for non-negative Borel measurable functions g on the interval (a, b)⊆R , where 0 < p � 1 ,
0 < q � +∞ , λ , μ and ν are non-negative Borel measures on (a, b) , and u is a weight
function on (a, b) .

1. Introduction

In [8] G. H. Hardy proved the following celebrated inequality: Let 1 < p < +∞
and f a non-negative measurable function on (0, +∞) . Then, if ε < 1/p′ = 1− 1/p ,∫ +∞

0

(
xε−1

∫ x

0
f (t) dt

)p

dx � c
∫ +∞

0

(
xε f (x)

)p
dx (1.1)

for some constant c independent of f . If ε > 1/p′ , the inequality takes the form

∫ +∞

0

(
xε−1

∫ +∞

x
f (t) dt

)p

dx � c
∫ +∞

0

(
xε f (x)

)p
dx. (1.2)

The best possible constants c in (1.1) and (1.2) are equal and this common value was
determined by E. Landau in [10] as

c = |ε − 1/p′|−p. (1.3)
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In [3] G. A. Bliss established the inequality

(∫ +∞

0

(
x
− 1

q− 1
p′
∫ x

0
f (t) dt

)q

dx

) 1
q

� c

(∫ +∞

0
f (x)p dx

) 1
p

for 1 < p < q < +∞ and proved that the best possible constant is

c =
(

p′rr

q

)1/q [
B

(
1
r
,
q − 1

r

)]−r/q

,

where r = q/p − 1 and B is the classical beta function.
During the last two decades, many authors have considered extensions of the form

(∫ b

a

(
w(x)

∫ x

a
f (t) dt

)q

dx

) 1
q

� c

(∫ b

a
(v(x)f (x))p dx

) 1
p

(1.4)

and (∫ b

a

(
w(x)

∫ b

x
f (t) dt

)q

dx

) 1
q

� c

(∫ b

a
(v(x)f (x))p dx

) 1
p

, (1.5)

with −∞ � a < b � +∞ , w, v weights on (a, b) , 0 < q � +∞ , 1 � p � +∞ .
The weights w and v for which (1.4) and (1.5) hold for all non-negative f have been
completely characterized. The solution of this problem (under different assumptions
on p and q ) is associated with the names M. Artola, J. S. Bradley, V. Kokilashvili,
V. G. Maz’ja, B. Muckenhoupt, A. L. Rozin, E. Sawyer, G. Sinnamon, G. Talenti,
G. Tomaselli and others. We refer to [13] and [9] for a survey of results.

In [16] E. Sawyer noted that if 0 < p < 1 , then the inequalities (1.4) and (1.5)
hold only for trivial weights. This observations led to a study of the so-called reverse
Hardy inequalities

(∫ b

a

(
w(x)

∫ x

a
f (t) dt

)q

dx

) 1
q

� c

(∫ b

a
(v(x)f (x))p dx

) 1
p

(1.6)

and (∫ b

a

(
w(x)

∫ b

x
f (t) dt

)q

dx

) 1
q

� c

(∫ b

a
(v(x)f (x))p dx

) 1
p

(1.7)

in the case 0 < p � 1 .
However, these are integral forms of inequalities first considered by E. T. Copson in

[4, 5] for infinite series; such reverse inequalities for infinite series were also investigated
by G. Bennett [2] and K.-G. Grosse-Erdmann [7]. Conditions on the weights w , v ,
which are either necessary or sufficient for (1.6) and (1.7) to hold when 0 < q � p � 1
were established by P. R. Beesack and H. P. Heinig [1]. Discrete analogues of (1.6)
and (1.7) were proved in [7], where it is also remarked that the techniques used in
the proofs may be applicable to the continuous versions of the inequalities, namely to
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(1.6) and (1.7). No estimates of the constants c are mentioned in [7]. In the case that
0 < p, q < 1 the characterization of inequalities (1.6) and (1.7) was given in [14].

In this paper we make a comprehensive study of general inequalities of the form

‖gw‖p,(a,b),μ � c

∥∥∥∥∥u(x)
∫

(a,x)
g(y) dμ

∥∥∥∥∥
q,(a,b),ν

(1.8)

and

‖gw‖p,(a,b),μ � c

∥∥∥∥∥u(x)
∫

(x,b)
g(y) dμ

∥∥∥∥∥
q,(a,b),ν

(1.9)

involving non-negative Borel measures μ and ν , with complete proofs and estimates
for c , provided that 0 < p � 1 and 0 < q � +∞ . In addition to the extra generality
and the filling of gaps in previous works on these inequalities, this approach unifies the
continuous and discrete problems, so that the integral and series inequalities follow as
particular cases. As in [7], our method is based on a discretization of function norms.
The general inequalities (involving three non-negative Borel measures λ , μ and ν )
mentioned in the Abstract of this paper are reduced either to (1.8) or to (1.9).

The paper is organized as follows. We start with notation and preliminary results
in Section 2. General discretization formulae of weighted function norms are given
in Section 3 while necessary and sufficient conditions for the validity of the inequality
(1.8) or (1.9) can be found in Section 5 or in Section 4, respectively. Finally, in Section 6
we show that the results from Sections 4 and 5 can be used to characterize the validity
of inequalities mentioned at the Abstract of this paper.

2. Notation and preliminaries

Throughout the paper we assume that I := (a, b) ⊆ R . Let μ be a non-negative
Borel measure on I . We denote by B+(I) the set of all non-negative Borel measurable
functions on I . If E is a nonempty Borel measurable subset of I and f is a Borel
measurable function on E , then we put

‖f ‖p,E,μ :=
(∫

E
|f (y)|p dμ

) 1
p

, 0 < p < +∞,

‖f ‖∞,E,μ := sup{α : μ{y ∈ E : |f (y)| � α} > 0};
the symbol χE stands for the characteristic function of the set E . In the notation
‖f ‖p,E,μ , 0 < p � +∞ , we omit the symbol μ if μ is the Lebesgue measure on I .

By A�B we mean that A � CB with some positive constant C independent of
appropriate quantities. If A�B and B�A , we write A ≈ B and say that A and B are
equivalent.

We put

p′ :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p
1−p if 0 < p < 1,

+∞ if p = 1,
p

p−1 if 1 < p < +∞,

1 if p = +∞,
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and 1/(±∞) = 0 , 0/0 = 0 , 0 · (±∞) = 0 and Z = Z ∪ {−∞, +∞} .

DEFINITION 2.1. Let N, M ∈ Z , N < M . A positive non-increasing sequence
{τk}M

k=N is called almost geometrically decreasing if there are α ∈ (1, +∞) and L ∈ N

such that

τk � 1
α
τk−L for all k ∈ {N + L, . . . , M}.

A positive non-decreasing sequence {σk}M
k=N is called almost geometrically increasing

if there are α ∈ (1, +∞) and L ∈ N such that

σk � ασk−L for all k ∈ {N + L, . . . , M}.
REMARK 2.2. Definition 2.1 implies that if 0 < q < +∞ , then following three

statements are equivalent:
(i) {τk}M

k=N is an almost geometrically decreasing sequence;
(ii) {τq

k}M
k=N is an almost geometrically decreasing sequence;

(iii) {τ−q
k }M

k=N is an almost geometrically increasing sequence.

Let ∅ 	= Z ⊆ Z , 0 < q � +∞ and let {wk} = {wk}k∈Z be a sequence
of positive numbers. We denote by �q({wk},Z) the following discrete analogue of
a weighted Lebesgue space: if 0 < q < +∞ , then

�q({wk},Z) =
{{ak}k∈Z : ‖ak‖�q({wk},Z) :=

(∑
k∈Z

|akwk|q
) 1

q < +∞}
and

�∞({wk},Z) =
{{ak}k∈Z : ‖ak‖�∞({wk},Z) := sup

k∈Z
|akwk| < +∞}.

If wk = 1 for all k ∈ Z , we write simply �q(Z) instead of �q({wk},Z) .

Given two (quasi-)Banach spaces X and Y , we write X ↪→ Y if X ⊂ Y and if
the natural embedding of X in Y is continuous.

We quote some known results. Proofs can be found in [11] and [12].

LEMMA 2.3. Let N, M ∈ Z , N � M . Then, for any positive sequence {τk}M
k=N

and all m ∈ Z satisfying N < m < M ,

M∑
k=m

τk � τm (2.1)

or
m∑

k=N

τk � τm (2.2)

if and only if the sequence {τk}M
k=N is almost geometrically decreasing or increasing,

respectively.
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LEMMA 2.4. Let q ∈ (0, +∞] , N, M ∈ Z , N � M , Z = {N, N + 1, . . . , M −
1, M} and let {τk}M

k=N be an almost geometrically decreasing sequence. Then∥∥∥∥∥τk

k∑
m=N

am

∥∥∥∥∥
�q(Z)

≈ ‖τkak‖�q(Z) (2.3)

and
‖τk sup

N�m�k
am‖�q(Z) ≈ ‖τkak‖�q(Z) (2.4)

for all non-negative sequences {ak}M
k=N .

LEMMA 2.5. Let q ∈ (0, +∞] , N � M , N, M ∈ Z , Z = {N, N + 1, . . . , M −
1, M} and let {σk}M

k=N be an almost geometrically increasing sequence. Then∥∥∥∥∥σk

M∑
m=k

am

∥∥∥∥∥
�q(Z)

≈ ‖σkak‖�q(Z) (2.5)

and
‖σk sup

k�m�M
am‖�q(Z) ≈ ‖σkak‖�q(Z) (2.6)

for all non-negative sequences {ak}M
k=N .

The following two lemmas are discrete versions of the classical Landau resonance
theorems. Proofs can be found, for example, in [6].

LEMMA 2.6. Let 0 < p � q � +∞ , ∅ 	= Z ⊆ Z and let {vk}k∈Z and {wk}k∈Z
be two sequences of positive numbers. Assume that

�p({vk},Z) ↪→ �q({wk},Z). (2.7)

Then
‖{wkv

−1
k }‖�∞(Z) � C, (2.8)

where C stands for the norm of the embedding (2.7).

LEMMA 2.7. Let 0 < q < p � +∞ , ∅ 	= Z ⊆ Z and let {vk}k∈Z and {wk}k∈Z
be two sequences of positive numbers. Assume that (2.7) holds. Then

‖{wkv
−1
k }‖�r(Z) � C, (2.9)

where 1/r := 1/q − 1/p and C stands for the norm of the embedding (2.7) .

3. Discretization of function norms

In this section we define a discretizing sequence for a non-negative, non-decre-
asing, finite and right-continuous function ϕ on (a, b) ⊆ R . We use this sequence
to discretize function norms, more precisely, we find discrete norms equivalent to the
original ones.

If ϕ is a non-negative and monotone function on (a, b) , then by ϕ(a) and ϕ(b)
we mean the values ϕ(a+) := limt→a+ ϕ(t) and ϕ(b−) := limt→b− ϕ(t) , respectively.
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LEMMA 3.1. Let ϕ be a non-negative,non-decreasing,finite and right-continuous
function on (a, b) . There is a strictly increasing sequence {xk}M+1

k=N , −∞ � N � M �
+∞ , with elements from the closure of the interval (a, b) , such that:

(i) if N > −∞ , then ϕ(xN) > 0 and ϕ(x) = 0 for every x ∈ (a, xN) ; if
M < +∞ , then xM+1 = b ;

(ii) ϕ(xk+1−) � 2ϕ(xk) if N � k � M ;
(iii) 2ϕ(xk−) � ϕ(xk+1) if N < k < M .

Proof. Define the sets Ak by

Ak =
{
t ∈ (a, b) : 2k � ϕ(t) < 2k+1

}
, k ∈ Z. (3.1)

Let {Amk}M
k=N be the maximal subsequence of {Ak}k∈Z which contains only

nonempty sets and let xk = inf Amk . The assumptions on ϕ and (3.1) imply that the
sequence {xk}M

k=N is strictly increasing. Moreover, if N > −∞ , then ϕ(xN) > 0 and
ϕ(x) = 0 for every x ∈ (a, xN) . If M < +∞ , then xM < b and we put xM+1 = b .

By the right continuity of ϕ ,

2mk � ϕ(xk) < 2mk+1 if N � k � M. (3.2)

If xk � t < xk+1 , then t ∈ Amk . Together with (3.2), this implies that

ϕ(t) < 2mk+1 � 2ϕ(xk)

and (ii) follows. Similarly, if xk−1 � t < xk , then

2ϕ(t) < 2 · 2mk−1+1 � 2 · 2mk = 2mk+1 � 2mk+1 � ϕ(xk+1)

and (iii) follows. �

DEFINITION3.2. Let ϕ be a non-negative,non-decreasing, finite and right-continuous
function on (a, b) . A strictly increasing sequence {xk}M+1

k=N , −∞ � N < M � +∞ , is
said to be a discretizing sequence of the function ϕ if it satisfies the conditions (i)−(iii)
of Lemma 3.1.

REMARK 3.3. We shall use the following convention: if N = −∞ , then we put
xN = limk→−∞ xk . It is clear that if N = −∞ and xN > a , then ϕ(x) = 0 for all
x ∈ (a, xN) (cf. condition (i) of Lemma 3.1).

THEOREM 3.4. Let ν be a non-negative Borel measure on I = (a, b) such that
the function ϕ(t) = ν(a, t] is finite on I . If {xk}M+1

k=N is a discretizing sequence of the
function ϕ , then ∫

(a,b)
h(t) dν(t) ≈

M∑
k=N

h(xk)ν(a, xk] (3.3)

for all non-negative and non-increasing functions h on I .
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Proof. It is easy to see that function ϕ is right-continuous on (a, b) . Since

lim
t→a+

ϕ(t) = lim
n→+∞ϕ(a + 1/n) = lim

n→+∞ ν(a, a + 1/n]

= ν

(⋂
n

(a, a + 1/n]

)
= ν(∅) = 0,

the discretizing sequence {xk}M+1
k=N of the function ϕ satisfies N = −∞ or xn > a .

Moreover, by the construction of the sequence {xk}M+1
k=N , (cf. conditions (ii) and (iii)

of Lemma 3.1),
ν(a, xk+1) � 2ν(a, xk] if N � k � M, (3.4)

and

ν(a, xk−1) � 1
2
ν(a, xk] if N < k − 1 < M. (3.5)

Using (3.5), we obtain

ν(a, xk] = ν(a, xk−1) + ν[xk−1, xk] � 1
2
ν(a, xk] + ν[xk−1, xk].

Consequently,
ν(a, xk] � 2ν[xk−1, xk] if N < k − 1 < M. (3.6)

Applying the equality ν(a, xN) = 0 and (3.4), we arrive at

∫
(a,b)

h(t) dν(t) =
M∑

k=N

∫
[xk ,xk+1)

h(t) dν(t) �
M∑

k=N

h(xk)ν(a, xk+1) � 2
M∑

k=N

h(xk)ν(a, xk]

for all non-negative and non-increasing functions h on I . To prove the reverse estimate,
we distinguish two cases.

First assume that M − N � 1 . Consequently,

∫
(a,b)

h(t) dν(t) � 1
2

M∑
k=N

∫
(a,xk ]

h(t) dν(t) � 1
2

M∑
k=N

h(xk)ν(a, xk],

which is the desired reverse estimate.
Suppose now that N + 1 < M . Using the estimate

χ(a,xN ](t) + χ(a,xN+1](t) +
M∑

k=N+2

χ[xk−1,xk ](t) � 2 for all t ∈ I

and the monotonicity of h , we obtain

∫
(a,b)

h(t) dν(t) � 1
2

(∫
(a,xN ]

h(t) dν(t) +
∫

(a,xN+1]
h(t) dν(t) +

M∑
k=N+2

∫
[xk−1,xk ]

h(t) dν(t)

)

� 1
2

(
h(xN)ν(a, xN ] + h(xN+1)ν(a, xN+1] +

M∑
k=N+2

h(xk)ν[xk−1, xk]

)
.
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Now we apply (3.6) to get∫
(a,b)

h(t) dν(t) � 1
4

M∑
k=N

h(xk)ν(a, xk],

and the result follows. �
We shall need an analogue of Theorem 3.4, where L1(ν) -norm is replaced by

a weighted L∞(ν) -norm. But there is a substantial difference between these two
cases. While the function ϕ(t) := ν(a, t] , t ∈ I , corresponding to the former case is
right-continuous on I , the function

ϕ(t) := ‖u‖∞,(a,t],ν, t ∈ I, with u ∈ B+(I), (3.7)

cannot be right-continuous on I . (To see it, let I = (0, 2) , u = χ(0,1] + 2χ(1,2) and let
ν be the Lebesgue measure on I . Then ϕ(1) = 1 but ϕ(1+) = 2 ). Therefore, in the
following theorem we consider the function ϕ defined by

ϕ(t) = ‖u‖∞,(a,t+],ν := lim
s→t+

‖u‖∞,(a,s],ν, t ∈ I, (3.8)

instead of ϕ given by (3.7). Note also that the assumptions on h are more restrictive
there.

THEOREM 3.5. Let ν be a non-negative Borel measure on I = (a, b) and let
u ∈ B+(I) be such that the function ‖u‖∞,(a,t],ν < +∞ for all t ∈ I . If {xk}M+1

k=N is
a discretizing sequence of the function ϕ(t) = ‖u‖∞,(a,t+],ν , t ∈ I , then

‖hu‖∞,(a,b),ν ≈ sup
N�k�M

h(xk)‖u‖∞,(a,xk+],ν (3.9)

for all non-negative, non-increasing and right-continuous functions h on I .

Proof. Since, cf. Lemma 3.1 and Remark 3.3,

‖u‖∞,(a,xN),ν = 0 when xN > a,

and
‖u‖∞,(a,xk+1),ν � 2‖u‖∞,(a,xk+],ν if N � k � M,

we obtain

‖uh‖∞,(a,b),ν � sup
N�k�M

‖uh‖∞,[xk,xk+1),ν

� sup
N�k�M

h(xk)‖u‖∞,[xk,xk+1),ν

� 2 sup
N�k�M

h(xk)‖u‖∞,(a,xk+],ν.

The reverse estimate is obvious since the properties of h imply that

‖uh‖∞,(a,b),ν � sup
N�k�M

‖uh‖∞,(a,xk+],ν

� sup
N�k�M

h(xk)‖u‖∞,(a,xk+],ν. �



THE REVERSE HARDY INEQUALITY WITH MEASURES 51

Let ϕ be a non-negative, non-decreasing, finite and right-continuous function
on (a, b) . Using a discretizing sequence {xk}M+1

k=N of ϕ , we define the sequence of
intervals {Jk}M

k=N as follows:

Ji = (xi, xi+1], if N � i < M, and JM = (xM, b) if M < +∞. (3.10)

COROLLARY 3.6. Let 0 < q < +∞ . Suppose that μ and ν are non-negative
Borel measures on I = (a, b) . Let ν be such that the function ϕ(t) = ν(a, t] is finite
on (a, b) . If {xk}M+1

k=N is a discretizing sequence of ϕ , then∥∥∥∥∥
∫

(x,b)
g dμ

∥∥∥∥∥
q,I,ν

≈
(

M∑
k=N

(∫
Jk

g dμ

)q

ν(a, xk]

) 1
q

(3.11)

and ∥∥‖g‖∞,(x,b),μ
∥∥

q,I,ν ≈
(

M∑
k=N

‖g‖q
∞,Jk,μ ν(a, xk]

) 1
q

(3.12)

for all g ∈ B+(I) , where {Jk}M
k=N is defined by (3.10) .

Proof. We prove (3.11) only (the proof of (3.12) is analogous). By Theorem 3.4,∥∥∥∥∥
∫

(x,b)
g dμ

∥∥∥∥∥
q,I,ν

≈
(

M∑
k=N

(∫
(xk,b)

g dμ

)q

ν(a, xk]

) 1
q

=

(
M∑

k=N

(
M∑
i=k

∫
Jk

g dμ

)q

ν(a, xk]

) 1
q

.

The condition (iii) of Lemma 3.1 implies that {ν(a, xk]}M
k=N is an almost geomet-

rically increasing sequence. (We can take α = L = 2 in Definition 2.1. Indeed, by
the monotonicity of ϕ and the condition (iii) of Lemma 3.1, 2ϕ(xk−1) � 2ϕ(xk−) �
ϕ(xk+1) if N < k < M , and, on putting k−1 = m−2 , we arrive at 2ϕ(xm−2) � ϕ(xm)
if N + 2 � m � M .) Thus {ν(a, xk]

1
q }M

k=N is also an almost geometrically increasing
sequence and (3.11) follows on applying Lemma 2.5. �

COROLLARY 3.7. Suppose that μ and ν are non-negative Borel measures on
I = (a, b) . Let u ∈ B+(I) be such that the function ϕ(t) = ‖u‖∞,(a,t],ν is finite on
(a, b) . If {xk}M+1

k=N is a discretizing sequence of the function ϕ(t) = ‖u‖∞,(a,t+],ν ,
t ∈ I , then ∥∥∥∥∥u(x)

∫
(x,b)

g dμ

∥∥∥∥∥
∞,I,ν

≈ sup
N�k�M

(∫
Jk

g dμ

)
‖u‖∞,(a,xk+],ν (3.13)

and ∥∥u(x)‖g‖∞,(x,b),μ
∥∥
∞,I,ν ≈ sup

N�k�M
‖g‖∞,Jk,μ‖u‖∞,(a,xk],ν (3.14)

for all g ∈ B+(I) , where {Jk}M
k=N is defined by (3.10) .

Proof. This follows from Theorem 3.5 and Lemma 2.5. �
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4. The reverse Hardy inequality

In this section we characterize the validity of the inequality

‖gw‖p,(a,b),μ � c

∥∥∥∥∥u(x)
∫

(x,b)
g(y) dμ

∥∥∥∥∥
q,(a,b),ν

, g ∈ B+(I). (4.1)

Our first result concerns the case when 0 < q � p � 1 .

THEOREM 4.1. Assume that 0 < q � p � 1 . Let μ and ν be non-negative
Borel measures on I = (a, b) ⊆ R . Let w ∈ B+(I) and let u ∈ B+(I) satisfy
‖u‖q,(a,t],ν < +∞ for all t ∈ I . Then the inequality (4.1) holds for all g ∈ B+(I) if
and only if

A1 := sup
x∈(a,b)

‖w‖p′,(a,x],μ‖u‖−1
q,(a,x),ν < +∞.

The best possible constant c in (4.1) satisfies c ≈ A1 .

Proof. Let 0 < q � 1 . By Corollary 3.6,

∥∥∥∥∥u(x)
∫

(x,b)
g(y) dμ

∥∥∥∥∥
q,(a,b),ν

≈
(

M∑
k=N

(∫
Jk

g dμ

)q

‖u‖q
q,(a,xk],ν

) 1
q

(4.2)

for all g ∈ B+(I) , where {xk}M+1
k=N is a discretizing sequence of the function ϕ(t) =

‖u‖q
q,(a,t],ν , t ∈ (a, b) , and {Jk}M

k=N is defined by (3.10). By Lemma 3.1 (cf. also
Remark 3.3),

if xN > a, then ‖u‖q,(a,xN),ν = 0; (4.3)

if M < +∞, then xM+1 = b;

‖u‖q
q,(a,xk+1),ν

� 2‖u‖q
q,(a,xk],ν

if N � k � M; (4.4)

2‖u‖q
q,(a,xk),ν

� ‖u‖q
q,(a,xk+1],ν

if N < k < M. (4.5)

Assume that A1 < +∞ . This condition and (4.3) imply that

‖w‖p′,(a,xN ],μ = 0 if xN > a. (4.6)

Consequently, w = 0 μ -a.e. in (a, xN ] if xN > a , which yields ‖w‖p,(a,xN ],μ = 0 if
xN > a . Therefore,

‖gw‖p,(a,b),μ =

(
M∑

k=N

‖gw‖p
p,Jk,μ

) 1
p

for any g ∈ B+(I). (4.7)

By Hölder’s inequality (with the exponents 1/p and p′/p ),

‖gw‖p
p,Jk,μ � ‖g‖p

1,Jk,μ‖w‖
p
p′,Jk ,μ

, N � k � M. (4.8)
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Identity (4.7) and inequality (4.8) give

‖gw‖p,(a,b),μ �
(

M∑
k=N

‖g‖p
1,Jk,μ‖w‖

p
p′,Jk ,μ

) 1
p

�
(

sup
N�k�M

‖w‖p′,Jk ,μ‖u‖−1
q,(a,xk],ν

)(
M∑

k=N

‖g‖p
1,Jk,μ‖u‖

p
q,(a,xk],ν

) 1
p

.

Moreover, using the inequality 0 < q/p � 1 and (4.2), we arrive at

‖gw‖p,(a,b),μ �
(

sup
N�k�M

‖w‖p′,Jk ,μ‖u‖−1
q,(a,xk],ν

)(
M∑

k=N

‖g‖q
1,Jk,μ‖u‖

q
q,(a,xk],ν

) 1
q

≈
(

sup
N�k�M

‖w‖p′,Jk ,μ‖u‖−1
q,(a,xk],ν

)∥∥∥∥∥u(x)
∫

(x,b)
g dμ

∥∥∥∥∥
q,(a,b),ν

.
(4.9)

Applying (4.4), we get

sup
N�k�M

‖w‖p′,Jk ,μ‖u‖−1
q,(a,xk],ν

� 2
1
q sup

N�k�M
‖w‖p′,(a,xk+1]∩I,μ‖u‖−1

q,(a,xk+1),ν

� 2
1
q A1. (4.10)

The inequality (4.1) (with c�A1 ) follows from (4.9) and (4.10).
We now prove necessity. The validity of the inequality (4.1) on B+(I) and (4.2)

imply that (
M∑

k=N

‖gw‖p
p,Jk,μ

) 1
p

� c

(
M∑

k=N

(∫
Jk

g dμ

)q

‖u‖q
q,(a,xk],ν

) 1
q

(4.11)

for all g ∈ B+(I) .
Let gk ∈ B+(I) , N � k � M , be functions that saturate Hölder’s inequality (4.8),

that is, functions satisfying

sup gk ⊂ Jk, ‖gk‖1,Jk ,μ = 1 and ‖gkw‖p
p,Jk ,μ � 1

2
‖w‖p

p′,Jk ,μ
. (4.12)

Then we define the test function g by

g =
M∑

k=N

ak gk, (4.13)

where {ak} is a sequence of non-negative numbers. Consequently, (4.11) yields(
M∑

k=N

ap
k‖w‖p

p′,Jk ,μ

) 1
p

� c

(
M∑

k=N

aq
k‖u‖q

q,(a,xk],ν

) 1
q

, (4.14)

and, by Lemma 2.6,
sup

N�k�M
‖w‖p′,Jk ,μ‖u‖−1

q,(a,xk],ν
� c. (4.15)
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Assuming that xN > a , testing (4.1) with g = χ(a,xN ] and using (4.3), we arrive
at ‖w‖p,(a,xN ],μ = 0 . This implies that w = 0 μ -a.e. in (a, xN ] . Consequently, (4.6)
holds. Therefore, on using (3.10),

A1 = sup
N�k�M

sup
x∈Jk

‖w‖p′,(a,x],μ‖u‖−1
q,(a,x),ν

and hence
A1 � sup

N�k�M
‖w‖p′,(a,xk+1]∩I,μ‖u‖−1

q,(a,xk],ν
.

Applying (4.6) and (3.10) again, we arrive at

A1 � sup
N�k�M

(
k∑

i=N

‖w‖p′
p′,Ji,μ

) 1
p′

‖u‖−1
q,(a,xk],ν

if 0 < p < 1

and
A1 � sup

N�k�M

(
sup

N�i�k
‖w‖p′,Ji,μ

)
‖u‖−1

q,(a,xk],ν
if p = 1.

Now, the fact that {‖u‖−1
q,(a,xk],ν

}M
k=N is almost geometrically decreasing (cf. (4.5)) and

Lemma 2.4 imply that

A1 � sup
N�k�M

‖w‖p′,Jk ,μ‖u‖−1
q,(a,xk],ν

,

which, together with (4.15), yields A1 � c . �
REMARK 4.2. Let A1 be the number defined in Theorem 4.1. If p = 1 , then

A1 =
∥∥∥w(x)‖u‖−1

q,(a,x),ν

∥∥∥
∞,(a,b),μ

.

Indeed, exchanging essential suprema, we obtain

A1 =
∥∥∥‖w‖∞,(a,x],μ‖u‖−1

q,(a,x),ν

∥∥∥
∞,(a,b)

=
∥∥∥∥
∥∥∥w(s)‖u‖−1

q,(a,x),ν

∥∥∥
∞,(a,x],μ

∥∥∥∥
∞,(a,b)

=
∥∥∥∥
∥∥∥w(s)χ(a,x](s)‖u‖−1

q,(a,x),ν

∥∥∥
∞,(a,b),μ

∥∥∥∥
∞,(a,b)

=
∥∥∥∥
∥∥∥w(s)‖u‖−1

q,(a,x),ν

∥∥∥
∞,[s,b)

∥∥∥∥
∞,(a,b),μ

=
∥∥∥w(s)‖u‖−1

q,(a,s),ν

∥∥∥
∞,(a,b),μ

.

In the rest of the paper we shall need the Lebesgue-Stieltjes integral. To this end,
we recall some basic facts.

Let ϕ be non-decreasing and finite function on the interval I := (a, b) ⊆ R . We
assign to ϕ the function λ defined on subintervals of I by

λ ([α, β ]) = ϕ(β+) − ϕ(α−), (4.16)
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λ ([α, β)) = ϕ(β−) − ϕ(α−), (4.17)
λ ((α, β ]) = ϕ(β+) − ϕ(α+), (4.18)
λ ((α, β)) = ϕ(β−) − ϕ(α+). (4.19)

The function λ is a non-negative, additive and regular function of intervals. Thus
(cf. [15]), it admits a unique extension to a non-negative Borel measure λ on I . The
Lebesgue-Stieltjes integral

∫
I f dϕ is defined as

∫
I f dλ .

In this section the role of the function ϕ will be played by a function h which
will be non-decreasing and right-continuous on I . Consequently, the associated Borel
measure λ will be determined by (cf. (4.18))

λ ((α, β ]) = h(β) − h(α) for any (α, β ] ⊂ I (4.20)

(since the Borel subsets of I can be generated by subintervals (α, β ] ⊂ I ).
Consider now the inequality (4.1) in the case when 0 < p � 1 , p < q � +∞

and define r by 1
r

=
1
p
− 1

q
. (4.21)

In such a case we shall write a condition characterizing the validity of inequality
(4.1) in a compact form involving

∫
(a,b) f dh , where f (t) = ‖w‖r

p′,(a,t],μ and h(t) =
−‖u‖−r

q,(a,t+],ν , t ∈ (a, b) . (Hence, the Lebesgue-Stieltjes integral
∫

(a,b) f dh is defined
by the non-decreasing and right-continuous function h on (a, b) ). However, it can
happen that ‖u‖q,(a,t+],ν = 0 for all t ∈ (a, c) with a convenient c ∈ (a, b) (provided
that we omit the trivial case when u = 0 ν -a.e. on (a, b) ). Then we have to explain
what is the meaning of the Lebesgue-Stieltjes integral since in such a case the function
h = −∞ on (a, c) . To this end, we adopt the following convention.

CONVENTION 4.3. Let I = (a, b) ⊆ R , f : I → [0, +∞] and h : I → [−∞, 0] .
Assume that h is non-decreasing and right-continuous on I . If h : I → (−∞, 0] , then
the symbol

∫
I f dh means the usual Lebesgue-Stieltjes integral. However, if h = −∞

on some subinterval (a, c) with c ∈ I , then we define
∫

I f dh only if f = 0 on (a, c]
and we put ∫

I
f dh =

∫
(c,b)

f dh.

In the proof of the next theorem we shall use frequently the Lebesgue-Stieltjes
integral

∫
J dϕ , where ϕ is a non-decreasing, finite and right-continuous function on

I = (a, b) and J is a subinterval of I of the form (α, β) , [α, β) or (α, β ] . The
formulae (4.19), (4.17) and (4.18) imply that∫

(α,β)
dϕ = ϕ(β−) − ϕ(α), (4.22)

∫
[α,β)

dϕ = ϕ(β−) − ϕ(α−), (4.23)∫
(α,β ]

dϕ = ϕ(β) − ϕ(α). (4.24)



56 W. DESMOND EVANS, AMIRAN GOGATISHVILI AND BOHUMÍR OPIC

THEOREM 4.4. Assume that 0 < p � 1 , p < q � +∞ and r is given by (4.21) .
Let μ and ν be non-negative Borel measures on I = (a, b) ⊆ R . Let w ∈ B+(I) and
let u ∈ B+(I) satisfy ‖u‖q,(a,t],ν < +∞ for all t ∈ I and u 	= 0 ν -a.e. on I . Then
the inequality (4.1) holds for all g ∈ B+(I) if and only if

A2 :=

(∫
(a,b)

‖w‖r
p′,(a,t],μ d

(
−‖u‖−r

q,(a,t+],ν

)) 1
r

+
‖w‖p′,(a,b),μ

‖u‖q,(a,b),ν
< +∞.

The best possible constant c in (4.1) satisfies c ≈ A2 .

REMARK 4.5. Let q < +∞ in Theorem 4.4. Then

‖u‖q,(a,t+],ν = ‖u‖q,(a,t],ν for all t ∈ I,

which implies that

A2 =

(∫
(a,b)

‖w‖r
p′,(a,t],μ d

(
−‖u‖−r

q,(a,t],ν

)) 1
r

+
‖w‖p′,(a,b),μ

‖u‖q,(a,b),ν
.

Proof of Theorem 4.4 . Let 0 < p � 1 and p < q � +∞ .
(i) Suppose first that q < +∞ . Let {xk}M+1

k=N be the discretizing sequence of the
function ϕ(t) = ‖u‖q

q,(a,t],ν , t ∈ (a, b) . Then (4.3)–(4.5) are satisfied. Moreover, by

Corollary 3.6, (4.2) holds, where {Jk}M
k=N is given by (3.10).

Assume that A2 < +∞ . This condition, (4.3) and Convention 4.3 imply that
(4.6) holds and, as in the proof of Theorem 4.1, we arrive at (4.7). Thus, using (4.8),
the discrete version of Hölder’s inequality (with the exponents q/p and r/p ) and (4.2),
we obtain

‖gw‖p,(a,b),μ�
(

M∑
k=N

‖g‖p
1,Jk,μ‖w‖

p
p′,Jk ,μ

) 1
p

�
(

M∑
k=N

‖g‖q
1,Jk,μ‖u‖

q
q,(a,xk],ν

) 1
q
(

M∑
k=N

‖w‖r
p′,Jk ,μ‖u‖

−r
q,(a,xk],ν

) 1
r

≈
∥∥∥∥∥u(x)

∫
(x,b)

g dμ

∥∥∥∥∥
q,(a,b),ν

(
M∑

k=N

‖w‖r
p′,Jk ,μ‖u‖

−r
q,(a,xk],ν

) 1
r

.
(4.25)

By (4.5),

2‖u‖q
q,(a,xk+1),ν

� ‖u‖q
q,(a,xk+2],ν

� ‖u‖q
q,(a,xk+3),ν

if N < k + 1 < M.

Therefore,
‖u‖−r

q,(a,xk+3),ν
� 2−

r
q ‖u‖−r

q,(a,xk+1),ν
,

which yields

‖u‖−r
q,(a,xk+1),ν

− ‖u‖−r
q,(a,xk+3),ν

� (1 − 2−
r
q )‖u‖−r

q,(a,xk+1),ν
if N � k � M − 2.
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Assume that N � M − 2 . On using (4.4) and the last estimate, we arrive at

M∑
k=N

‖w‖r
p′,Jk ,μ‖u‖

−r
q,(a,xk],ν

�
M∑

k=N

‖w‖r
p′,Jk ,μ‖u‖

−r
q,(a,xk+1),ν

�
M−2∑
k=N

‖w‖r
p′,Jk ,μ

(
‖u‖−r

q,(a,xk+1),ν
− ‖u‖−r

q,(a,xk+3),ν

)

+ ‖w‖r
p′,JM−1,μ

(
‖u‖−r

q,(a,xM),ν − ‖u‖−r
q,(a,b),ν

)
+ ‖w‖r

p′,JM−1,μ‖u‖−r
q,(a,b),ν + ‖w‖r

p′,JM ,μ‖u‖−r
q,(a,b),ν.

(4.26)

Now, by (4.23) with ϕ(t) = −‖u‖−r
q,(a,t],ν , t ∈ I , and [α, β) = [xk+1, xk+3) , N � k �

M − 2 , or [α, β) = [xM, b) , we obtain that

M∑
k=N

‖w‖r
p′,Jk ,μ‖u‖

−r
q,(a,xk],ν

�
M−2∑
k=N

‖w‖r
p′,Jk ,μ

∫
[xk+1,xk+3)

d
(
−‖u‖−r

q,(a,t],ν

)

+ ‖w‖r
p′,JM−1 ,μ

∫
[xM ,b)

d
(
−‖u‖−r

q,(a,t],ν

)
+ 2‖w‖r

p′,(a,b),μ‖u‖−r
q,(a,b),ν

�
M−2∑
k=N

∫
[xk+1,xk+3)

‖w‖r
p′,(a,t],μ d

(
−‖u‖−r

q,(a,t],ν

)

+
∫

[xM ,b)
‖w‖r

p′,(a,t],μ d
(
−‖u‖−r

q,(a,t],ν

)
+ 2‖w‖r

p′,(a,b),μ‖u‖−r
q,(a,b),ν

� 2
∫

(a,b)
‖w‖r

p′,(a,t],μ d
(
−‖u‖−r

q,(a,t],ν

)
+ 2‖w‖r

p′,(a,b),μ‖u‖−r
q,(a,b),ν

�Ar
2

(note that we have used (4.6) and Convention 4.3), that is,

M∑
k=N

‖w‖r
p′,Jk ,μ‖u‖

−r
q,(a,xk],ν

�Ar
2. (4.27)

If N > M − 2 , then (4.27) can be proved more simply (and we leave it to the reader).
The inequality (4.1) (with c � A2 ) follows from (4.25) and (4.27).

For necessity we apply the same argument as in the proof of Theorem 4.1 to get
(4.14). Next, by Lemma 2.7,

(
M∑

k=N

‖w‖r
p′,Jk ,μ‖u‖−r

q,(a,xk],ν

) 1
r

� c. (4.28)
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As in the necessity part of the proof of the Theorem 4.1, we can show that (4.6) holds.
Together with (3.10), (4.24) and (4.22), this yields

Ar
2 ≈

M∑
k=N

∫
Jk

‖w‖r
p′,(a,t],μ d

(
−‖u‖−r

q,(a,t],ν

)
+ ‖w‖r

p′,(a,b),μ‖u‖−r
q,(a,b),ν

�
M−1∑
k=N

‖w‖r
p′,(a,xk+1],μ

∫
Jk

d
(
−‖u‖−r

q,(a,t],ν

)

+ ‖w‖r
p′,(a,b),μ

∫
(xM ,b)

d
(
−‖u‖−r

q,(a,t],ν

)
+ ‖w‖r

p′,(a,b),μ‖u‖−r
q,(a,b),ν

�
M−1∑
k=N

‖w‖r
p′,(a,xk+1],μ‖u‖

−r
q,(a,xk],ν

+ ‖w‖r
p′,(a,b),μ‖u‖−r

q,(a,xM],ν. (4.29)

Thus, using (4.6) and (3.10) again, we arrive at

Ar
2 �

M∑
k=N

(
k∑

i=N

‖w‖p′
p′,Ji,μ

) r
p′

‖u‖−r
q,(a,xk],ν

if 0 < p < 1

and

Ar
2 �

M∑
k=N

(
sup

N�i�k
‖w‖p′,Ji,μ

)r

‖u‖−r
q,(a,xk],ν

if p = 1.

Now, the fact that {‖u‖−r
q,(a,xk],ν

}M
k=N is almost geometrically decreasing (cf. (4.5)) and

Lemma 2.4 imply that

Ar
2 �

M∑
k=N

‖w‖r
p′,Jk ,μ‖u‖

−r
q,(a,xk],ν

, (4.30)

which, together with (4.28), yields A2 � c .
(ii) Suppose now that q = +∞ . Let {xk}M+1

k=N be a discretizing sequence of the
function ϕ(t) = ‖u‖∞,(a,t+],ν , t ∈ (a, b) . By Lemma 3.1 (cf. also Remark 3.3),

if xN > a, then ‖u‖∞,(a,xN),ν = 0; (4.31)

if M < +∞, then xM+1 = b;

‖u‖∞,(a,xk+1),ν � 2‖u‖∞,(a,xk+],ν if N � k � M; (4.32)

2‖u‖∞,(a,xk),ν � ‖u‖∞,(a,xk+1+],ν if N < k < M. (4.33)

Moreover, by Corollary 3.7,∥∥∥∥∥u(x)
∫

(x,b)
g(y) dμ

∥∥∥∥∥
∞,(a,b),ν

≈ sup
N�k�M

(∫
Jk

g dμ

)
‖u‖∞,(a,xk+],ν (4.34)

for all g ∈ B+(I) , where {Jk}M
k=N is given by (3.10).
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Assume that A2 < +∞ . This condition, (4.31) and Convention 4.3 imply that
(4.6) holds, and, as in the proof of Theorem 4.1, we arrive at (4.7). Thus, using (4.8)
and (4.34), we obtain

‖gw‖p,(a,b),μ �
(

M∑
k=N

‖g‖p
1,Jk,μ‖w‖

p
p′,Jk ,μ

) 1
p

�
(

sup
N�k�M

‖g‖1,Jk,μ‖u‖∞,(a,xk+],ν

)(
M∑

k=N

‖w‖p
p′,Jk ,μ

‖u‖−p
∞,(a,xk+],ν

) 1
p

≈
∥∥∥∥∥u(x)

∫
(x,b)

g dμ

∥∥∥∥∥
∞,(a,b),ν

(
M∑

k=N

‖w‖p
p′,Jk ,μ

‖u‖−p
∞,(a,xk+],ν

) 1
p

.
(4.35)

Analogously as in the case (i) , we arrive at

(
M∑

k=N

‖w‖p
p′,Jk ,μ

‖u‖−p
∞,(a,xk+],ν

) 1
p

�A2. (4.36)

Therefore, (4.1) (with c�A2 ) follows from (4.35) and (4.36).
Now, we prove necessity part. The validity of the inequality (4.1) on B+(I) and

(4.34) imply that

(
M∑

k=N

‖gw‖p
p,Jk,μ

) 1
p

� c sup
N�k�M

(∫
Jk

g dμ

)
‖u‖∞,(a,xk+],ν (4.37)

for all g ∈ B+(I) . Let gk ∈ B+(I) , N � k � M , be functions satisfying (4.12) and
define the test function g by (4.13). Consequently, (4.37) yields

(
M∑

k=N

ap
k‖w‖p

p′,Jk ,μ

) 1
p

� sup
N�k�M

ak‖u‖∞,(a,xk+],ν ,

and, by Lemma 2.7, (
M∑

k=N

‖w‖p
p′,Jk ,μ

‖u‖−p
∞,(a,xk+],ν

) 1
p

� c. (4.38)

The same idea as that used in part (i) shows that (cf. (4.29)–(4.30))

Ap
2 �

M∑
k=N

‖w‖p
p′,Jk ,μ

‖u‖−p
∞,(a,xk+],ν, (4.39)

which, together with (4.38), yields A2 � c . �
In the case when 0 < p � 1 , p � q � +∞ we have seen that the validity of the

inequality (4.1) on B+(I) is characterized by the condition A2 < +∞ . The following
theorem shows that there is another quantity equivalent to A2 .
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THEOREM 4.6. Suppose that all the assumptions of Theorem 4.4 are satisfied.
(i) Let

‖w‖p′,(a,t+],μ �‖w‖p′,(a,t],μ for all t ∈ (a, b). (4.40)

Then A2 ≈ A3 , where

A3 :=

(∫
(a,b)

‖u‖−r
q,(a,t),ν d

(
‖w‖r

p′,(a,t+],μ

)) 1
r

+
limt→a+ ‖w‖p′,(a,t),μ

limt→a+ ‖u‖q,(a,t),ν
.

(ii) Let
‖w‖p′,(a,t],μ �‖w‖p′,(a,t),μ for all t ∈ (a, b). (4.41)

Then A2 ≈ A4 , where

A4 :=

(∫
(a,b)

‖u‖−r
q,(a,t+],ν d

(
‖w‖r

p′,(a,t+],μ

)) 1
r

+
limt→a+ ‖w‖p′,(a,t),μ

limt→a+ ‖u‖q,(a,t),ν
.

REMARK 4.7. Theorems 4.4 and 4.6 imply that if the weight w satisfies (4.40),
then the conditions A2 < +∞ and A3 < +∞ are equivalent. Similarly, if w satisfies
(4.41), then the conditions A2 < +∞ and A4 < +∞ are equivalent.

Note also that if p′ < +∞ and ‖w‖p′,(a,t],μ < +∞ for all t ∈ (a, b) , then
‖w‖p′,(a,t+],μ = ‖w‖p′,(a,t],μ for all t ∈ (a, b) and therefore w satisfies (4.40). In this
case the condition A3 < +∞ reduces to(∫

(a,b)
‖u‖−r

q,(a,t),ν d
(
‖w‖r

p′,(a,t],μ

)) 1
r

< +∞ (4.42)

since limt→a+ ‖w‖p′,(a,t),μ = 0 .
Suppose now that p′ = +∞ , the weight w satisfies (4.40), and A3 < +∞ .

Moreover, let limt→a+ ‖u‖q,(a,t),ν = 0 . Then the second term in A3 has to be finite
which can happen only if limt→a+ ‖w‖∞,(a,t),μ = 0 (cf. our convention that 0/0 = 0 ).

Let μ be a non-negative Borel measure on (a, b) which has no atoms. Then it is
clear that the condition (4.41) holds.

Suppose now that p′ = +∞ , the weight w satisfies (4.41), and A4 < +∞ .
Moreover, let limt→a+ ‖u‖q,(a,t),ν = 0 . Then the second term in A4 has to be finite
which can happen only if limt→a+ ‖w‖∞,(a,t),μ = 0 (cf. our convention that 0/0 = 0 ).

Proof of Theorem 4.6 . It is clear that it is sufficient to verify the implications:

Ai < +∞ ⇒ A2 �Ai, i = 3, 4, (4.43)

A2 < +∞ ⇒ Ai �A2, i = 3, 4. (4.44)

Let {xk}M+1
k=N be the discretizing sequence from the proof of Theorem 4.4.

(i-1) Assume first that A3 < +∞ . If xN > a , then, by (4.3) (if q < +∞ ) or
by (4.31) (if q = +∞ ), ‖u‖q,(a,xN),ν = 0 . This means that ‖u‖−r

q,(a,t),ν = +∞ for all
t ∈ (a, xN ] . Together with the fact that the first term in A3 is finite, this implies that

‖w‖p′,(a,t],μ is constant in (a, xN ]. (4.45)
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Hence, since also the second term in A3 is finite,

‖w‖p′,(a,t],μ = 0 in (a, xN ]. (4.46)

Therefore, (4.6) is satisfied. Consequently, (4.30) holds (cf. (4.29)–(4.30)) if q <
+∞ , or (4.39) holds if q = +∞ . Thus, we obtain

Ar
2 �

M−1∑
k=N

‖w‖r
p′,(a,xk+1],μ‖u‖

−r
q,(a,xk+],ν + ‖w‖r

p′,(a,b),μ‖u‖−r
q,(a,xM+],ν. (4.47)

The condition A3 < +∞ also implies that ‖w‖r
p′,(a,t+],μ < +∞ for all t ∈ (a, b) .

Assume first that limt→a+ ‖w‖p′,(a,t),μ = 0 . Together with (4.24) and (4.22), this
yields

Ar
2 �

M−1∑
k=N

∫
(a,xk+1]

d
(
‖w‖r

p′,(a,t+],μ

)
‖u‖−r

q,(a,xk+],ν+
∫

(a,b)
d
(
‖w‖r

p′,(a,t+],μ

)
‖u‖−r

q,(a,xM+],ν,

and, in view of (3.10) and (4.6), we arrive at

Ar
2 �

M∑
k=N

(
k∑

i=N

∫
Ji

d
(
‖w‖r

p′,(a,t+],μ

))
‖u‖−r

q,(a,xk+],ν. (4.48)

The fact that {‖u‖−r
q,(a,xk+],ν}M

k=N is almost geometrically decreasing, Lemma 2.4, (4.4)
or (4.32) and (3.10) imply that

Ar
2 ≈

M∑
k=N

∫
Jk

d
(
‖w‖r

p′,(a,t+],μ

)
‖u‖−r

q,(a,xk+],ν

�
M∑

k=N

∫
Jk

d
(
‖w‖r

p′,(a,t+],μ

)
‖u‖−r

q,(a,xk+1),ν

�
M∑

k=N

∫
Jk

‖u‖−r
q,(a,t),ν d

(
‖w‖r

p′,(a,t+],μ

)
�Ar

3. (4.49)

Suppose now that limt→a+ ‖w‖p′,(a,t),μ 	= 0 . The condition A3 < +∞ implies
that limt→a+ ‖u‖q,(a,t),ν 	= 0 (therefore xN = a and N > −∞ ). By (4.47), (4.24) and
(4.22),

Ar
2 �

M−1∑
k=N

[∫
(a,xk+1]

d
(
‖w‖r

p′,(a,t+],μ

)
+ lim

t→a+
‖w‖r

p′,(a,t),μ

]
‖u‖−r

q,(a,xk+],ν

+

[∫
(a,b)

d
(
‖w‖r

p′,(a,t+],μ

)
+ lim

t→a+
‖w‖r

p′,(a,t),μ

]
‖u‖−r

q,(a,xM+],ν,
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and, in view of (3.10) and (4.6), we arrive at

Ar
2 �

M∑
k=N

(
k∑

i=N

∫
Ji

d
(
‖w‖r

p′,(a,t+],μ

))
‖u‖−r

q,(a,xk+],ν

+
(

lim
t→a+

‖w‖r
p′,(a,t),μ

) M∑
k=N

‖u‖−r
q,(a,xk+],ν

=: I1 + I2. (4.50)

Analogously as in (4.49), we obtain

I1 �Ar
3. (4.51)

Furthermore, as a consequence of Lemma 2.3, we get

I2 � lim
t→a+

‖w‖r
p′,(a,t),μ lim

t→a+
‖u‖−r

q,(a,t),ν �Ar
3. (4.52)

Thus, the estimate A2 �A3 follows from (4.50)–(4.52).

(i-2) Assume now that A2 < +∞ and the weight w satisfies (4.40). Then (cf.
the proof of Theorem 4.4) (4.6) holds. Together with (3.10), this shows that

Ar
3 ≈

M∑
k=N

∫
Jk

‖u‖−r
q,(a,t),ν d

(
‖w‖r

p′,(a,t+],μ

)
+

limt→a+ ‖w‖r
p′,(a,t),μ

limt→a+ ‖u‖r
q,(a,t),ν

=: V1 + V2. (4.53)

In view of (3.10), (4.24), (4.22) and (4.40),

V1 �
M∑

k=N

‖u‖−r
q,(a,xk+],ν

∫
Jk

d
(
‖w‖r

p′,(a,t+],μ

)

�
M−1∑
k=N

‖u‖−r
q,(a,xk+],ν‖w‖r

p′,(a,xk+1+],μ + ‖u‖−r
q,(a,xM+],ν‖w‖r

p′,(a,b),μ

�
M−1∑
k=N

‖u‖−r
q,(a,xk+],ν‖w‖r

p′,(a,xk+1],μ + ‖u‖−r
q,(a,xM+],ν‖w‖r

p′,(a,b),μ .
(4.54)

Using (4.6) and (3.10), we arrive at

V1 �
M∑

k=N

‖u‖−r
q,(a,xk+],ν

(
k∑

i=N

‖w‖p′
p′,Ji,μ

) r
p′

if 0 < p < 1,

and
V1 �

M∑
k=N

‖u‖−r
q,(a,xk+],ν

(
sup

N�i�k
‖w‖p′,Ji,μ

)r

if p = 1.
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Now, we deduce from the fact that {‖u‖−1
q,(a,xk+],ν}M

k=N is an almost geometrically de-
creasing sequence and from Lemma 2.4 that

V1 �
M∑

k=N

‖u‖−r
q,(a,xk+],ν‖w‖r

p′,Jk ,μ .

This estimate and (4.27) if (q < +∞ ) or (4.36) if (q = +∞ ) imply that

V1 �Ar
2. (4.55)

If xN > a , then limt→a+ ‖w‖p′,(a,t),μ = 0 by (4.6). This means that V2 = 0 and
the estimate A3 �A2 follows from (4.53) and (4.55).

If xN = a , we use the definition of V2 and (4.22) to get

V2 =
(

lim
t→a+

‖w‖r
p′,(a,t),μ

)(∫
(a,b)

d
(
−‖u‖−r

q,(a,t+],ν

)
+ ‖u‖−r

q,(a,b),ν

)

�
(∫

(a,b)
‖w‖r

p′,(a,t],μ d
(
−‖u‖−r

q,(a,t+],ν

)
+ ‖w‖r

p′,(a,b),μ‖u‖−r
q,(a,b),ν

)

�Ar
2, (4.56)

and the estimate A3 �A2 follows from (4.53), (4.55) and (4.56).
(ii-1) Assume now that A4 < +∞ and the weight w satisfies (4.41). A similar

idea to that used in part (i-1) shows that ‖w‖p′,(a,t+],μ = 0 for all t ∈ (a, xN) . This
implies that ‖w‖p′,(a,xN),μ = 0 , and, on using (4.41) (with t = xN ), we arrive at (4.6).
Therefore, as in part (i-1), we see that (4.47) is satisfied. The condition A4 < +∞ also
implies that ‖w‖r

p′,(a,t+],μ < +∞ for all t ∈ (a, b) .

First assume that limt→a+ ‖w‖p′,(a,t),μ = 0 . Using (4.47), (4.41) and (4.22), we
obtain

Ar
2 �

M−1∑
k=N

‖w‖r
p′,(a,xk+1),μ‖u‖−r

q,(a,xk+],ν + ‖w‖r
p′,(a,b),μ‖u‖−r

q,(a,xM+],ν

�
M−1∑
k=N

∫
(a,xk+1)

d
(
‖w‖r

p′,(a,t+],μ

)
‖u‖−r

q,(a,xk+],ν +
∫

(a,b)
d
(
‖w‖r

p′,(a,t+],μ

)
‖u‖−r

q,(a,xM+],ν,

and, in view of (4.6), we arrive at

Ar
2 �

M∑
k=N

(
k∑

i=N

∫
I∩[xi,xi+1)

d
(
‖w‖r

p′,(a,t+],μ

))
‖u‖−r

q,(a,xk+],ν . (4.57)

The fact that {‖u‖−r
q,(a,xk+],ν}M

k=N is almost geometrically decreasing, Lemma 2.4, (4.4)
or (4.32) imply that
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Ar
2 �

M∑
k=N

∫
I∩[xk ,xk+1)

d
(
‖w‖r

p′,(a,t+],μ

)
‖u‖−r

q,(a,xk+],ν

�
M∑

k=N

∫
I∩[xk ,xk+1)

d
(
‖w‖r

p′,(a,t+],μ

)
‖u‖−r

q,(a,xk+1),ν

�
M∑

k=N

∫
I∩[xk ,xk+1)

‖u‖−r
q,(a,t+],ν d

(
‖w‖r

p′,(a,t+],μ

)
�Ar

4. (4.58)

Suppose now that limt→a+ ‖w‖p′,(a,t),μ 	= 0 . The condition A4 < +∞ implies
that limt→a+ ‖u‖q,(a,t),ν 	= 0 (therefore xN = a and N > −∞ ). By (4.47), (4.41) and
(4.22),

Ar
2 �

M−1∑
k=N

[∫
(a,xk+1)

d
(
‖w‖r

p′,(a,t+],μ

)
+ lim

t→a+
‖w‖r

p′,(a,t),μ

]
‖u‖−r

q,(a,xk+],ν

+

[∫
(a,b)

d
(
‖w‖r

p′,(a,t+],μ

)
+ lim

t→a+
‖w‖r

p′,(a,t),μ

]
‖u‖−r

q,(a,xM+],ν,

and, in view of (4.6), we arrive at

Ar
2 �

M∑
k=N

(
k∑

i=N

∫
I∩[xi,xi+1)

d
(
‖w‖r

p′,(a,t+],μ

))
‖u‖−r

q,(a,xk+],ν

+
(

lim
t→a+

‖w‖r
p′,(a,t),μ

) M∑
k=N

‖u‖−r
q,(a,xk+],ν

=: I1 + I2. (4.59)

Analogously as in (4.58), we obtain

I1 �Ar
4. (4.60)

Furthermore, as a consequence of Lemma 2.3, we get

I2 � lim
t→a+

‖w‖r
p′,(a,t),μ lim

t→a+
‖u‖−r

q,(a,t),ν �Ar
4. (4.61)

Thus, the estimate A2 �A4 follows from (4.59)–(4.61).
(ii-2) Assume now that A2 < +∞ . Then (cf. the proof of Theorem 4.4) (4.6)

holds. This shows that

Ar
4 ≈

M∑
k=N

∫
I∩[xk ,xk+1)

‖u‖−r
q,(a,t+],ν d

(
‖w‖r

p′,(a,t+],μ

)
+

limt→a+ ‖w‖r
p′,(a,t),μ

limt→a+ ‖u‖r
q,(a,t),ν

=: V1 + V2. (4.62)
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In view of (4.22),

V1 �
M∑

k=N

‖u‖−r
q,(a,xk+],ν

∫
(a,xk+1)

d
(
‖w‖r

p′,(a,t+],μ

)

�
M∑

k=N

‖u‖−r
q,(a,xk+],ν‖w‖r

p′,(a,xk+1),μ . (4.63)

Using (4.6) and (3.10), we arrive at

V1 �
M∑

k=N

‖u‖−r
q,(a,xk+],ν

(
k∑

i=N

‖w‖p′
p′,Ji,μ

) r
p′

if 0 < p < 1,

and

V1 �
M∑

k=N

‖u‖−r
q,(a,xk+],ν

(
sup

N�i�k
‖w‖p′,Ji,μ

)r

if p = 1.

Now, we deduce from the fact that {‖u‖−1
q,(a,xk+],ν}M

k=N is an almost geometrically de-
creasing sequence and from Lemma 2.4 that

V1 �
M∑

k=N

‖u‖−r
q,(a,xk+],ν‖w‖r

p′,Jk ,μ .

This estimate and (4.27) if (q < +∞ ) or (4.36) if (q = +∞ ) imply that

V1 �Ar
2. (4.64)

If xN > a , then limt→a+ ‖w‖p′,(a,t),μ = 0 by (4.6). This means that V2 = 0 and
the estimate A4 �A2 follows from (4.62) and (4.64).

If xN = a , we use the definition of V2 and (4.22) to get

V2 = lim
t→a+

‖w‖r
p′,(a,t),μ

(∫
(a,b)

d
(
−‖u‖−r

q,(a,t+],ν

)
+ ‖u‖−r

q,(a,b),ν

)

�
(∫

(a,b)
‖w‖r

p′,(a,t],μ d
(
−‖u‖−r

q,(a,t+],ν

)
+ ‖w‖r

p′,(a,b),μ‖u‖−r
q,(a,b),ν

)

�Ar
2. (4.65)

The estimate A4 �A2 follows from (4.62), (4.64) and (4.65). �
REMARK 4.8. One can see from the proof of Theorem 4.6 that the implication

A3 < +∞ ⇒ A2 �A3 holds without the additional assumption (4.40). Similarly, the
implication A2 < +∞ ⇒ A4 �A2 holds without the additional assumption (4.41).
Consequently, under the assumptions of Theorem 4.4,

A3 < +∞ ⇒ A4 �A2 �A3.

Moreover, if
‖u‖q,(a,t+],ν �‖u‖q,(a,t),ν, (4.66)

then A3 �A4 . Consequently, if (4.66) holds, then under the assumptions of Theo-
rem 4.4, A2 ≈ A3 ≈ A4 .
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To characterize the validity of inequality (4.1) for all g ∈ B+(I) , in Theorems 4.1
and 4.4 we have supposed that the weight function u satisfies

‖u‖q,(a,t],ν < +∞ for all t ∈ I. (4.67)

The next theorem concerns the case when (4.67) is violated.

THEOREM 4.9. Assume that 0 < p � 1 and 0 < q � +∞ . Let μ and ν be
non-negative Borel measures on I = (a, b) ⊆ R . Let w ∈ B+(I) and let u ∈ B+(I)
be such that (4.67) does not hold. Put

T := inf{t ∈ I : ‖u‖q,(a,t],ν = +∞}. (4.68)

(i) If T = a , then the inequality (4.1) holds for all g ∈ B+(I) .
(ii) If T ∈ (a, b) and μ({T}) = 0 , then the inequality (4.1) holds for all

g ∈ B+(I) if and only if the inequality

‖gw‖p,(a,T),μ �
∥∥∥∥∥u(x)

∫
(x,T)

g(y) dμ

∥∥∥∥∥
q,(a,T),ν

(4.69)

holds for all g ∈ B+((a, T)) .
(iii) If T ∈ (a, b) and μ({T}) > 0 , then the inequality (4.1) holds for all

g ∈ B+(I) if and only if

w(T)(μ({T}))1/p �μ({T})‖u‖q,(a,T),ν (4.70)

and the inequality (4.69) is satisfied for all g ∈ B+((a, T)) .

REMARK 4.10. To characterize the validity of inequality (4.69) on (a, T) if
T ∈ (a, b) , one can use Theorems 4.1 and 4.4 since ‖u‖q,(a,t],ν < +∞ for all
t ∈ (a, T) .

Note also that condition (4.70) holds if and only if

either 0 <‖u‖q,(a,T),ν < +∞ and w(T) < +∞,

or 0 <‖u‖q,(a,T),ν < +∞ and w(T) = +∞ and μ({T}) = +∞,

or ‖u‖q,(a,T),ν = 0 and w(T) = 0,

or ‖u‖q,(a,T),ν = +∞.

Proof of Theorem 4.9 . We prove only part (iii) since proofs of parts (i) and (ii)
are similar.

Let T ∈ I and μ({T}) > 0 . Take g ∈ S+(I) , where

S+(I) = { g ∈ B+(I) : ∃E = Eg ⊆ (T, b), μ(E) > 0, and g > 0 on E }, (4.71)

and choose n ∈ N such that μ((T + 1/n, b) ∩ E) > 0 . Together with (4.68), this
implies that∥∥∥∥∥u(x)

∫
(x,b)

g(y) dμ

∥∥∥∥∥
q,(a,b),ν

�
(∫

(T+1/n,b)
g(y) dμ

)
‖u‖q,(a,T+1/n],ν = +∞.
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Thus, (4.1) holds trivially for g ∈ S+(I) . Consequently, (4.1) is satisfied for all
g ∈ B+(I) if and only if (4.1) holds for all g ∈ B+(I) \ S+(I) .

If g ∈ B+(I) \ S+(I) , then
∫

(x,b) g(y) dμ = 0 for all x ∈ [T, b) . Hence,∥∥∥∥∥u(x)
∫

(x,b)
g(y) dμ

∥∥∥∥∥
q,(a,b),ν

=

∥∥∥∥∥u(x)
∫

(x,b)
g(y) dμ

∥∥∥∥∥
q,(a,T),ν

≈
∥∥∥∥∥u(x)

∫
(x,T)

g(y) dμ

∥∥∥∥∥
q,(a,T),ν

+ g(T)μ({T})‖u‖q,(a,T),ν.

Since also
‖gw‖p,(a,b),μ ≈ ‖gw‖p,(a,T),μ + g(T)w(T)(μ({T}))1/p ,

we see that (4.1) holds for g ∈ B+(I) \ S+(I) if and only if the inequality

‖gw‖p,(a,T),μ + g(T)w(T)(μ({T}))1/p

�
∥∥∥∥∥u(x)

∫
(x,T)

g(y) dμ

∥∥∥∥∥
q,(a,T),ν

+ g(T)μ({T})‖u‖q,(a,T),ν
(4.72)

is satisfied for such g . However, (4.72) holds on B+(I) \ S+(I) if and only if both
(4.69) and

g(T)w(T)(μ({T}))1/p �g(T)μ({T})‖u‖q,(a,T),ν

are satisfied on B+(I) \ S+(I) . Consequently, (4.1) holds for all g ∈ B+(I) \ S+(I) if
and only if both (4.69) holds on B+((a, T)) and (4.70) is satisfied. �

5. The reverse Hardy inequality for the dual operator

Let I = (a, b) ⊆ R and let μ be a non-negative Borel measure on I . The aim of
this section is to characterize the validity of the reverse Hardy inequality involving the
operator H∗ given by

(H∗g)(x) :=
∫

(a,x)
g(y) dμ, g ∈ B+(I), x ∈ I,

which is the dual operator to that one given by

(Hg)(x) :=
∫

(x,b)
g(y) dμ, g ∈ B+(I), x ∈ I.

To this end, we are going to make use of the results for the Hardy operator H proved in
Section 4. Our next assertion is a counterpart of Theorem 4.1.

THEOREM 5.1. Assume that 0 < q � p � 1 . Let μ and ν be non-negative
Borel measures on I = (a, b) ⊆ R . Let w ∈ B+(I) and let u ∈ B+(I) satisfy
‖u‖q,[t,b),ν < +∞ for all t ∈ I . Then the inequality

‖gw‖p,(a,b),μ � c

∥∥∥∥∥u(x)
∫

(a,x)
g(y) dμ

∥∥∥∥∥
q,(a,b),ν

(5.1)
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holds for all g ∈ B+(I) if and only if

B1 := sup
x∈(a,b)

‖w‖p′,[x,b),μ‖u‖−1
q,(x,b),ν < +∞. (5.2)

The best possible constant c in (5.1) satisfies c ≈ B1 .

Proof. If λ is a non-negativeBorel measure on I , we denote by λ̃ a non-negative
Borel measure on Ĩ := (−b,−a) defined by

λ̃ (E) := λ (−E), where − E := {−x : x ∈ E}.
Similarly, if h ∈ B+(I) , then the function h̃ ∈ B+(Ĩ) is given by

h̃(x) := h(−x), x ∈ Ĩ.

Now it is clear that ∫
E

h dλ =
∫
−E

h̃ dλ̃ (5.3)

for any Borel subset E of I . (Indeed, this is a consequence of the fact that (5.3) holds
for any step function h ∈ B+(I) .) In particular,

‖gw‖p,(a,b),μ = ‖g̃w̃‖p,(−b,−a),μ̃

and ∥∥∥∥∥u(x)
∫

(a,x)
g(y) dμ

∥∥∥∥∥
q,(a,b),ν

=

∥∥∥∥∥ũ(x)
∫

(a,−x)
g dμ

∥∥∥∥∥
q,(−b,−a),ν̃

.

Moreover, since (by (5.3))∫
(a,−x)

g dμ =
∫

(x,−a)
g̃ dμ̃ if x ∈ (−b,−a),

we arrive at ∥∥∥∥∥u(x)
∫

(a,x)
g(y) dμ

∥∥∥∥∥
q,(a,b),ν

=

∥∥∥∥∥ũ(x)
∫

(x,−a)
g̃ dμ̃

∥∥∥∥∥
q,(−b,−a),ν̃

.

Consequently, the inequality (5.1) holds for all g ∈ B+(I) if and only if the inequality

‖g̃w̃‖p,(−b,−a),μ̃ � c

∥∥∥∥∥ũ(x)
∫

(x,−a)
g̃ dμ̃

∥∥∥∥∥
q,(−b,−a),ν̃

(5.4)

holds for all g̃ ∈ B+(Ĩ).
As ‖ũ‖q,(−b,x],ν̃ = ‖u‖q,[−x,b),ν < +∞ if x ∈ (−b,−a) , we deduce from Theo-

rem 4.1 that the inequality (5.1) holds on B+(I) if and only if

sup
x∈(−b,−a)

‖w̃‖p′,(−b,x],μ̃‖ũ‖−1
q,(−b,x),ν̃ < +∞. (5.5)
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However, using (5.3) and its analogue

‖h‖∞,E,λ = ‖h̃‖∞,−E,λ̃ , (5.6)

we see that the condition (5.5) coincides with (5.2). �
REMARK 5.2. Let B1 be the number defined in Theorem 5.1. If p = 1 , then

B1 =
∥∥∥w(x)‖u‖−1

q,(x,b),ν

∥∥∥
∞,(a,b),μ

.

Indeed, using the idea of the proof of Theorem5.1, we obtain the result fromRemark 4.2.

Consider now the inequality (5.1) on B+(I) in the case when 0 < p � 1 ,
p < q � +∞ and define r by

1
r

=
1
p
− 1

q
. (5.7)

As in Section 4, in such a case we shall write a condition characterizing the validity
of the inequality (5.1) on B+(I) in a compact form involving the Lebesgue-Stieltjes
integral

∫
(a,b) f dh , say. In contrast to Section 4, now the Lebesgue-Stieltjes integral∫

(a,b) f dh will be defined by a non-decreasing and left-continuous function h on I .

We shall see in our next theorem that f (t) = ‖w‖r
p′,[t,b),μ and h(t) = ‖u‖−r

q,[t−,b),ν :=
lims→t− ‖u‖−r

q,[s,b),ν , t ∈ (a, b) . However, it can happen that ‖u‖q,[t−,b),ν = 0 for all
t ∈ (c, b) with some c ∈ (a, b) (provided that we omit the trivial case when u = 0
ν -a.e. on (a, b) ). Then we have to explain what is the meaning of the Lebesgue-
Stieltjes integral since in such a case the function h = +∞ on (c, b) . To this end, we
adopt the following convention.

CONVENTION 5.3. Let I = (a, b) ⊆ R , f : I → [0, +∞] and h : I → [0, +∞] .
Assume that h is non-decreasing and left-continuous on I . If h : I → [0, +∞) ,
then the symbol

∫
I f dh means the usual Lebesgue-Stieltjes integral (the measure λ

associated to h is given by λ ([α, β)) = h(β) − h(α) if [α, β) ⊂ (a, b) – cf. (4.17)).
However, if h = +∞ on some subinterval (c, b) with c ∈ I , then we define

∫
I f dh

only if f = 0 on [c, b) and we put∫
I
f dh =

∫
(a,c)

f dh.

THEOREM 5.4. Assume that 0 < p � 1 , p < q � +∞ and r is given by (5.7) .
Let μ and ν be non-negative Borel measures on I = (a, b) ⊆ R . Let w ∈ B+(I) and
let u ∈ B+(I) satisfy ‖u‖q,[t,b),ν < +∞ for all t ∈ I and u 	= 0 ν -a.e. on I . Then
the inequality (5.1) holds for all g ∈ B+(I) if and only if

B2 :=

(∫
(a,b)

‖w‖r
p′,[t,b),μ d

(
‖u‖−r

q,[t−,b),ν

)) 1
r

+
‖w‖p′,(a,b),μ

‖u‖q,(a,b),ν
< +∞.

The best possible constant c in (5.1) satisfies c ≈ B2 .
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REMARK 5.5. Let q < +∞ in Theorem 5.4. Then

‖u‖q,[t−,b),ν = ‖u‖q,[t,b),ν for all t ∈ I,

which implies that

B2 =

(∫
(a,b)

‖w‖r
p′,[t,b),μ d

(
‖u‖−r

q,[t,b),ν

)) 1
r

+
‖w‖p′,(a,b),μ

‖u‖q,(a,b),ν
.

Proof of Theorem 5.4 . As in the proof of Theorem 5.1, one can show that the
inequality (5.1) holds on B+(I) if and only if the inequality (5.4) is satisfied for all
g̃ ∈ B+(Ĩ) . Thus, by Theorem 4.4, the inequality (5.1) holds on B+(I) if and only if(∫

(−b,−a)
‖w̃‖r

p′,(−b,t],μ̃ d
(
−‖ũ‖−r

q,(−b,t+],ν̃

)) 1
r

+
‖w̃‖p′,(−b,−a),μ̃

‖ũ‖q,(−b,−a),ν̃
< +∞. (5.8)

It is clear that

‖w̃‖p′,(−b,−a),μ̃ = ‖w‖p′,(a,b),μ and ‖ũ‖q,(−b,−a),ν̃ = ‖u‖q,(a,b),ν. (5.9)

Moreover, by the definition of the Lebesgue-Stieltjes integral,∫
(−b,−a)

‖w̃‖r
p′,(−b,t],μ̃ d

(
−‖ũ‖−r

q,(−b,t+],ν̃

)
=
∫

(−b,−a)
‖w̃‖r

p′,(−b,t],μ̃ dλ̃ =: I, (5.10)

where λ̃ is the non-negative Borel measure associated to the non-decreasing and right-
continuous function ϕ̃ := −‖ũ‖−r

q,(−b,t+],ν̃ , t ∈ (−b,−a) , that is,

λ̃ ((α̃, β̃ ]) = ϕ̃(β̃) − ϕ̃(α̃) for any (α̃, β̃ ] ⊂ (−b,−a).

Since, by (5.3) or (5.6),

‖w̃‖r
p′,(−b,t],μ̃ = ‖w‖r

p′,[−t,b),μ for all t ∈ (−b,−a),

we obtain from (5.3) that

I =
∫

(−b,−a)
‖w̃‖r

p′,(−b,t],μ̃ dλ̃ =
∫

(a,b)
‖w‖r

p′,[t,b),μ dλ , (5.11)

where λ (E) = λ̃ (−E) if E is a Borel subset of I . In particular, if [α, β) ⊂ (a, b) ,
then

λ ([α, β)) = λ̃((−β ,−α]) = ϕ̃(−α) − ϕ̃(−β)

= −‖ũ‖−r
q,(−b,−α+],ν̃ + ‖ũ‖−r

q,(−b,−β+],ν̃

= −‖u‖−r
q,[α−,b),ν + ‖u‖−r

q,[β−,b),ν

(the last equality follows from (5.3) and (5.6)). That means (cf. (4.17)) that the
non-negative Borel measure λ is associated to the non-decreasing and left-continuous
function ϕ given on (a, b) by

ϕ(t) := ‖u‖−r
q,[t−,b),ν , t ∈ (a, b).
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Consequently, ∫
(a,b)

‖w‖r
p′,[t,b),μ dλ =

∫
(a,b)

‖w‖r
p′,[t,b),μ d

(
‖u‖−r

q,[t−,b),ν

)
. (5.12)

The result now follows from (5.8)–(5.12). �
The following assertion is a counterpart of Theorem 4.6.

THEOREM 5.6. Suppose that all the assumptions of Theorem 5.4 are satisfied.
(i) Let

‖w‖p′,[t−,b),μ �‖w‖p′,[t,b],μ for all t ∈ (a, b). (5.13)

Then B2 ≈ B3 , where

B3 :=

(∫
(a,b)

‖u‖−r
q,(t,b),ν d

(
−‖w‖r

p′,[t−,b),μ

)) 1
r

+
limt→b− ‖w‖p′,(t,b),μ

limt→b− ‖u‖q,(t,b),ν
.

(ii) Let
‖w‖p′,[t,b),μ �‖w‖p′,(t,b),μ for all t ∈ (a, b). (5.14)

Then B2 ≈ B4 , where

B4 :=

(∫
(a,b)

‖u‖−r
q,[t−,b),ν d

(
−‖w‖r

p′,[t−,b),μ

)) 1
r

+
limt→b− ‖w‖p′,(t,b),μ

limt→b− ‖u‖q,(t,b),ν
.

Proof. It is left to the reader. �
We conclude this section with counterparts of Remarks 4.7, 4.8, 4.10 and Theo-

rem 4.9 (proofs are left to the reader).

REMARK 5.7. Theorems 5.4 and 5.6 imply that if the weight w satisfies (5.13),
then the conditions B2 < +∞ and B3 < +∞ are equivalent. Similarly, if w satisfies
(5.14), then the conditions B2 < +∞ and B4 < +∞ are equivalent.

Note also that if p′ < +∞ and ‖w‖p′,[t,b),μ < +∞ for all t ∈ (a, b) , then
‖w‖p′,[t−,b),μ = ‖w‖p′,[t,b),μ for all t ∈ (a, b) and therefore w satisfies (5.13). In this
case the condition B3 < +∞ reduces to(∫

(a,b)
‖u‖−r

q,(t,b),ν d
(
−‖w‖r

p′,[t−,b),μ

)) 1
r

< +∞ (5.15)

since limt→b− ‖w‖p′,(t,b),μ = 0 .
Suppose now that p′ = +∞ , the weight w satisfies (5.13), and B3 < +∞ .

Moreover, let limt→b− ‖u‖q,(t,b),ν = 0 . Then the second term in B3 has to be finite
which can happen only if limt→b− ‖w‖∞,(t,b),μ = 0 (cf. our convention that 0/0 = 0 ).

Let μ be a non-negative Borel measure on (a, b) which has no atoms. Then it is
clear that the condition (5.14) holds.

Suppose now that p′ = +∞ , the weight w satisfies (5.14), and B4 < +∞ .
Moreover, let limt→b− ‖u‖q,(t,b),ν = 0 . Then the second term in B4 has to be finite
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which can happen only if limt→b− ‖w‖∞,(t,b),μ = 0 (cf. our convention that 0/0 = 0 ).

REMARK 5.8. The implication B3 < +∞ ⇒ B2 �B3 holds without the additional
assumption (5.13). (This follows from Remark 4.8.) Similarly, the implication B2 <
+∞ ⇒ B4 �B2 holds without the additional assumption (5.14). Consequently, under
the assumptions of Theorem 5.4,

B3 < +∞ ⇒ B4 �B2 �B3.

Moreover, if
‖u‖q,[t−,b),ν �‖u‖q,(t,b),ν, (5.16)

then B3 �B4 . Consequently, if (5.16) holds, then under the assumptions of Theo-
rem 5.4, B2 ≈ B3 ≈ B4.

To characterize the validity of inequality (5.1) on B+(I) , in Theorems 5.1 and 5.4
we have supposed that the weight function u satisfies

‖u‖q,[t,b),ν < +∞ for all t ∈ I. (5.17)

The next theorem concerns the case when (5.17) is violated.

THEOREM 5.9. Assume that 0 < p � 1 and 0 < q � +∞ . Let μ and ν be
non-negative Borel measures on I = (a, b) ⊆ R . Let w ∈ B+(I) and let u ∈ B+(I)
be such that (5.17) does not hold. Put

T := sup{t ∈ I : ‖u‖q,[t,b),ν = +∞}.
(i) If T = b , then the inequality (5.1) holds for all g ∈ B+(I) .
(ii) If T ∈ (a, b) and μ({T}) = 0 , then the inequality (5.1) holds for all

g ∈ B+(I) if and only if the inequality

‖gw‖p,(T,b),μ �
∥∥∥∥∥u(x)

∫
(T,x)

g(y) dμ

∥∥∥∥∥
q,(T,b),ν

(5.18)

holds for all g ∈ B+((T, b)) .
(iii) If T ∈ (a, b) and μ({T}) > 0 , then the inequality (5.1) holds for all

g ∈ B+(I) if and only if

w(T)(μ({T}))1/p �μ({T})‖u‖q,(T,b),ν (5.19)

and the inequality (5.18) is satisfied for all g ∈ B+((a, T)) .

REMARK 5.10. To characterize the validity of inequality (5.18) on (T, b) if T ∈
(a, b) , one can use Theorems 5.1 and 5.4 since ‖u‖q,[t,b),ν < +∞ for all t ∈ (T, b) .

Note also that condition (5.19) holds if and only if

either 0 <‖u‖q,(T,b),ν < +∞ and w(T) < +∞,

or 0 <‖u‖q,(T,b),ν < +∞ and w(T) = +∞ and μ({T}) = +∞,

or ‖u‖q,(T,b),ν = 0 and w(T) = 0,

or ‖u‖q,(T,b),ν = +∞.
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6. Reverse Hardy inequalities involving three measures

So far we have studied the reverse Hardy inequalities of the form

‖gw‖p,(a,b),μ � c

∥∥∥∥u(x)
∫

Sx

g(y) dμ
∥∥∥∥

q,(a,b),ν
, g ∈ B+(I), (6.1)

where 0 < p � 1 , 0 < q � +∞ , μ and ν are non-negative Borel measures on
I := (a, b) ⊆ R , w and u are weight functions on I and either Sx = (a, x) or
Sx = (x, b) for all x ∈ I .

Now, we replace the left-hand side of inequality (6.1) by ‖g‖p,(a,b),λ , where λ is
a non-negative Borel measure on I , that is, we consider the inequality

‖g‖p,(a,b),λ � c

∥∥∥∥u(x)
∫

Sx

g(y) dμ
∥∥∥∥

q,(a,b),ν
, g ∈ B+(I). (6.2)

We claim that to characterize the validity of (6.2) on B+(I) it is enough to characterize
the validity of (6.1) on B+(I) . To see it, assume that (6.2) holds for all g ∈ B+(I) . Let
E ⊆ I be such that μ(E) = 0 and put g = χE . Then

0 �
∫

Sx

g(y) dμ = μ(Sx ∩ E) � μ(E) = 0 for all x ∈ I.

Therefore, the right-hand side of (6.2) is zero, which implies that

0 = ‖g‖p,(a,b),λ =
(∫

E
dλ
)1/p

= (λ (E))1/p
,

that is, λ (E) = 0 . Hence, the measure λ is absolutely continuos with respect to μ ,
and, by the Radon-Nikodym theorem, there is v ∈ B+(I) such that dλ = v dμ . Putting
w = v1/p , we have dλ = wp dμ . Consequently, for any g ∈ B+(I) , we can rewrite the
left-hand side of (6.2) as

‖g‖p,(a,b),λ =

(∫
(a,b)

gp dλ

)1/p

=

(∫
(a,b)

(gw)p dμ

)1/p

= ‖gw‖p,(a,b),μ ,

and our claim follows.

COROLLARY 6.1. Assume that 0 < p � 1 , 0 < q � +∞ . Let λ , μ and ν
be non-negative Borel measures on I := (a, b) ⊆ R and let u ∈ B+(I) . Then the
inequality (6.2) holds for all g ∈ B+(I) if and only if the measure λ is absolutely

continuous with respect to μ and the inequality (6.1) with w :=
(

dλ
dμ

)1/p
holds for all

g ∈ B+(I) .
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