athematical
nequalities
& Papplications
Volume 1T, Number 1 (2007), 99-112

INEQUALITY OF O’NEIL-TYPE FOR CONVOLUTIONS
ASSOCIATED WITH THE LAPLACE-BESSEL
DIFFERENTIAL OPERATOR AND APPLICATIONS

V. S. GULIYEV, A. SERBETCI AND Z. V. SAFAROV

(communicated by V. Burenkov)

Abstract. In this paper we prove an O’Neil-type inequality for the convolution operator ( B—
convolution) associated with the Laplace-Bessel differential operator. By using an O’Neil-
type inequality for rearrangements we obtain a pointwise rearrangement estimate of the B—
convolution. As an application, we obtain necessary and sufficient conditions on the parameters
for the boundedness of the fractional B-maximal operator and B —fractional integral operator
with rough kernels from the spaces Ly to Ly y and from the spaces Ly y to the weak spaces

1. Introduction

The potential type integral operators associated with the Laplace-Bessel differential
operator

(see [1,4,6,7,11]), are playing an important role in harmonic analysis, theory of func-
tions and partial differential equations. Here we study the convolution ( B -convolution),
the fractional maximal function (fractional B-maximal function) and fractional integral
( B-fractional integral) with rough kernel, associated with the Laplace-Bessel differen-
tial operator.

Let R = {x = (x1,...,x,) € R": x, > 0}, and define

1/p
Loy =Ly (®) = S F < I, = | [ rorsias)  <oop.

where y > 0 is a fixed parameter and 1 < p < co.
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Denote by 77 the shift operator ( B—shift) acting according to the law

¥
Tf(x) = Cy / f <x’ -y, \/xﬁ — 2XpYn COS O + yﬁ) sin' ! ada,
0

where C, = (foﬂsiny‘loca’oc)f1 = ﬁ‘%F(VTﬂ)[F(%)}‘I and x = (¥',x,), X' €
R,
We remark that the B-shift is closely related to the Laplace-Bessel differential

operator Ag. The shift operator 7° generates the corresponding convolution (B -
convolution)

o0 = [ FOrsa

The paper is organized as follows. In Section 2, we give some lemmas needed
to facilitate the proofs of our theorems. In Section 3, we show that an O’Neil-type
inequality for rearrangements of the B-convolution holds. In Section 4, we prove
an O’Neil-type inequality for B-convolutions. In Section 5, we obtain rearrangement
estimates for the fractional B -maximal function and B -fractional integral. We prove the
boundedness of the fractional B-maximal operator and B—fractional integral operator
with rough kernels from the spaces L,, to L,;, and from the spaces L;, to the weak
spaces WL, , . We show that the conditions on the parameters ensuring the boundedness
cannot be weakened.

2. Some auxiliary lemmas

In this section we formulate some lemmas that will be needed later.
For the B-shift operator the following two lemmas hold.

LEMMA 1. 1. Let 1 <p < oo, f € L,,(RY), then forall y € R,

IF Olly,, < I, - (1)
(see [10]).
2. Let 1<p,r<q<oo, 1/p'+1/qg=1/r, pp' =p+p', [ € LyRY),
g€ L y(RY). Then f @ g € Lyy(RY) and
Ir @l <Ifl,,, liel,, @)

LEMMA 2.  For any measurable set o/ = (', o0,) C R, &' = @/ x ... X
Ay_y CR"™ o, C (0,00) and for any y € R the following equality holds

/ T g(x) x!dx = Cy/ g (z’, \/22 +zﬁ+1> du(z,znt1), (3)
o (7,0) -5/

where o = of" x (=m,m) x [0,m), m = sup <, du(z,z,41) = ZZ;lledZn+1.
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The proof of Lemma 2 is straightforward after applying the following substitutions
/

7 =X, 7, =x,c080, Z,11 = X,sinq. 4)

The following two Hardy inequalities (see [12]) have an important role in proving
our main results:

LEMMA 3. Let 1 < p < g < co. There exists a constant C independent of the
function @ such that

( /OOO ( /O t<P<S)dS>qw(t)dt) " <C ( /0 h w(r)%(:)m) W (5)

if and only if

K= igg (/roo w(t)dt) v (/Orv(t)lpldt) l/pl < 00, (6)

where p+p' = pp’. Moreover, if C is the best constant in (5), then
K< C<kp, 9K (7)

Here the constant k(p,q) in (7) can be written in various forms. For example (see

[14])

/ , q 1/q o 1/p
kp.0) =) orkipa) = ) orip.a) = (14 2) (14 2)

LEMMA 4. Let 1 < p < g < oo and let v and w be two functions measurable
and positive a.e. on (0,00). Then there exists a constant C independent of the function

@ such that
h b o(s)ds qw(t)dt v <C - o(0)v(r)dt b (8)
() (] o) wioa) "< ([ o)

if and only if

r g s oo L\
K, = sup (/ w(t)dt> </ v(t)' P dt) < 0.
r>0 0 r

Moreover, the best constant C in (8) satisfies the inequalities K1 < C < k(p, ¢)K; .
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3. O’Neil-type inequality for rearrangements of B -convolutions

In this section, we establish a relation between shift operator 7°f and y -rearrangement
of f . We show that for the B-convolution an O’Neil-type inequality for rearrangements
holds.

Let f : R} — R be a measurable function and for any measurable set E,
|El, = f £ xhdx . We define y -rearrangement of f in decreasing order by

Fr@) =inf {s >0 : f.(s) <1}, Vre[0,00),
where f.(s) denotes the y -distribution function of f given by
fa(s) = Hx e RL:f ()] > s}, -

We note the following properties of y -rearrangement of functions (see [3, 13]):
1)if 0 < p < oo, then

MW@%M—A(FWWu ©)
2) forany t > 0,
;ﬁAVM%w=lﬁ®M; (10)
3)
e If (x)g(x)|xtdx < / F( (11)

The function f** on (0, 00) is defined by f**(¢) = 1 ff s)ds, t>0.

We denote by WL, , (R".) the weak L, space of all measurable functions f with
finite norm

”fHWLp.y = Suptl/pf*(t)a 1 <p < oo
>0

LEMMA 5. For any measurable set </ C R and for any y € R’

sup /dTy{f(xﬂdex:Cy/of*(s)ds. (12)

| |y=t

Proof. By Lemma 2 we have

/ T’ |f (x)|xldx = y/ ) V(z,zn+1)]du(z,zn+1), (13)
o (3.0)+57

where f(z,z411) = f (2/7 \/Zﬁ +zﬁ+1) s Znt1 > 0, du(z,zer1) = ZZ;lldzdz,,H. For

the function f(z,z,+1) the analogous equality (10) is also valid (see, for example [3])

giéf@mMW@mO—QAGﬁww (14
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where (}7); () =inf{r>0 : u({(zza1) : [f(z2np1)| > 1}) <s}.
Note that u ((v,0) + &/)) = ||, and (f): (s) = f*(s). Indeed, taking into
account (4) we have

u({(zznr) €RY ()| > 1)) = / xldx = f.(1).
{xeRY:|f () |>1}
Consequently,
(F),, (s) = inf{t >0 : f.(t) < s} =f"(s).
By (13) and (14) we have

sup / PIf (0)ldr = C, sup / F (2 2ne )2, 21)
|t |y=t ) o W)= 00+

—Cy/(f ds—Cy/f

Thus Lemma 5 is proved. ]

The following theorem is one of our main results which shows that an O’Neil-type
inequality for rearrangements of the B-convolution holds. The methods of the proof
used here are close to those in [8].

THEOREM 1. Let f, g be positive measurable functions on R’_. Then for all
0<r<oo

room0<c (o[ ¢ (w)du+ | rrwetwan). a3

Proof. For t > 0 we choose a measurable set E; such that

(xR @] >F (0} CEC{xeRy:[f ()] =170}
Let
J1x) = (F () = (0)) 26, (x),  f2(x) =f (x) = f1(x).

For any measurable set </ C R’} with measure |.</|, =, we have

/(g @ f1)(x)xhdx = / Fi(y)yldy / Ve (x)x! dx.

Hence by Lemma 5, we obtain

/(g®f1 x)xdx < Cy/og Ji(y) i dy

CY/ g ( )yndy
0

~¢ / SOy <>) [ e
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Thus by (10) we have

Next, estimate (g ® f2)**(¢). Taking into account Lemma 5 and equality (10) we have

(T'g(x))" (s) < (T'g(x))™ (S):1 sup LT’ (X)ypdy = Cyg™"(s),  (16)

§ ‘d‘y:s

hence by (11) we get

o0

(®f2) () < | (f2)"(u) (T'g(x))" (u)du

Cy/ (f2)" (u)du
~¢ (1 / ¢ it [ ).

Consequently by (10) we have

wor <6 (1o | i | " g ).

Therefore we obtain (15). O

THEOREM 2. If g € WL,y (R"), 1 <r < oo, then
(feg) () < (Feg ()<
t o]
Cllslvy (7 [ s+ [“sir@as).
0 t
where C, = Cyr'(1+7).

Proof. Since f € WL,,(R'.), we have

1
g (1) < llglwe,, 77, &) <7 lgllwe,,t

1
r .

Taking into account inequality (15) we get the inequality (17). O
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4. O’Neil-type inequality for the B-convolutions

In this section we prove an O’Neil-type inequality for the B-convolutions.

THEOREM 3. I. Let 1 < p < g < oo, 1/p'+1/q=1/r, f € L,y,R"),
g€ WL, ,(RY). Then f ® g € Lyy(RY) and

If ®8HL” <Al HfHLM ||g||WL,.y ) (18)

where A = Cy (pl/‘iql/l" + (p’)l/q(q/)l/p’) )

22 Letp=1,1<q<oo, f €L R, g€ WLy(R%). Then f ® g €
WL,y (RY) and

IF @ glyr,, <A2 11, gl , - (19)
where Ay = 2C.

Proof. 1. Let f € L,,(R%), g € WL.y(R%), 1 <p < g < oo and 1/r =
1/p’ + 1/q. By using equality (9) and inequality (17) we get

I ®sl,, = 102800

[ (frons)
[ ([ o))

By Lemma 3, for the validity of the inequality

U (/Otf*(s)dsyd’) e ([ rwra) "’

it is necessary and sufficient condition that

oo 1/‘1 t l/P/ ,1/4 ,
sup (/ fl/rdS) (/ ds) = (q/r— 1) sup /7 P < oo,
>0 t 0 >0

—1/q ’ /
Note that C; < (q/r - 1) gi(g)" = (p)Va(g)Y and 1/p—1/q=1/r.
Furthermore, by Lemma 4, for the validity of the inequality

([ ([ rom)'a)“ s ([rore)

it is necessary and sufficient condition that

t 1/q ) , 1/p' 1 ,
sup (/ dS) (/ 5P /’ds> = (p'/r - l) sup t1/7 VP < o,
>0 0 t >0
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_I/P/ ’ ’
Note that C3 < (p’/r — 1) pa(p") P =pYag'v and 1/p —1/g=1/r.
By using these inequalities and applying equality (9) we obtain
IF @gl,,, <C(Ct+C)IFNL,, I8,
2.Letp=1,1<g<oo,f €Ly(R)and g € WL, (R}).
By inequality (17) and equality (9) we obtain

If @ gllwe,, = Sugfl/"(f ®g)*(1)
1>

< Culllurg st (4 [+ [ it

= Cllgllwe,, (sup/ fx(s)ds + supt /‘1/ Sl/qf*(s)ds>
>0 t
< 2C1[|gllwegy 1 “lli0.00) = 2C1 I M2y gl WLy, -

Thus the proof is completed. O

5. Boundedness of the B -fractional integral operator with rough kernels in L, ,
spaces

We define the fractional B-maximal function with a rough kernel by

1 ,
Mosf () =sup = [ 100 P @]} 20)
r>0 I B(0,r)

and the B—fractional integral with a rough kernel by
Q)
IQ,OC,Yf(x) :/ |y|n+y a T‘f( )yn dy’ (21)

where Q € L, (S77"), s > 1, 87" = {x € R" : [x| = 1}, and Q is homogeneous
of degree zero on R” , i.e., Q(tx) = Q(x) forall > 0, x € R .
It is easy to see that, when Q =1, Mg ¢y and Ig ¢, are the usual fractional B—
maximal operator M, ([6]) and the B—Riesz potential I, ([1, 5, 11]), respectively.
Note that, it can be easily verified that

glx) = |x|a7niy € WL(ner)/(nerfoc),y(Rrjr)v 0<a<n,
moreover in this case
gu(t) = o(n,y) /T g () = (w(n,y) 1) T O
_ 1—o/(n+
lellwe gy = @)D,
where w(n,y) = |B(0,1)],,and B(0,1) = {x € R% : x| < 1}.



INEQUALITY OF O’NEIL-TYPE FOR CONVOLUTIONS 107

If we take
Q(x)

g(X)ZW, 0<(X<l’l,

where Q is homogeneous of degree zero on R, and Q € L(nH)/(nH_a),y(S'fl) , then

1—a/(n+v)
g*([) = A t—(rH*’)/)/(rH*)/—(X)’ g*(l’) = (L) R
n+y (n+7y)t
t) = t
g (1) o 8,
where
A— ||Q||(n+y)/(n+y705) .
L(n+y)/(n+rfa).y(s+ )

A)lﬂ/(nﬂ) )

and therefore g € WL, 1y)/(nsy—a)y (R%) and HgHWL(nm/(nwfmy = (n+y

COROLLARY 1. Let 0 < o0 < n+7v, Q be homogeneous of degree zero on R’
and Q € L(,,H)/(Hy_a)’y(STl). Then the following inequalities hold

(Iﬂ,a,yf)* (1) < (Iﬁ,a,yf)** (1)
t oo
-1 * Pl
< C4 ‘|QHL(nJrY)/(nH/*lX)ﬁV(Siil) (VHY /0 f (S) ds + [ . f (S) ds) ’

where C4 = o0 2(n + }/)%“ Cy.
LEMMA 6. Suppose that Q € LW(S'J’:I), s>1,0<a<n+vy,then

2n+y—0¢
Mo o.yf (x) < Fpe T Loy oy (If ) ().

Proof. Denote

ot arF10) = /B(o 2)\B(0.2) yg'i(i)—a PIf %)l yy dy,
then
ooy (FNE) =D Nopayi(IF D). (22)
jez
Since

Lopayi(If ) (%)

22}(04—»1—7)/ QI ()| yh dy
B(0,2))\B(0,2—1)

= gl V 190)| PIF )]y dy — / QW) P )]y dy
B(0,2/) B(0,2~1)

1
= Q)| T " d
— / IRCCCIRE
po—n—y

- Y Y
s |, o [CONT I
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we have
po—n—y

ot 1)) + 35y |, o RO

1 / '
D Y Q)| TIf (x) |y}, dy
20 =) Jp 6 2y

=
)

If we take the supremum with respect to j € Z in the both sides of the above
inequality, then we get

. 1
sup ooy ([f ) (x) = (1-2%7"77) sup o= / QW) TIf (x)| yE dy. (23)
jez JEL B(0,2))
On the other hand, it is easy to see that
1
M < 2" %sup ——— Q)| T’ " dy. 24
1)) €27 sup s / QI 2
Thus, the proof of Lemma 6 follows from (22), (23) and (24). O
From Corollary 1 and Lemma 6 we get the following

COROLLARY 2.  Suppose that Q is homogeneous of degree zero on R!| and
Qe L(,Hy)/(nﬂ,a)’y(Si_l), O<a<n+y,thenforall 0 <t < oo

(Moasf )" (1) < (Maayf)™ (1)

t oo
< G (rml/f*(s) ds+/ st LA (s) ds>,
0 t

Cy.

oty —

A
where C4 = 1pa—n—7v

COROLLARY 3. For the B-Riesz potential

Toyf (x) = /R" x| * "V (y)yldy, O0<oa<n+y,

+

forall 0 <t < oo

(layf )" (1) < (Lagf)™ (1)

t oo
< Gs (tm_l/f*(s)ds—i—/ sm—lf*(s)ds),
0 t

where Cs = Cy (%) (1 + "”) o(n,y)! g

COROLLARY 4.  Let Q be homogeneous of degree zero on R’ and Q €
L(n+y)/(n+y «), Y(Snil) 0< a<n. Then

DIfl<p<™ felL,R) and 1/p—1/q=a/(n+7Y), then Ioayf €
Lyy(R%) and

Moaf Iy < As i1, I, -

+7)/(n+y — ), y(S
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where Ay = Cyor*(n+y)®/(r)+! (pl/"ql/pl + (p’)l/"(CI’)l/”/) :

2Q)Ifp=1,fe€Liy(RY)and 1—-1/qg=0a/(n+y), then Ig o yf € WLyy(R")
and

||IQ;05~,YfHWLq,y < A4 ||Q‘|L(n+y)/(n+y7a)‘y(siil) HfHLLY ,

where Ay = Cya_z(n + y)a/("ﬂ')ﬂ.

COROLLARY 5. Let 0 < o < n. Then
DIf1<p<™X feL,RY) and 1/p—1/q=a/(n+7y), then Ioyf €
Lyy(RY) and
Mo gy < AslFIL,, »

where As = Cy (pq+q—p) (pq/(q — p)*) o (n,y)"/7"+1/a (Pl/qql/”'+(p’)1/q(6f)l/”') :
2)Ifp=1,feLy(RY)and 1 —1/g=o/(n+7), then Ioyf € WL,y (R)
and
oy Nlwegy <Asllfllp,,

where A = Cy (pq +q—p) (pa/(q —p)) o (n,y) /7" +V/a.

Note that, Corollary 5 was proved in [1], [5] and [11] by using other methods but
in those studies the constants were not calculated explicitly.

Next we obtain necessary and sufficient conditions on the parameters for the
fractional B -maximal operator and B -fractional integral operator with rough kernels to

be bounded from the spaces L,y to L,, and from the spaces L;, to the weak spaces
WLy, .

THEOREM 4. Let 0 < o0 < n+y, Q be homogeneous of degree zero on R’ and
Qe L(n+y)/(n+y—oc),y (Srfr_l) . Then

DIf1 <p<(n+y)/o, thenthe condition 1/p—1/q = o/ (n+Yy) is necessary
and sufficient for the boundedness of 1o oy from Ly, (R") to Ly, (RY).

2)If p =1, then the condition 1 — 1/q = a/(n+ ) is necessary and sufficient
for the boundedness of I oy from Liy(R}) to WL, ,(R%).

Proof. Sufficiency of Theorem 4 follows from Theorem 3.

Necessity. 1) Suppose that the operator Io o, is bounded from L,,(R"%) to
Liy(R)and 1 <p < (n+7y)/a.

Define f,(x) =: f (tx) for t > 0. Then it can be easily shown that

_nty _
Wil =7 Wy, (Gaanf)() = 1 laayf (22),

and
n+y

oy, =~ st |, -

Since the operator g o, is bounded from L,y (R".) to L,y (R".), we have

HIQ,(X,YfHLq,y < CHfHLp,w
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where C is independent of f . Then we get

loasfll,,, =7 Maafill,, < C“ T Wil = G [l

If <o+ Hy, then forall f € Ly, (RY) we have [[lo.oyf|[, =0ast—0.
’ ’ q

If 1 > = + 757 - then forall f € LpV(R”) we have HIQvO‘vaHLq,y =0ast— 00.

Therefore we get the equality 117 == + m

2) Suppose that the operator Io 4y 1s bounded from L;,(R’) to WL, (R"). It
is easy to show that

Wille,, =27 W, s U (x) = 1 “(Ta.ayf) (),

and
n+7

HlﬂvwftHWLw = HIQ"‘YfHWLw

By the boundedness of Io o, from L;,(R") to WL, (R" ), we have

HIQvavaHWLq?y < C”fHLl.y’
where C is independent of f . Then we have

(Ta.oyf1)«(T) = 7" (Ig.ayf )« (t7T),

gL
||Igva7yft||WLq1y = HIQ""’YfHWLw’

and

niy ney ny
HIQJX;YfHWqu =" ||IQ;05~,YfTHWLq,y < (o HfTHLl,y =Cc*TT " nyHLl,y'

Ifl< l then forall f € L, (R’.) we have HIQO‘YfHWL =0ast—0.

+y’
If1 > +n+y, then forall f € LIY(R”) wehave ||Io.a.f ||, , =0ast— o0.
; "
Therefore we get the equality 1 = > + = O

n+}’

COROLLARY 6. Let 0 < ax<n+y.

DIf1 <p < (n+y)/o, thenthe condition 1/p—1/q = o/ (n+Yy) is necessary
and sufficient for the boundedness of 1o, from Ly, (R") to Ly, (R").

2)If p = 1, then the condition 1 — 1/q = o/(n+ ) is necessary and sufficient
for the boundedness of 1oy from Liy(R") to WLy, (R").

COROLLARY 7. Let 0 < o0 < n+7v, Q be homogeneous of degree zero on R’_
and Q € Ln+y)/(n+y o) (Sn 1)

NIifl<p<r, then the condition 1/p — 1/q = a/(n+ v) is necessary and
sufficient for the boundedness of Mo oy from L, ,(R") to L,y (R%).

2)If p =1, then the condition 1 — 1/q = a/(n+Yy) is necessary and sufficient
for the boundedness of Mg oy from L, (R") to WL, (R").
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Proof. Sufficiency of Corollary 7 follows from Theorem 4 and Lemma 6.
Necessity. 1) Let Mg 4y be bounded from L,,(R") to Ly, (R%) for 1 < p <

Then we have
Mg o yfi(x) =t~ % Myf (tx),

Y
Maasfll,,, =" [Macs |,
By the same argument in Theorem 4 we obtain 117 — é = % .

2) Let Mg 4, be bounded from L;,(R%) to WL,y (R").
Then we have

MQ,OC,th(x) = t_aMg,oc,yf (tx),

_a_my
HMQaOCvaTHWLq?y =1 ! HMQ’(X’YfHWLq.y :
Hence we obtain the equality 1 — é = % . O
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