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Abstract. This paper presents new existence results for the singular boundary value problem{
−u′′ = g (t, u) + λh (t, u) , t ∈ (0, 1)
u (0) = 0 = u (1) .

In particular our nonlinearity may be singular at t = 0, 1 and u = 0 and is allowed to change
sign. Existence in this paper will be established by obtaining a sequence of upper and lower
solutions which in turn will generate a sequence of approximate solutions.

1. Introduction

In this paper we study positive solutions of the second order boundary value
problem { −u′′ = g (t, u) + λh (t, u) , t ∈ (0, 1)

u (0) = 0 = u (1) (1.1)

where λ � λ0 > 0 is a constant; an estimate on λ0 will also be provided. Here
g : (0, 1) × (0,∞) → R and h : (0, 1) × [0,∞) → [0,∞) are continuous so as a
result our nonlinearity may be singular at t = 0, 1 and u = 0. Also our nonlinearity
may change sign. A function u is a solution of the boundary value problem (1.1)
if u : [0, 1] → R, u satisfies the differential equation (1.1) on (0, 1) and the stated
boundary data.

We let C [0, 1] denote the class of maps u continuous on [0, 1] , with norm
|u|∞ = maxt∈[0,1] |u (t)| . Let

M =
{

h ∈ C (0, 1) :
∫ 1

0 |h (s)| ds < ∞ with
limt→0+ t |h (t)| < ∞ and limt→1− (1 − t) |h (t)| < ∞

}
.

The main result of the paper is the following.
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THEOREM 1.1. Suppose the following conditions hold:
(G1) there exist gi : (0, 1) × (0,∞) → (0,∞) (i = 1, 2) continuous functions

such that ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
gi(t, ·) is strictly decreasing for t ∈ (0, 1),

− g1(t, r) � g(t, r) � g2(t, r) for (t, r) ∈ (0, 1) × (0,∞),

for all r1 > r2 > 0 there exists γ (·) ∈ M such that

g2 (t, r) + γ (t) r is increasing in (r1, r2) ;

(G2) g1 (·, rφ1 (·)) , g2 (·, r) ∈ M for all r > 0;
(H1) there exist hi : (0, 1) × [0,∞) → (0,∞) (i = 1, 2) continuous functions

such that ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

hi (t, ·) is increasing for t ∈ (0, 1) ,

h1 (t, r) � h (t, r) � h2 (t, r) for (t, r) ∈ (0, 1) × (0,∞) ,

lim
r→∞

h2 (t, r)
r

= 0 for t ∈ (0, 1) and

there exists r > 0 such that h1 (t, r) > 0 for all t ∈ (0, 1) ;

(H2) h1 (·, r) , h2 (·, r) ∈ M for all r > 0.
Then there exists λ0 > 0 such that for every λ � λ0 problem (1.1) has at least

one solution u ∈ C [0, 1] ∩ C1 (0, 1) and u > 0 for t ∈ (0, 1) . Moreover, there exists
ci = ci (λ , g, h, φ1) > 0 (i = 1, 2) such that

c1φ1 (t) � u (t) � c2 (φ1 (t) + 1) for t ∈ [0, 1] ,

where φ1 is defined in Lemma 2.1 .

REMARK 1.1. In [3] , the authors consider the boundary value problem{ − u′′ = f (t, u) , t ∈ (0, 1)

u (0) = 0 = u (1)
(1.2)

under the conditions
(i1) there exists a constant L > 0 such that for any compact set K ⊂ (0, 1) , there is

ε = εK > 0 such that

f (t, r) � L for all t ∈ K, r ∈ (0, ε];
(i2) for any δ > 0 there is hδ ∈ C ((0, 1) , R+) with

|f (t, r)| � hδ (t) for all t ∈ (0, 1) , r � δ,

and ∫ 1

0
t (1 − t) hδ (t) dt < ∞.

Then problem (1.2) has at least one solution u ∈ C ([0, 1] , R+)∩C2 ((0, 1) , R+) .

In Section 3 we give an example (see Example 3.1) which satisfies the conditions
in Theorem 1.1 but it does not satisfy the conditions in Remark 1.1.

REMARK 1.2. An estimate for λ0 will be given in the proof of Lemma 2.7.
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2. Proof of Theorem 1.1

We first give some lemmas which will help us to prove Theorem 1.1.

LEMMA 2.1. Consider the following eigenvalue problem{ − u′′ = λu (t) , t ∈ (0, 1)

u (0) = u (1) = 0.
(2.1)

Then the eigenvalues are

λm = (mπ)2 for m = 1, 2, · · ·
and the corresponding eigenfunctions are

φm (t) = sinmπt for m = 1, 2, · · · .

Let G (t, s) be the Green’s function for the BVP{ − u′′ = 0 for t ∈ (0, 1)

u (0) = u (1) = 0.

Then

G (t, s) =

{
s (1 − t) , 0 � s < t � 1

t (1 − s) , 0 � t < s � 1.
(2.2)

Also for all (t, s) ∈ [0, 1]× [0, 1] define

N (t, s) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

G (t, s)
φ1 (t)

if t �= 0, 1

1 − s
π

if t = 0

s
π

if t = 1.

(2.3)

It follows easily that

0 < G (t, s) � t (1 − t) for t ∈ (0, 1) and s ∈ (0, 1) ;

s (1 − s)
2π

� N (t, s) � 1
2

for all t ∈ (0, 1) and s ∈ (0, 1) .
(2.4)

Define the operator A, B : M → C [0, 1] by

Ax (t) =
∫ 1

0
G (t, s) x (s) ds. (2.5)

and

Bx (t) =
∫ 1

0
N (t, s) x (s) ds. (2.6)

LEMMA 2.2. Let E ⊂ M and β ∈ M. If |x (t)| � β (t) , t ∈ (0, 1) for all x ∈ E,
then A (E) and B (E) are relatively compact with respect to the topology of C [0, 1] .
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Proof. Now since

Ax (t) �
∣∣∣∣∣
∫ 1

0
G (t, s) x (s) ds

∣∣∣∣∣ �
∫ 1

0
s (1 − s) β (s) ds,

we know that A (E) is uniformly bounded. On the other hand, ∀x ∈ E, we find

∣∣(Ax)′ (t)
∣∣ =

∣∣∣∣∣ ddt

∫ t

0
s (1 − t) x (s) ds +

d
dt

∫ 1

t
t (1 − s) x (s) ds

∣∣∣∣∣
�
∫ t

0
s |x (s)| ds +

∫ 1

t
(1 − s) |x (s)| ds

�
∫ t

0
sβ (s) ds +

∫ 1

t
(1 − s) β (s) ds

≡ γ (t) for t ∈ (0, 1) .

We now prove that γ ∈ L1 ((0, 1) , R) . This is sufficient to ensure the compactness of
the image A (E) via the Arzela-Ascoli theorem.

A simple computation yields∫ 1

0
|γ (s)| ds =

∫ 1

0
γ (s) ds

� lim
t→1−

(1−t)
∫ t

0
sβ(s)ds+ lim

t→0+
t
∫ 1

t
(1−s)β(s)ds+2

∫ 1

0
s(1−s)β(s)ds

� 4
∫ 1

0
s (1 − s) β (s) ds < ∞.

Thus A (E) is relatively compact with respect to the topology of C [0, 1] . We next
prove B (E) is relatively compact with respect to the topology of C [0, 1] . Now since

Bx (t) �
∣∣∣∣∣
∫ 1

0
N (t, s) x (s) ds

∣∣∣∣∣ � 1
2

∫ 1

0
β (s) ds,

we know that B (E) is uniformly bounded. On the other hand, ∀x ∈ E, we let

Bx (t) = h (t) Vx (t)

where

h (t) =

⎧⎪⎪⎨⎪⎪⎩
t (1 − t)
φ1 (t)

for t ∈ (0, 1)

1
π

for t = 0, 1

and

Vx (t) =
1

h (t)
Bx (t) .
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Now, ∀x ∈ E, we find∣∣(Vx)′ (t)
∣∣ = ∣∣∣∣∣ ddt

∫ t

0

s (1 − t)
t (1 − t)

x (s) ds +
d
dt

∫ 1

t

t (1 − s)
t (1 − t)

x (s) ds

∣∣∣∣∣
=

∣∣∣∣∣− 1
t2

∫ t

0
sx (s) ds +

1

(1 − t)2

∫ 1

t
(1 − s) x (s) ds

∣∣∣∣∣
� 1

t2

∫ t

0
sβ (s) ds +

1

(1 − t)2

∫ 1

t
(1 − s) β (s) ds

≡ τ (t) for t ∈ (0, 1) .

We now prove that τ ∈ L1 ((0, 1) , R) . This is sufficient to ensure the compactness of
the image V (E) via the Arzela-Ascoli theorem.

A simple computation yields∫ 1

0
|τ (s)| ds =

∫ 1

0
τ (s) ds

�
∫ 1

0
β (s) + lim

s→0+
sβ (s) + lim

s→1−
(1 − s) β (s) < ∞.

Thus V (E) is relatively compact with respect to the topology of C [0, 1] . Finally,
for any 0 � t1, t2 � 1, note

|Bx (t1) − Bx (t2)| = |h (t1) Vx (t1) − h (t2) Vx (t2)|
� h (t1) |Vx (t1) − Vx (t2)| + |Vx (t2)| |h (t1) − h (t2)|
� c1 |Vx (t1) − Vx (t2)| + c2 |h (t1) − h (t2)|

where ci (i = 1, 2) > 0 are constants. Thus B (E) is relatively compact with respect
to the topology of C [0, 1] .

Next we consider the boundary value problem{ − u′′ + a (t) u (t) = f (t) , t ∈ (0, 1)

u (0) = 0 = u (1)
(2.7)

where a, f ∈ M, a (t) � 0 for t ∈ (0, 1) .
LEMMA 2.3. (1 , pp 69 ) The following statements hold:
(i) for any f ∈ M, (2.7) is uniquely solvable and

u + A (au) = A (f ) ;

(ii) if f (t) � 0 for t ∈ (0, 1) , then the solution of (2.7) is nonnegative.

COROLLARY 2.1. Let Φ : M → C [0, 1]∩C1 (0, 1) be the operator such that Φ (f )
is the solution of (2.7) . Then we have

(i) if f 1 (t) � f 2 (t) for t ∈ (0, 1) , then Φ (f 1) (t) � Φ (f 2) (t) for t ∈ [0, 1] ;
(ii) let E ⊂ M and β ∈ M. If |f (t)| � β (t) , t ∈ (0, 1) for all f ∈ E, then

Φ (E) is relatively compact with respect to the topology of C [0, 1] .
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LEMMA 2.4. Suppose (G1) , (G2) , (H1) and (H2) hold. Let n0 ∈ N. Assume
for every n > n0, there exist an, δn, δ ∈ M such that

0 � an (t) , |δn (t)| � δ (t) and lim
n→∞ δn (t) = 0 for t ∈ (0, 1)

and there exist u, un, ûn, û ∈ C [0, 1] such that

0 < u (t) � un (t) � ûn (t) � û (t) for t ∈ (0, 1)

and û (0) = û (1) = 0 . If

−u′′n (t) + an (t) un (t)� g

(
t,

1
n

+ v

)
+ λh (t, v) + δn (t) + an (t) v (t)

for t ∈ (0, 1)
(2.8)

and

−û′′n (t) + an (t) ûn (t)� g

(
t,

1
n

+ v

)
+ λh (t, v) + δn (t) + an (t) v (t)

for t ∈ (0, 1)
(2.9)

where λ � 0 and v ∈ [un, ûn] = {u ∈ C [0, 1] , un (t) � u (t) � ûn (t) for t ∈ [0, 1]} ,
then problem (1.1) has a solution u ∈ C [0, 1]∩C1 (0, 1) such that u (t) � u (t) � û (t)
for t ∈ [0, 1] .

Proof. Fix v ∈ [u, û] . From Lemma 2.3, there exists Ψ (v) ∈ C [0, 1] such that⎧⎪⎪⎨⎪⎪⎩
−Ψ′′ (v) (t) + an (t)Ψ (v) (t) = g

(
t,

1
n

+ v

)
+ λh (t, v) + an (t) v (t) + δn (t)

for t ∈ (0, 1)

Ψ (v) (0) = Ψ (v) (1) = 0.

Then

Ψ (v) (t)+A (anΨ (v)) (t) = A

(
g

(
·, 1

n
+ v

)
+ λh (·, v) + anv + δn

)
(t) for t ∈ (0, 1) .

By Corollary 2.1, we have

un (t) � Ψ (v) (t) � ûn (t) for t ∈ [0, 1] .

Also∣∣∣∣g(t,
1
n

+ v

)
+ λh (t, v) + anv + δn

∣∣∣∣ � g1

(
t,
φ1 (t)

n

)
+ g2

(
t,

1
n

)
+ λh2 (t, |ûn|∞) + an |ûn|∞ + |δn (t)|

≡ β (t) ∈ M for t ∈ (0, 1) .

By Corollary 2.1 we have that Ψ : [un, ûn] → [un, ûn] is relatively compact. From
Schauder’s fixed point theorem, there exists un ∈ C [0, 1] such that un (t) � un (t) �
ûn (t) and Ψ (un) (t) = un (t) for t ∈ (0, 1) . Note⎧⎨⎩ − u′′n (t) = g

(
t,

1
n

+ un

)
+ λh (t, un) + δn (t) for t ∈ (0, 1)

un (0) = un (1) = 0.
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Fix m0 ∈ {2, 3, · · · }. Let us look at the interval
[
1/2m0+1, 1 − 1/2m0+1

]
. Let

Rm0 = sup {|g (t, u)| + λ |h (t, u)| + |δ (t)|
: t ∈ [1/2m0+1, 1 − 1/2m0+1

]
and u (t) � u (t) � û (t) + 1

}
.

The mean value theorem implies that there exists τ ∈ (1/2m0+1, 1 − 1/2m0+1
)

with
|u′n (τ)| � 2 supt∈[0,1] û (t) . As a result

{un}∞n=m0+1 is bounded, equicontinuous family on
[
1/2m0+1, 1 − 1/2m0+1

]
.

The Arzela-Ascoli theorem guarantees the existence of subsequence Nm0 of in-
tegers and a function zm0 ∈ [1/2m0+1, 1 − 1/2m0+1

]
with un converging uniformly to

zm0 on
[
1/2m0+1, 1 − 1/2m0+1

]
as n → ∞ through Nm0 . Similarly

{un}∞n=m0+1 is bounded, equicontinuous family on
[
1/2m0+2, 1 − 1/2m0+2

]
so there is a subsequence Nm0+1 of Nm0 and a function zm0+1 ∈ C

[
1/2m0+2, 1 − 1/2m0+2

]
with un converging uniformly to zm0+1 on

[
1/2m0+2, 1 − 1/2m0+2

]
as n → ∞ through

Nm0+1. Note zn0+1 = zn0 on
[
1/2m0+1, 1 − 1/2m0+1

]
since Nm0+1 ⊆ Nm0 . Proceed

inductively to obtain subsequences of integers Nm0 ⊇ Nm0+1 ⊇ · · · ⊇ Nk ⊇ · · ·
and functions zk ∈ C

[
1/2k+1, 1 − 1/2k+1

]
with un converging uniformly to zk on[

1/2k+1, 1 − 1/2k+1
]

as n → ∞ through Nk, and zk = zk−1 on
[
1/2k, 1 − 1/2k

]
.

Define a function u : [0, 1] → [0,∞) by u (t) = zk (t) on
[
1/2k+1, 1 − 1/2k+1

]
and u (0) = u (1) = 0. Notice u is well defined and u (t) � u (t) � û (t) for
t ∈ (0, 1) . Next fix t ∈ (0, 1) (without loss of generality assume t �= 1

2 ) and
let m ∈ {m0, m0 + 1, · · · } be such that 1/2m+1 < t < 1 − 1/2m+1. Let N∗

m =
{n ∈ Nm : n � m} . Now un, n ∈ N∗

m satisfies the integral equation

un (t) = un

(
1
2

)
+u′n

(
1
2

)(
t−1

2

)
+
∫ t

1/2
(s−t)

(
g

(
s,

1
n
+un

)
+λh(s, un)+δn (s)

)
ds

for t ∈ [1/2m+1, 1 − 1/2m+1
]
. Notice (take t = 2/3 say) that {u′n (1/2)} , n ∈ N∗

m
is a bounded sequence since u (t) � un (t) � û (t) for t ∈ [0, 1] . Thus {u′n (1/2)}n∈N∗

m

has a convergent subsequence; for convenience we will let {u′n (1/2)}n∈N∗
m

denote this
subsequence also, and let τ ∈ R be its limit. Now for the above fixed t, and let n → ∞
through N∗

m to obtain

zm (t) = zm

(
1
2

)
+ τ

(
t − 1

2

)
+
∫ t

1/2
(s − t) (g (s, zm) + λh (s, zm) + δm) ds,

i.e,
u (t) = u

(
1
2

)
+ τ

(
t − 1

2

)
+
∫ t

1/2
(s − t) (g (s, u) + λh (s, u)) ds.

We can do this argument for each t ∈ (0, 1) and so

−u′′ (t) = g (t, u) + λh (t, u) for t ∈ (0, 1) .

It remains to show u is continuous at 0 and 1.
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Let ε > 0 be given. Since û ∈ C [0, 1] there exists δ > 0 with û (t) < ε/2
for t ∈ [0, δ ] . As a result u (t) � un (t) � û (t) < ε/2 for t ∈ [0, δ ] . Consequently
u (t) � u (t) � ε/2 < ε for t ∈ [0, δ ] and so u is continuous at 0. Similarly u is
continuous at 1 . As a result u ∈ C [0, 1] and{ − u′′ = g (t, u) + λh (t, u) for t ∈ (0, 1)

u (0) = u (1) = 0.

LEMMA 2.5. Let ψ : (0, 1) × (0,∞) → (0,∞) be a continuous function with{
ψ (t, ·) is strictly decreasing

ψ (·, r) ∈ M for all r > 0.

Then the problem ⎧⎨⎩ − ω ′′ (t) = ψ
(

t,ω(t) +
1
n

)
for t ∈ (0, 1)

ω (0) = ω (1) = 0

(2.10)

has a solution ωn ∈ C [0, 1] such that

ωn (t) � ωn+1 (t) � 1 + ω1 (t) for t ∈ [0, 1] and n ∈ N.

If we let ω (t) = limn→∞ ωn (t) for t ∈ [0, 1] , then

ω ∈ C [0, 1] , ω (t) > 0 for t ∈ (0, 1)

and { − ω ′′ (t) = ψ (t,ω(t)) for t ∈ (0, 1)

ω (0) = ω (1) = 0.

Proof. There exists χ1 ∈ C [0, 1] such that⎧⎪⎨⎪⎩
− χ′′

1 (t) = ψ (t, 1)

χ1 (0) = χ1 (1) = 0

χ1 (t) > 0 for t ∈ (0, 1) .

Notice
−χ′′

1 (t) = ψ (t, 1) � ψ (t, 1 + χ1 (t))

and
−0′′ (t) = 0 � ψ (t, 1 + 0) .

By a standard upper and lower solution method [1, 3], there exists ω1 ∈ C [0, 1] such
that { − ω ′′

1 (t) = ψ (t, 1 + ω1(t)) for t ∈ (0, 1)

ω1 (0) = ω1 (1) = 0.
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Suppose there exists ωn ∈ C [0, 1] such that⎧⎪⎪⎪⎨⎪⎪⎪⎩
− ω ′′

n (t) = ψ
(

t,
1
n

+ ωn(t)
)

ωn (0) = ωn (1) = 0

ωn (t) > 0 for t ∈ (0, 1) .

We know there exist χn+1 ∈ C [0, 1] such that⎧⎪⎪⎪⎨⎪⎪⎪⎩
− χ′′

n+1 (t) = ψ
(

t,
1

n + 1

)
χn+1 (0) = χn+1 (1) = 0

χn+1 (t) > 0 for t ∈ (0, 1) .

Then

−χ′′
n+1 (t) = ψ

(
t,

1
n + 1

)
� ψ

(
t,

1
n + 1

+ χn+1(t)
)

,

⎧⎨⎩ − ω ′′
n (t) = ψ

(
t,

1
n

+ ωn(t)
)

� ψ
(

t,
1

n + 1
+ ωn(t)

)
for t ∈ (0, 1)

ωn (0) = ωn (1) = 0
and

ωn (t) =
∫ 1

0
G (t, s)ψ

(
s,

1
n

+ ωn(s)
)

ds

�
∫ 1

0
G (t, s)ψ

(
s,

1
n + 1

+ ωn(s)
)

ds

�
∫ 1

0
G (t, s)ψ

(
s,

1
n + 1

)
ds

= χn+1 (t) for t ∈ (0, 1) .

By a standard upper and lower solution method, there exist ωn+1 ∈ C [0, 1] such that⎧⎨⎩ − ω ′′
n+1 (t) = ψ

(
t,

1
n + 1

+ ωn+1(t)
)

for t ∈ (0, 1)

ωn+1 (0) = ωn+1 (1) = 0

and
ωn (t) � ωn+1 (t) for t ∈ [0, 1] .

Next we prove

ωn+1 (t) +
1

n + 1
� wn (t) +

1
n

for t ∈ [0, 1] . (2.11)
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To see this we consider the problem⎧⎨⎩
− v′′ (t) = ψ (t, v(t)) for t ∈ (0, 1)

v (0) = v (1) =
1
n
.

(2.12n )

Then vn (t) = 1
n + wn (t) , t ∈ [0, 1] is a solution of (2.12n). We now prove

vn+1 (t) � vn (t) for t ∈ [0, 1] .

Since vn+1 (0) = 1
n+1 < 1

n = vn (0) , vn+1 (1) = 1
n+1 < 1

n = vn (1) , we need only
prove

vn+1 (t) � vn (t) for t ∈ (0, 1) . (2.13)

Suppose (2.13) is not true. Let y (t) = vn+1 (t) − vn (t) and σ ∈ (0, 1) be the point
where y (t) attains its maximum over (0, 1) . We have

y (σ) > 0 and y′′ (σ) � 0.

On the other hand, since vn+1 (σ) > vn (σ) we have

y′′ (σ) = v′′n+1 (σ) − v′′n (σ)
= −ψ (σ, vn+1 (σ)) + ψ (σ, vn (σ))
= ψ (σ, vn (σ)) − ψ (σ, vn+1 (σ))
> 0.

This is a contradiction. Thus vn+1 (t) � vn (t) for t ∈ (0, 1) and so

0 <
1

n + 1
+ ωn+1 � wn +

1
n
.

Thus
ω1 (t) � ωn (t)

� ωn+1 (t)
� 1 + ω1 (t) for t ∈ [0, 1] and n ∈ N.

(2.14)

Put

ω (t) = lim
n→∞ωn (t)

= sup
n∈N

ωn (t) for t ∈ [0, 1] .

By (2.14) , we have

0 < ω1 (t) � ω (t) � 1 + ω1 (t) for t ∈ (0, 1)

and
ω (0) = ω (1) = 0.

Now it is easy to prove (see the ideas in the proof of Lemma 2.4) that{ − ω ′′ (t) = ψ (t,ω(t)) for t ∈ (0, 1)

ω (0) = ω (1) = 0.
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LEMMA 2.6. Suppose m : (0, 1)× [0,∞) → [0,∞) is a continuous function with{
m (·, r) ∈ M for all r � 0

m (t, ·) is increasing

and there exist b ∈ M , b (t) > 0 for t ∈ (0, 1) with

lim
r→+∞

m (t, r)
b (t) r

= 0 uniformly with respect to t ∈ (0, 1) . (2.15)

Then there exist R0 > 0 and ṽ ∈ C [0, 1] , 0 � ṽ � R0φ1 such that{ − ṽ′′ (t) = m (t, ṽ) for t ∈ (0, 1)

ṽ (0) = ṽ (1) = 0.

Proof. We first prove that

lim
R→∞

∫ 1
0 N (t, s) m (s, v) ds

R
= 0 uniformly with respect to t ∈ (0, 1) , (2.16)

∀v ∈ C [0, 1] with 0 � v (t) � Rφ1 (t) for t ∈ [0, 1] ; here N (t, s) is defined in (2.3) .
From (2.15) , for all σ > 0, there exist sσ > 0 such that

m (t, s) � σb (t) s for t ∈ (0, 1) and sσ � s.

As a result

m (t, v (t)) |0�v(t)�Rφ1(t) � m (t, sσ) + σb (t) v (t)

� m (t, sσ) + σRb (t) φ1 (t) for t ∈ (0, 1) ,

so ∫ 1

0
N (t, s) m (s, v) ds �

∫ 1

0
N (t, s) m (s, sσ) ds + Rσ

∫ 1

0
N (t, s) b (s) φ1 (s) ds.

Consequently,

1
R

∫ 1

0
N (t, s) m (s, v) ds � 1

R

∫ 1

0
N (t, s) m (s, sσ) ds + σ

∫ 1

0
N (t, s) b (s) φ1 (s) ds

� 1
2R

∫ 1

0
m (s, sσ) ds +

σ
2

∫ 1

0
b (s) φ1 (s) ds,

and (2.16) is proved. There exist R0 > 0 (independent of t ∈ (0, 1) ) such that if
v ∈ C [0, 1] and 0 � v (t) � R0φ1 (t) for t ∈ [0, 1] then

1
R0

∫ 1

0
N (t, s) m (s, v) ds � 1 for t ∈ (0, 1) ,

and so

0 �
∫ 1

0
G (t, s) m (s, v) ds � R0φ1 (t) for t ∈ [0, 1] .
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Let Φ : C [0, 1] → C [0, 1] be the operator defined by

(Φv) (t) :=
∫ 1

0
G (t, s) m (s, v) ds for v ∈ C [0, 1] and t ∈ [0, 1] .

It is easy to see that Φ is a completely continuous operator. Also if 0 � v (t) �
R0φ1 (t) for t ∈ [0, 1] then 0 � Φ (v) (t) � R0φ1 (t) for t ∈ [0, 1] , so Schauder’s fixed
point theorem guarantees that there exists ṽ ∈ [0, R0φ1] such that Φ (ṽ) = ṽ, i.e.{ − ṽ′′ (t) = m (t, ṽ(t))

ṽ (0) = ṽ (1) = 0.

COROLLARY 2.2. Let ψ (t, s) , m (t, s) , (ωn)n∈N and R0 > 0 be as in Lemma
2.5 and Lemma 2.6 . There exists {ṽn}n∈N ⊂ C [0, 1] and 0 � ṽn � R0φ1 such that{ − ṽ′′n (t) = m (t,ωn + ṽn) for t ∈ (0, 1)

ṽn (0) = ṽn (1) = 0
(2.17)

and

− (wn + ṽn)
′′ (t) � ψ

(
t,

1
n

+ ωn + ṽn

)
+ m (t,ωn + ṽn) for t ∈ (0, 1) .

Proof. Let n ∈ N be fixed. Then m (t,ωn + s) satisfies the conditions of Lemma
2.6, so there exists ṽn ∈ C [0, 1] with 0 � ṽn � R0 φ1 such that (2.17) holds and

− (wn + ṽn)
′′ (t) = −w′′

n (t) − ṽ′′n (t)

= ψ
(

t,
1
n

+ ωn

)
+ m (t,ωn + ṽn)

� ψ
(

t,
1
n

+ ωn + ṽn

)
+ m (t,ωn + ṽn) for t ∈ (0, 1) .

LEMMA 2.7. Suppose (G1), (G2), (H1) and (H2) hold. Then there exists λ0 >
0, c > 0 such that for all λ � λ0 there exist Rc > c, u ∈ C ([0, 1]) with cφ1 (t) �
u (t) � Rcφ1 (t) and{ − u′′ (t) = −g1 (t, u(t)) + λh1 (t, u(t)) for t ∈ (0, 1)

u (0) = u (1) = 0
(2.18)

with
g1 (·, u (·)) , h1 (·, u (·)) ∈ M.

Proof. Let us consider the operator Tλ : C [0, 1] → C [0, 1] given by

Tλ (v) (t) :=
∫ 1

0
N (t, s) [−g1 (s, vφ1) + λh1 (s, vφ1)] ds for t ∈ (0, 1) .
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By (H1) , there exists r � 0 such that 0 < h1 (t, r) for t ∈ (0, 1) . We let

c = 2 (r + 1) , Θ =
{

t ∈ (0, 1) :
1
2

< φ1 (t)
}

.

Note that Θ is nonempty. If t ∈ Θ, v ∈ C [0, 1] and c � v, we have

r =
c
2
− 1 � c

2
� cφ1 (t) � v (t) φ1 (t) ,

so
h1 (t, r) � h1 (t, vφ1) , (2.19)

for all v ∈ C [0, 1] with c � v. Let

ρ =
1
2π

∫
s∈Θ

s (1 − s) h1 (s, r) ds > 0,

and note for v ∈ C[0, 1] with c � v that∫ 1

0
N (t, s) h1 (s, vφ1) ds �

∫
s∈Θ

N (t, s) h1 (s, vφ1) ds

�
∫

s∈Θ
N (t, s) h1 (s, r) ds (see (2.19) )

� 1
2π

∫
s∈Θ

s (1 − s) h1 (s, r) ds (see (2.4) )

= ρ > 0 for all t ∈ (0, 1) ,

i.e.
1∫ 1

0 N (t, s) h1 (s, vφ1) ds
� 1

ρ
for t ∈ (0, 1) . (2.20)

On the other hand, for ∀v ∈ C [0, 1] with v � c, we have

c +
∫ 1

0
N (t, s) g1 (s, vφ1) ds � c +

∫ 1

0
N (t, s) g1 (s, cφ1) ds for t ∈ (0, 1) ,

so for t ∈ (0, 1) we have

c +
∫ 1

0 N (t, s) g1 (s, vφ1) ds∫ 1
0 N (t, s) h1 (s, vφ1) ds

� 1
ρ

(
c +

1
2

∫ 1

0
N (t, s) g1 (s, cφ1) ds

)

� 1
ρ

(
c +

1
2

∫ 1

0
g1 (s, cφ1) ds

)
(independent of t).

Let

λ0 := sup

{∣∣∣∣∣c +
∫ 1

0 N (t, s) g1 (s, vφ1) ds∫ 1
0 N (t, s) h1 (s, vφ1) ds

∣∣∣∣∣
∞

: v ∈ C [0, 1] , c � v

}
< ∞.
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Then, for all λ � λ0 with v ∈ C [0, 1] with c � v we have

c +
∫ 1

0 N (t, s) g1 (s, vφ1) ds∫ 1
0 N (t, s) h1 (s, vφ1) ds

� λ for t ∈ (0, 1)

i.e.

c +
∫ 1

0
N (t, s) g1 (s, vφ1) ds � λ

∫ 1

0
N (t, s) h1 (s, vφ1) ds for t ∈ (0, 1) ,

so

c �
∫ 1

0
N (t, s) (−g1 (s, vφ1) + λh1 (s, vφ1)) ds

= Tλ (v) (t) for t ∈ (0, 1) .

On the other hand, for ∀v ∈ C [0, 1] with v � c, we have

0 �
∫ 1

0
N (t, s) g1 (s, vφ1) ds �

∫ 1

0
N (t, s) g1 (s, cφ1) ds

� 1
2

∫ 1

0
g1 (s, cφ1) ds for t ∈ [0, 1] .

Thus

0 � lim
R→∞

1
R

[∫ 1

0
N (t, s) g1 (s, vφ1) ds

]

� lim
R→∞

1
2R

∫ 1

0
g1 (s, cφ1) ds = 0,

uniformly with respect to t ∈ [0, 1] .
Essentially the same reasoning as in the proof of (2.16) yields for v ∈ C[0, 1]

with 0 � v(t) � R for t ∈ [0, 1] ,

lim
R→∞

1
R

[∫ 1

0
N (t, s) h1 (s, vφ1) ds

]
= 0

uniformly with respect to t ∈ [0, 1] . Then there exists Rc > c so that Tλ ([c, Rc]) ⊂
[c, Rc] .

It is easy to see that Tλ : [c, Rc] → [c, Rc] is a completely continuous operator,
so Schauder’s fixed point theorem guarantees that there exists v ∈ [c0, Rc] such that
Tλ (v) = v i.e.

v (t) φ1 (t) =
∫ 1

0
G (t, s) (−g1 (s, vφ1) + λh1 (s, vφ1)) ds.

The function u (t) = φ1 (t) v (t) for t ∈ [0, 1] satisfies (2.18) . Moreover, we have
c0φ1 (t) � u (t) � Rcφ1 (t) for t ∈ [0, 1] and

g1 (·, u (·)) , h1 (·, u (·)) ∈ M.
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Proof of theorem 1.1 . Let λ0 > 0 , c > 0 and u ∈ (C [0, 1]) be as defined in
Lemma 2.7. Define

ψ (t, r) = g2 (t, r) + λh1 (t, u (t)) for t ∈ (0, 1) ,

and
m (t, r) = λh2 (t, r)

where λ � λ0.
From (G1) notice ψ satisfies the assumptions of Lemma 2.5, so there exists ω ,

ωn ∈ C [0, 1] such that⎧⎨⎩ − ω ′′
n (t) = g2

(
t,

1
n

+ ωn

)
+ λh1 (t, u) for t ∈ (0, 1)

ωn (0) = ωn (1) = 0

and
ω (t) = lim

n→∞ωn (t) for t ∈ [0, 1] .

From (H1) notice m satisfies the assumption of Lemma 2.6, so by Corollary 2.2, there
exists R0 > 0 and ṽn ∈ C ([0, 1]) , 0 � ṽn (t) � R0φ1 (t) for t ∈ [0, 1] such that{ − ṽ′′n (t) = λh2 (t,ωn + ṽn) for t ∈ (0, 1)

ṽn (0) = ṽn (1) = 0

and

− (ωn + ṽn)
′′ (t) � g2

(
t,

1
n

+ ωn + ṽn

)
+λh1 (t, u)+λh2 (t,ωn + ṽn) for t ∈ (0, 1) .

Let
ûn (t) = ωn (t) + ṽn (t) for t ∈ [0, 1] .

Then ûn ∈ C [0, 1] and ûn (1) = ûn (1) = 0.
Let

û (t) = ω (t) + R0φ1 (t) for t ∈ [0, 1] ,

so
0 � ûn (t) � û (t) for t ∈ [0, 1] . (2.21)

From Lemma 2.7 we obtain

−u′′ (t) = −g1 (t, u) + λh1 (t, u)
� λh1 (t, u)

� λh1 (t, u) + g2

(
t,

1
n

+ ûn

)
+ λh2 (t, ûn)

� −û′′n (t) for t ∈ (0, 1)

i.e
− (u − ûn)

′′ (t) � 0 for t ∈ (0, 1) .
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A standard argument yields

u (t) � ûn (t) for t ∈ [0, 1] . (2.22)

From (G1) , there exists γ ∈ M such that r → g2
(
t, 1

n + r
)
+γ (t) r is increasing.

Let un = u. From (2.21) and (2.22) , we have

0 < u (t) � un (t) � ûn (t) � û (t) for t ∈ (0, 1) .

Also for v ∈ C [0, 1] with un (t) � v (t) � ûn (t) , t ∈ [0, 1] , we have

−u′′n (t) + γ (t) un (t) = −g1 (t, un) + λh1 (t, un) + γ (t) un (t)
� −g1 (t, v) + λh1 (t, v) + γ (t) v (t)

� −g1

(
t,

1
n

+ v

)
+ λh1 (t, v) + γ (t) v (t)

� g

(
t,

1
n

+ v

)
+ λh (t, v) + γ (t) v (t) for t ∈ (0, 1) ,

so (2.8) holds with δn (t) ≡ 0 for t ∈ [0, 1] , n ∈ N.
Also for v ∈ C [0, 1] with un (t) � v (t) � ûn (t) , t ∈ [0, 1] we have

−û′′n (t) + an (t) ûn (t) � g2

(
t,

1
n

+ ûn

)
+ λh1 (t, u) + λh2 (t, ûn) + γ (t) ûn (t)

� g2

(
t,

1
n

+ ûn

)
+ γ (t) ûn (t) + λh2 (t, ûn)

� g2

(
t,

1
n

+ v

)
+ γ (t) v (t) + λh2 (t, v (t))

� g

(
t,

1
n

+ v

)
+ λh (t, v) + γ (t) v (t) for t ∈ (0, 1) ,

so (2.9) holds. Lemma 2.4 guarantees that there exists a solution u ∈ C[0, 1] to (1.1)
with

u (t) � u (t) � û (t) for t ∈ [0, 1] .
Moreover, because û(t) � |ω |∞ + R0φ1(t) � (|ω |∞ + R0) (1 + φ1(t)) and

cφ1 (t) < u(t) (see Lemma 2.7), the estimates asserted in the theorem follow.

3. Example

EXAMPLE 3.1. Consider the boundary value problem{ − u′′ (t) = g (t, u) + λh (t, u) for t ∈ (0, 1)

u (0) = u (1) = 0
(3.1)

where

g (t, r) = − 1√
r

for t ∈ (0, 1) and r ∈ (0,∞)

h (t, r) =
√

r for t ∈ (0, 1) and r ∈ [0,∞)
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and λ > 199.05. We will show that Theorem 1.1 guarantees that (3.1) has at least a
solution u ∈ C [0, 1] ∩ C1 (0, 1) with u (t) > 0 for t ∈ [0, 1].

To see this we first prove that g satisfies (G1) , (G2) . Let

g1 (t, r) = g2 (t, r) =
1√
r
.

For every r1, r2 (0 < r1 < r2) , let

γ (t) = 1 +
1

2r
3
2
1

for t ∈ (0, 1) .

Now ∣∣∣∣∂g2

∂r

∣∣∣∣ �
∣∣∣∣− 1

2r
3
2

∣∣∣∣ < 1 +
1

2r
3
2
1

for t ∈ (0, 1) , r ∈ (r1, r2) ,

so
∂

∂r
(g2 (t, r) + γ (t) r) > 0 for t ∈ (0, 1) , r ∈ (r1, r2) .

Consequently the function
g2 (t, r) + γ (t) r

is increasing in [r1, r2] , so condition (G1) holds. Also

g1 (·, rφ1 (·)) , g2 (·, r) ∈ M for all r > 0,

so (G2) is satisfied.
Also with

h1 (t, r) = h2 (t, r) =
√

r,

(H1) and (H2) are satisfied. We next obtain an upper bound for λ0 in Theorem 1.1.
In (H2) , let r = 1 , so in Lemma 2.7, we have c = 4, Θ =

(
1
6 ,

5
6

)
and

ρ =
1
2π

∫
s∈Θ

s (1 − s) h1 (s, r) ds

=
1
2π

∫ 5
6

1
6

s (1 − s) ds =
23

324π
.

Then
324π
23

∣∣∣∣∣4 +
∫ 1

0
N (t, s)

1√
4 sinπs

ds

∣∣∣∣∣
∞

� 324π
23

× 4.5 ≈ 199.05,

so
0 < λ0 � 199.05.

Then Theorem 1.1 guarantees that (3.1) has at least a solution u ∈ C [0, 1] ∩
C1 (0, 1) with u (t) > 0 for t ∈ [0, 1].

On the other hand, for λ > 199.05,

lim
r→∞ g (t, r) + λh (t, r) = −∞ for t ∈ (0, 1) ,

so the conditions in Remark 1.1 are not satisfied.
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