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SINGULAR INTEGRALS AND FRACTIONAL INTEGRALS IN
TRIEBEL-LIZORKIN SPACES AND IN WEIGHTED .7 SPACES
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(communicated by J. Marshall Ash)

Abstract. We study the hypersingular integral

b(y)e P ()

Thaf (x) = lim e f(x—y)dy

€70 J]yl>e
and the fractional integral

b(yDe™ Mgy

%Jm:/ flx—y)dy

Rn [y«

in Triebel-Lizorkin spaces and weighted LP spaces. Here Q € H"(S"™!), and b(|y|) and
h(|y|) are measurable radial functions which satisfy some suitable conditions. We also consider
the above integrals along some surfaces of revolution. The results in this paper extend some
known results about hypersingular integrals and fractional integrals.

Introduction

The subject of singular integral operators is well known for many years. It is
initially pioneered by Calderén and Zygmund (see [2, 3]), and is subsequently studied
by many other authors. For instance, the reader may view [4-6, 10-11, 16-18] among
many other references for a good survey. In this note, we are particularly interested in
some variations of singular integrals, i.e., fractional integrals and singular integrals that
are strongly singular at infinity and at the origin respectively. Recently the authors in
[4] proved that the singular integral operator

Tof (x) = 1im/||> 7b(|y|)g(yl)f(xfy)dy

e—0 |y|n+(X

(QeH ("), r=n-1)/(n—1+a), a>0)
is a bounded map from £, *9(R") to Fy?(R") for s € R, 1 < p, ¢ < oo, where
Fy9(R") is the Triebel-Lizorkin space. By introducing an oscillating factor e’ ™ in
Mathematics subject classification (2000): 42B20, 42B25.
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the kernel of the singular integral (that is motivated by the Bochner-Riesz means), the
author in [12-13] showed that the singular integral operator along surface

b(y)e " ()

Tl‘o(f(x xﬂ+1) = lim ‘y‘n+a f(x — Vs Xn+1 — F(|y|))dy

=0 pyl>e

(QeH(s"")

is bounded in L7 (R"™) for B/(B— o) <p < B/a, B >2a > 0.

These two results motivated us to investigate this subject in further detail. As a
consequence, we have obtained new results (with Q € H"(S"~!)) which extend both
of the results above. It should be noted that by introducing the oscillating factor ¢”(¥)
in the kernel, we can obtain parallel results for the fractional integral I, of (x) defined
in the abstract. Moreover, we also consider these integrals both in Triebel-Lizorkin
spaces and in weighted LP spaces, with Q € L"(S"~!) (r > 1) which does not satisfy
the mean value zero property. We divide this paper in three sections. The first section
deals with singular integrals in Triebel-Lizorkin spaces. Fractional integrals in Triebel-
Lizorkin spaces are discussed in the second section. Finally, the third section involves
fractional integrals in weighted P spaces.

1. Singular integrals in Triebel-Lizorkin spaces

We briefly review some function spaces.

The Hardy Space H"(S"~"). The Poisson kernel on $"~! is defined by P,y (x') =
(1-7)
of Schwartz distributions on $"~!. For any Q € ./(5""!), we define the radial

maximal function PTQ(x’) by PTQ(x) = sup | <Py ,Q > |, where < P, Q >
0<r<

denotes the pairing between P, and €. The Hardy space H"(S"™1), 0 < r < o0,
is the linear space of distributions Q € .&/($"~!) with the finite norm [|Q|[yr(gn—1) =

[[PFQ|[;r(gn—1) < 0. See [7-8] for more details.

, where 0 <7 < 1 and ',y € $"7!. Let ./(S""!) stand for the space

t)>

The Triebel-Lizorkin space F,?(R"). Fix a radial functlon ¢ € Z(R") such
that supp(9) C {EeR":1/2<[5]<2}, 0 < $(6) < 1, 9(8) = ¢ > 0 if

3/5< €] <5/3, and Z P2 (|€]) = 1 forall & # 0, where ¢(£) = $(2/€). Note

j_fo()
that ¢y (x) = 27" ¢(277x), x € R". For 1 < p, g < oo, s € R, the Triebel-Lizorkin
space F, 9(R") is the space of all distributions f with the norm defined by

1/q
WHF;JI(R»:) = (Z 277 ¢y *fq> < 0.

J (R

It is well known that .%(IR") is dense in F,;?(R") for s € R, 1 < p, ¢ < co. See
[20-21] for more information on this subject.
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For o > 0, we denote the following singular integrals by

_ b(lyDQ(y') .
ﬁ@j—pMA; oI f(x—y)dy,
b(ly)Q(’
mﬂ@:ggH iﬁ%%#u—w@,
- y|>€
b(IvDeh(DQ(y
Thof (x) = !EI(I) ) Wf(x)’) dy,
y|>e€

and

b(ly))e"PDQ(y")

Tharf (%, Xn41) = lim [ f (=¥, X1 — T(Iy])) dy,

e—0 [y|>e

where x,y € R", x,4; € R, and T'(|y|) is a measurable radial function defined on R".
For the rest of this paper, the letter C will denote a positive constant which may vary at
each occurence, but it is independent of the essential variables.

THEOREM 1. Let Q € H'(S" 1), 0 <r=(m—-1)/(n—14+y) <1, y > 0.
Let N denote the smallest non-negative integer such that 4(N + 1) > pyq, where

p = max{p,p/(p— 1)} and G = max{q,q/(q—1)}. Suppose that < Q,Y,, >=0
for all spherical polynomials Y,, defined on S"~' with degree m < N. Assume that
b(|y|) is a bounded measurable function on RY (= [0,00) ) such that either b(t) is
monotone on R* or b' (1) € L'(R*). Suppose that h'" (1) > Ct=P=2 forall t € (0, 00)
and for some fixed B > 0. Then we have

Thf o < CUF e

Jor B/(B+y—a) <p,g<B/(aa—y), s €R, provided that § > 2(at —y) > 0
and 0 <y < .
The above result also holds if y =0, s =0 and q = 2. That is,

‘|Th,af”p212(R»z> < CHfHF;’Z(Rn)

for B/(B—a) <p<PB/a, and f >2a > 0.
Moreover; if b(|y|) is merely a bounded function, then

1T Wlpyomy < CIUF lloe g

for 1 <p,qg<oco, seR and a0 > 0.

Proof of Theorem 1. It suffices to prove the theorem by considering Q(y’) as
an (r,00) atom a(y’) on S"~! (see [5, 7-8]). We may assume without of loss of
generality that suppa(y’) C B(1,p)(S"!, where 1 = (1,0,...,0). Consider a
family of analytic operators T defined on . (R") by

a(y')e" PVb(lyf (x — y)
|y|n+(X+Z

mm:m/ dy,

n



130 DASHAN FAN AND HUNG VIET LE

We decompose the operator T, as T.f (x) = >, Tif (x) = >, 0 * f (x), where

a(y")b([y|)e— i< ts)
6k(€):/|le2k )b (D) d

|y|n+05+z

We have the following estimates for 6;(§). O

LEMMA L. If Rz=7—a <0, 0<y < «a, then

|6(0)] < C27 (2|A L)Y 7, ()
6:(0)] < c27Mp7Y, 2)
|6(0)] < C27M(24A L)~ 2p 3)

IfRz=P/2—a+y>0and 0 <y < a, then

|6:(0)] < €27 (2MAp L) 7, 4)
6:(0)] < C27p7T. (5)

Ify=0and 0 <Rz < B/2 — o, then
|6+(8)| < Comin {2_"(0‘*&), 2"(3/2_“_%1)} : (6)

Here AyC = (0281, 08, ... p8), C.=Cy(1+2]) and C, = C/y.

Proof of Lemma 1. We will prove Lemma 1 for the case n > 3, since the proof of
the case n = 2 is essentially similar. For any fixed { € R", { # 0, choose a rotation
6 such that 0(¢) = |¢|1 = ||(1,0,...,0). For x' € §"~!, denote x' = (5,5, ..., x}).
Then we have

auf) = [ b0t [ (o7 ) dat )

where 0! is the inverse of 6. Observe that a(6~'(y’)) is again an (r,c0) atom with
supportin B({',p) (N S"!, (&' = ¢{/|¢|) since suppa(y’) C B(1,p)()S"~!. Thus

2k+1

&:() = /zk b(t)e" -z /R Fo(s)e 161 dsdr,

where F,(s) = (1 752)<”’3>/2x(,171>(s)/ a(s, (1 — s*)/25) do(5) . Note that F,(s)
n—2

-
has support in (=2r(&’), 2r(¢’)), and (') = A,C/|E| (see [5, Lemma 2.1] for
properties of F,(s)). We now consider the estimates of 6;({) in several cases.
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Casel. Rz=y—-—a<0, 0<y<a.
By the cancellation and support conditions of F,(s) we obtain inequality (1). By
a direct integration, we get inequality (2). On the other hand, we write

2k+l\C| .
600 < Cllbllac2 / - / Fo(s)e—ds| dr
2k Z| R
< C2H ML) TV Eu(0) |y < C2F (ML) VRIALL V2

= 2Rt T,

which is the desired inequality (3).
Case2. Rz=P/2—o+y>0and 0<y <«
Using the cancellation condition of F,(s) inherited from that of Q, we can write

2k+1 eih(l‘) . N i s k
a0 = [ R [ A0 {etrwvz%}m_ [ Faonoas

k=0

where I;(s) denotes the inner integral in the double integral above. We write

2k+1

he) = [ Gouea

t
where G(t) = / b(1)e" 171247 and U(r) = e~ilélr — T 0( "C‘“)
2k
that |U(¢)| < (|¢]st)V*! and |U'(2)] < |sC|VHAV.
We claim that |G(1)| < Cy(1 + |2])27% (C, = C/y) for 2F <t < 2%F1. To see
this, write

. Note

t

T T
G(t) = [ ¥ (7)b(7)dt, where ¥(7) = / eMy—lma—zgy = / gy,
2 2

ok k k
with g(v) = / ih(r >dr r<v< 1<t <240 By van der Corput’s lemma,
le(v)] < CvB+2/2 for 28 < v < 7 <t < 2M1. Integrating ¥(7) by parts yields
for 28 < 7 <t <21 [P(1)] < Cy(1 + [¢])2KP/2=a=R) = €, 27% where C, =
Cy(1+ \Z|) and C, = C/y. By applymg the hypothesis of b(¢) and by integrating G(¢)
by parts, we obtain |G(f)| < C, 27X for 2% < t < 2FF1. Recall that F,(s) has support
n (—2r({"), 2r({")), and r({’') = ApC/|L| (see [5, Lemma 2.1]). Thus integrating
I;(s) by parts yields

()] < C: 2775V < C27 @M Er(ENDYT = G2 25|A LY,

which leads to inequality (4).
Observe that we can also write 6;({) as

2k+1

&:(0) :/RFQ(S) /zk (1)1~ 1= O ~1E1) gy g = /RFa(s)Ig(s)ds.
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2k+1 t
Now write I(s) = / b(t)y'(t)dt where y(t) = / T 7420, with

2k 2k
t

¢(t) = h(zr) — 7|¢ls. Let g(7) = /2: 0y, Then y(r) = /2kg/(T)T—l—oc—sz.

Again, by van der Corput’s lemma, |g(7)| < CtF*2)/2 for 2F < © <1 < 2%, Using
integration by parts technique for the integrals w(z), Ir(s), we obtaln lw(t)| < 27k
for 28 <t < 2¢! and |L(s)] < C.27%, whence inequality (5) is obtained.

Case3. y=0and 0 < Rz < /2 — a.

It’s clear that |63(8)| < €2 X@t%) By employing similar techniques as in the
previous case, we get |6x(8)| < C.2kB/2=2=R)  These two inequalities yield the
desired inequality (6). Lemma 1 is proved. O

Let us choose a radial function ¢ € S(R”) so that suppd C {{: 1/2 < || <2},
O(ICN) <1, 9(IZ]) = ¢ > 0if 3/5 < |¢] <5/3, and Zk¢2(2"|C|) =1 forall
¢ 75 0.
Define o by ¢o(x) = 2750 (2 %x). Then ¢p () = ¢(2°¢) = $(]2¢]). Define
¥ by ¥(8) = ¢(p{). Then ¥ is also a Schwartz radial function with supp¥ C
{C:1/2<plgl <2y, 0 <W(E) < 1, W(E) = ¢ > 0if 3/5 < pl¢| < 5/3,
and ), W2(24¢]) = 1 forall § # 0. Define W, by Wi (x) = 27*"¥(2 *x). Then
Wk (x) = @ay(x) and V() = qukp(g). For f € .(R"), define the operator Sy
(k € Z) by Sif (x) = Wy * f (x). We now decompose the operator T; as follows.

I.f = Zﬁk * (ZSj+ij+kf> = ZZSk+j (01 * Seyf ) = Zij>
k J ok i
where Tif = >, Sk4j (Ok * Sk4if ) and recall that Sif = Wy * f.

Let S; be the dual operator of Si. There exists an m € Z such that 2" < p < omHl
Let ¢; be a fixed constant such that p = ¢;2", 1 < ¢; < 2. Now observe that

1/q
(Z ((2p) S} f |‘1>

J

(R
1/q 1/q
= (Z(ZJP)SS;fq> (Z 127) 756 g *f|q>
Y 1P (RN y LP(R7)
1/q
) (ZW’)‘M “f "’) 11l ™
j U’(R}l)

Thus for any g € F[;S’q, (R™), we have

| < Tif,g>|

= |/ Z Sirj (O * Sppyf ) (x)g(x)dx
R 7

= |/Rn Z (Ok * Sk ) (x)S,’(‘Hg(x)dx

k
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1/q

1/q
</Rn (Z(2k+"))“‘ffk*sk+;f<x>|‘f> <Z|<zk+fp>ss;+jg<x>|q’> dx
k

k

1/q 1/q
<Z [(2p) " o1 * Skyif (x)‘1> <Z |(2p)° St 8 (x) | )
k 1P (RM) k ' (R

Taking the supremum over all g with ||g] ‘F*”” - < 1, we obtain
»

~~—

1/q
ITf {15 0ny < (Zl (2p) " o Skyif (x)|? ) ~ (8
L7 (R")

In particular, when p = ¢ = 2, inequality (8) implies

Il < €2 | @ pr a6 0 (P

<y | @i Paopa. ©)

Dk+j

where Dyy; = {{eR":1/2< 2Mpl| <2}, If Rz = B/2—a+y > 0 and
0 < y < o, then inequalities (4), (5) and (9) imply

HT]fHFZYZ(Rn) < CZ ‘V|‘L§+Y(R”)min {27j(N+17Y)a ij}
= C Hf|\F;+y.z(Rn>min{2—J<N+1—Y>, 21'7} (10)

whenever s > 0. By duality, we also obtain inequality (10) for all s € R. Since
T.f =3, Tif , inequality (10) implies that

ITf Nlps 2y < Cellf sy for Rz =B/2—a+y >0 and 0<y <a. (11)

For the case Rz = ¥ — a < 0, we use inequalities (1), (2) and (9) to obtain the
following inequalities

HijHF“(Rn) < Cz_j(NH_Y)|V‘|p¢‘+%2(Rn) (12)
and HijHFsan 2JY|VHF5+}/ 2 gy (13)
Note that |0y * Skf (x)] < Hbl\ooZ*kyP*V/ ANV ISksif (x = )ldy, where
[y|=2
A(Y') =p’a(y’) isa (1,00) atom. By Holder’s inequality, we have
0 S (O < 2 Al [ AGIN " S1c =y
V|

and therefore
160 % Seif llg < €207 |[Sif [y (14)



134 DASHAN FAN AND HUNG VIET LE

When p = g, inequalities (8) and (14) imply

1/q
17 gy ocany < € {Z(z"“m-“f | 1ovs skﬂf(x)qu}

k

1/q
4 4 (15)
< CoY {/Rn E :(Zkﬂp)*(sﬂ/)q‘skﬂf (x)|qu}
k

< CzijfHFHy,q(Rn).

If p > g, we infer from inequality (8) that there exists a function h € L#/9'(R") with
HhH(p/q)’ = 1 such that

171 o < €3 [ 1G590) 00w St (s, (16
k
Recall that |0 * Skif (x)|9 < C27¥9p V9L (|Sksif |7) (x), where

L)@ = [ I ey

Denote L; to be the dual operator of L; and let Nyf (x) = supyz Li (If|)(x). By
the method of rotation and by the L7 boundedness of the Hardy-Littlewood maximal
function, we have |[Naf ||» < C||f ||, for 1 < p < co. Thus inequality (16) becomes

I oy < €23 [ @) L1 1) e

R7

< core /R ) {Z (25 p) TS of (x)‘f} Nah(x)dx
k

q
it

p

< Ccva

Z(ZHJP) 7(s+y)Sk+jf

k

(/9)-

Therefore ||T;f | B S C2"||f|| #57-4(gny, Which together with inequality (15)
P p

yields ,
HijHF;"’(R") < CZJY‘V|‘F;+V~q(Rn) for p = q- (17)

Now set ¢ = 2 in (17) and by duality, we obtain
HijHF;J(Rn) < C2jYHfHF-;+y12(Rn> for 1<p<oo, j€Z. (18)

Interpolating between (12)-(13) and (18) for a fixed ¢ = 2 (see [21, p. 185])
yields

1T 1s2any < C27IF [ (19)
and HijHFsan ZJVWHFHMW) (20)
where 6 = (2(N + 1) — yp)/p > 0.
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Recall that .(R") is dense in F,?(R") for s € R, 1 < p, g < oo. Thus we
may view the tempered distribution f as a Schwartz function f € . (R") and apply
Riesz-Thorin interpolation theory (for a fixed ¢ ) to obtain the same results above.

Interpolating (19)-(20) and (17) yields

\|TJ\|@1q(R»z) < C2_5|j||V‘|F;+Vﬁq(Rn) (21)

for 1 < g<p<oo,and § = min{y, (4(N+1)—vpG)/pg)} > 0. Since T,f =
> Tif , we infer from inequality (21) that

HTszF;;“’(RH) < CWHF;*%‘f(Rn) (22)

for 1 < g < p < oo, and by duality we obtain (22) for 1 < p,g < oo, s € R. Finally,
an application of complex interpolation between (11) and (22) yields

i gy < U lggoraen (23)

for B/(B+vy—oa) <p,g<B/(ax—y), s €R, providedthat /2> o« —y > 0 and
O<y<a.

We now consider the case ¥ = 0. Recall the Schwartz functions ¢ and ¢« defined
earlier. We change the definition of ¥ (which was defined earlier) by redefining ¥
as ¥(¢) = 0(A,8), where again Ap¢ = (0*C1, 08, ..., pG,). We then define Wy by
W (x) = 275¥(27kx). Let Sif = W +f, and let S; denote the dual operator of Sy.
Now observe that for ¢ = 2 and s = 0, we have

H(Z ISef 1)Y? H(Z |Sif |21/
k k 1P (R")

H(Z [+ f[)'?
k LP(RM)

Ilf ||rny (by Littlewood-Paley theory)

Il

1P (RN

1

1%

Hf ‘ |F2"2(R")

H(Zm s f )12
k

1%

LP (R")

That is, the identity (7) remains valid for our new operator Sy if ¢ =2 and s = 0.
Now for 0 < Rz < B/2 — o, we use the fact that T.f = >, 0y *f and inequality
(6) to obtain HTZfHFO"Z(R") < CZWHFo,z(Rn). Note that this inequality is the same as

2 2

inequality (11) with s = 0 and y = 0. By applying inequalities (1) and (3), we obtain
HijHFgZ(Rn) < szijHpg«Z(Rn) and

1T 1102 ny < C2P2IIF 1102 -
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Note again that the two inequalities above are similar to the inequalities (12) and
(13) with s = 0 and y = 0. Thus if we run parallel arguments as in the previous case
in which y > 0, we obtain inequality (23) for s = 0, ¥ = 0, and ¢ = 2. That is,
|‘Th7af‘|F2’z(R") < C|VHF2"2(R") for B/(B — o) < p < B/, provided that 8 > 2a.
It remains to show the boundedness of T,f in Triebel-Lizorkin spaces. Note that the
oscillating factor (™) in T.f is not essentially involved in the proof of the case
Rz =y — oo < 0. Also, the proof of this case only requires the function b(|y|) to be
bounded. Thus, the result follows from inequality (22) with y = o and Tof = Tof
with z = 0. That is, HTcfoF;‘;‘i(Rn) < CH]CHF;;erq(Rn) for 1 <p,qg< oo, s €R and
o > 0. The proof of Theorem 1 is complete. [

REMARK 1. If I'([y|) is a C! increasing function on its compact support and if
I(¢) is increasing on its support, then

HTh,a,FfHLP(F;;"’(Rﬂ),R) < C|v‘|y’(F;+y’q(R"),R)

for B/(B+y—o) <p,qg<PB/(ax—7v), s €R, providedthat § > 2(ot —7y) > 0 and
0 <7y < a. Also,

Therf |l @eery < ClF || @eeny
for B/(B—a) < p < B/a, with § > 2a > 0.

The proof of the above results is similar to the proof of Theorem 1, with some
slight modifications. For instance, Sif (x) in the proof of Theorem 1 should be replaced
by Sif (x,%441) = (Wor @ 8) * f (x,x,41), where & is the Dirac distribution acting on
the variable x,.1 € R.

Note also that 6;(¢, §,11) = /

y| 222k

By the same integration te(‘:h‘niques as in the proof of Theorem 1 (with b(]y|) being
replaced by b(|y|)e~"s+1T (1)) and by the hypothesis of T'(|y|), we see that & (¢, &,11)
also satisfies inequalities (1)-(6) in Lemma 1, with the constants that are independent
of &1 (see [12, Lemma 1]). Also, the two dimensional maximal function

a(y")b(|y|)e=ve & T(Iy]) gih(1y1)
|y|rtote Ve

2k+1
Mrf(xl,xz) —sup{ ! [f(x1 t,xZF(I))dI}

kEZ 2k 2k

is bounded in L7 (R?) for all p > 1 (see [14, Corollary 1]). This result together with
the method of rotation imply that Naf (x,x,.1) is bounded in 17 (R"!) forall p > 1,
where Naf (x,X,+1) is obviously defined in a similar manner as N,f (x) in the proof of
Theorem 1.

If Q(y') € H'(S"™!), then the condition that T'(|y|) has compact support can be
relaxed. We state the following theorem.

THEOREM 2. Let Q(y') € H'(S"~') with the mean value zero property and let
b(|y|) be given as in Theorem 1. Suppose that h'(t) is increasing on (0,00), h"(t)
is decreasing on (0,00) with |W"(f)] > CtP=2 and |h®)(1)| > Ct~P=3 for all
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t € (0,00) and some B >0, B > 3a > 0. If T, T', and T are increasing on
(0,00) with T'(0) =0 =T7(0), then

| Thorf lp ety < CHf |lp ey
for 2B/(2B —3a) <p <2B/3a, with B > 300 > 0.

Proof of Theorem 2. From remark 1, it suffices to show that the two dimensional
maximal function Mrf (x1,x2) is bounded in 17(R?) forall p > 1, and

166(8, Gu1)| < Cmin(|2°A,¢], 12°4,4]7/%) when Rz = —a <0,

and |6(&, §ui1)| < C uniformly for all (&, §,41) € R*™ when 0 < Rz < 8/3 — a.

a(y/)b(‘y‘)efic-_ve*iCnHr(D’\)eih(|.V|>
‘y‘nJrOchZ

Here 6(&, 1) =

R}l
Mrf (x1,x2), see [10, Corollary 5.3]. The first estimate of |6;(, §,11)| is easily
obtained by the same techniques as in the proof of inequalities (1) and (3) in Lemma 1.
It remains to prove the second estimate of |6x(, {,+1)|. We write

ot e = |

R

dy. For the I’ bounds of

Fu(s) / b(1)e 1= drds = / F.(s)I3(s)ds,
R R

where ¢(t) = fmlts — G I(2) + A(r).

Denote Ix(s) = / .dt +/ odt = Ii(s) + Is(s). Ttis clear that Is(s) < C if 0 <
1

0
t

Rz < B/3—a. Now write I4(s) = / b(t)G'(t)dt, where G(t) = / PAICE it 2
0

0

If §1 < 0, then ¢"(r) = H'(r) — &I (r) = K'(r) > Cr P2 > Ccr P2
for 0 < r < 7 <t < 1. By van der Corput’s lemma, |G(7)| < CtB+2/2 for
0<t<t< 1 If &y >0, then |93 (r)] = [BO(r)| = Cr F=3 > CtP3 for
0<r<t<t< 1 Hence, |G(1)| < CtPH3)/3 for 0 < 7 <t < 1. In either case,
|G(1)| < CtB+3)/3 for 0 < T < ¢ < 1. Finally, by integrating by parts, we obtain
|I4(s)| < C, and consequently |&(C, §,+1)| < C uniformly for all (&, §,v1) € R*™,
with 0 < Rz < /3 — a. Theorem 2 is proved. [

THEOREM 3. Consider the singular integral Ty, o defined in Theorem 1, but with
Qe L' (8" 1) (r>1), and Q needs not satisfy the cancellation condition. Then

1 Thof | sr-aemy < ClIF [z ()

for B/(B—a—v) <p,g<B/la+y), ss=s —y(f—-2a-2y)/B, s1 €R,
provided that B > 2(a+7y), oo >0, 0<y <2/(rpg), and ¥ is the conjugate of r.

Proof of Theorem 3. The proof of this theorem is essentially similar to the proof of
Theorem 1. Recall the analytic operator T;f defined in Theorem 1. We need to prove
the following inequalities.

HTszLZ(Rn><CZHfHL2(Rn> when Rz=p/2—o—y >0, and (24)
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HTszF;;‘i(Rn) < C‘VHF.’V)—y,q(RH) for 1<p,g<oo,s€R, (25)
when Rz = -y —a < 0.
Observe that if Rz = /2 — a —y > 0, then |6¢(¢)| < C.min {2, 2=KB2-1)}
On the other hand, if Rz = —y — o < 0, then [8¢({)| < Cmin {2/, 2"3’(2’“\@'\)*5}
where 0 < § < 1/27 and % + ri, = 1. Therefore, it is straightforward to see that

inequalities (24)-(25) hold. Finally, an application of interpolation yields the desired
result. Theorem 3 is proved. [

2. Fractional integrals in Triebel-Lizorkin spaces

We denote the following fractional integrals by

1) = [ PP y)as

DOy
hat ) = [ 2R )0y

and

b(|y])e™PhQ(y

bt (o) = [ PRy~ T 0y
R)'l

where x,y € R", x € R, and I'(Jy|) is a measurable radial function defined on R".

THEOREM 4. Let b(|y|) be given as in Theorem 1. Assume that |h"(t)| > Ct#~—2
forall t >0 and some 8 > 0.
If Q is given as in Theorem 1, then

Ve s gy < IVl gsonzn

Jor B/(B—v—a) <p, g <B/(a+y), s €R, provided that B > 2(ct +y) and
vy > 0. Moreover, if y =0 and B > 20 > 0, then

|‘Ih,af|‘F;~Z(Rn) < CWHﬁf}Z(Rn)

for B/(B—a) <p< B/
On the other hand, if Q € L' (S"™Y) (r > 1) without satisfying the cancellation
condition, then

o Ws-aggny < CIF 2o ny

Jor (B—4y)/(B—a—=3y) <p,g<(B-4y)/(a-7v), s =5 —y(B—20—
2y)/(B—4y), s1 € R, providedthat B >2(a+vy), a >y >0, 0<y <2/(Fpg),
and 1’ is the conjugate of r. Also, if b(|y|) is merely a bounded function, then

M g acany < I

for 1 <p,q<ooand s €R.
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Proof of Theorem 4. We consider a family of analytic operators I, defined by

() .
176) = [ SO ),

|y|n—06+z

Since the proof of this theorem is analogous to the proof of Theorem 1, we will
outline some necessary steps in this proof, and omit the details. If Q € H"(S"~1), then
we must show that

\|sz\|F;q(Rn) < C|V‘|F“’r)+y.q<R,1> for1 <p,g<oo,scR,y>0 (26)
and RNz = y+o.

lefHF;,z(Rn) < CHfHF%zmn) for1 <p <oo,fz=a, and y =0. (27)

lepr;?(Rn) < CszHF;*“(Rn) for Rz=y+ o —pB/2<0andy > 0. (28)

HIZfHFg.z(R,,) < CZHfHFg.z(R,,) for Rz=o0 —pf/2<0andy =0. (29)

If Qe L'(S""!) (r>1) instead of Q € H'(S""!), then we need to prove the
following inequalities
1 Wy oy < Cllf llps—roaggmy for 1 <p g < 00,5 €R,0<y < (30)
and Rz=a -7y >0,
and HIZfHFgAz(Rn) < CZHfHFgAz(R,,) for Re=0+y - B/2<0. (31)

Note also that by setting y = o (i.e., &z = 0) in inequality (30), we will obtain the
results for the fractional integral I,f. Theorem 4 is proved. [

REMARK 2. If Q € H"(S""!) and T satisfies the same conditions mentioned in
Remark 1, then

for B/(B—vy —a) <p,qg<PB/(a+y), s€R, provided that § > 2(a + ) and
y > 0. Also,

\|Ih,a,FfHu’(F;~"(Rn),R) < CWHU(F;WW(W)R)

ITh,orf || ry < ClIf || mniny
for B/(B—a) < p < B/a, with § > 2a > 0.
3. Fractional integrals in weighted 7 spaces

We now consider fractional integrals in weighted LP spaces with the special case
h(y]) = ¢’ Thatis,

lagf () = | Q1" f (e )y

where o, 8 > 0. A quick review of the elementary properties of A, weights can be
found in [18]. For the rest of this paper, Q € L'(S""!), 1 < r < oo, and Q needs
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not satisfy the mean value zero property. We denote r’ to be the conjugate of r, i.e.,

1 1

—+— = 1. Weconsidertwo cases: § =1, and § > 0, B # 1. We have the following
r s

results.

THEOREM 5. Let Q € L'(S"™ "), r>1, 0< a < 1/r, B=1. Then
apf llp < ClIfllp for 2/(2— ar’) < p <2/ (ar’).

Moreover, if 1 <r <2, 0<a<2/(r), and w(x) is a positive function in Ay,
p >, then

e pf ||r(rax) < ClIf ip(wiav) for ¥ <p<2/(ar)and 0 <t<1—oar'p/2.

Proof of Theorem 5. We write I, gf (x) = /

...dy+/ dy = Iif (x) +
IyI<1 [y[>1

Jof (x). Observe that

W llp < ClIQ L s [If [l for 1 < p < oo (32)

Now write Jof (x) = -5 Iif (x), where [Iif (x) = / QOY)|y|*"eIf (x — y) dy.
y|=2
By taking the Fourier transform of Iif (x), we have I:f\ (&) = mi(O)f (), where

'MQ—/QWUa%”eW@Lm
y

F0) = (1= 00) [ 90,1 )'%5) do(s)

and note that / [F(s)|ds < [|Q|[(sn—1)- We then have m;({) = /F(s)Nj(s\C\)ds,
R R

2 ,
where N;(u) = 2j0‘/ e =g 1 £ < 1/2, then |u| = |s¢| < 1/2 since
1

|s| < 1. By van der Corput’s lemma, |N;(x)| < C2/(*~1). Therefore,
m(£)] < 2@ / [F(s)|ds < C2*V|Q gy < €27V, ] < 172, (33)
R

If |£] > 1/2, we write

21'+1 ' ' 2j+1\§| o
m;(§) = / * et (/ F(s)e_”glsds> dr = |C|_°‘/ 121 R () .
2 R 2l

Thus by Holder’s inequality and by Hausdorff-Young’s inequality, we obtain

Im; ()] < CIEI=* @SN |E|]w < CIE 7 2 Q] i

- (34)
=11 > 1)2.

<C
<C
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Combining inequalities (33)and (34) yields

Imi(0)] < C2@=1") forall £ € R”. (35)
By Plancherel’s Theorem, we have
121l < €2 OIf o (36)
It is obvious that
11l < C2*1R1 (s If I (37)
1l < C2¥|R1s g1 IIf 1o (38)

Interpolating (36)-(37) and (36)-(38) yields for 2/(2 — ar’) < p < 2/(or'),
(o2
11£ |1, < €27 |f|],, where 0 < & < 2/(/p) and p = max {p,p'} . (39)

Therefore ||J5f ||, < Z Lf 11, < ClIf |l for 2/(2 —ar’) <p <2/(ar’). (40)

Combining (32) and (40) yields
opf llp < ClIf [l for 2/(2 — ar') < p < 2/(ar'). (41)
Now suppose 0 < o < 2/(+*) and w € A,/v, p > r'. Note that

. / l/r/
1 ()] < C21 @[y (MOT)))
where Mf (x) is the Hardy-Littlewood maximal function. Thus we have for p > r/,

) jo 1/ jo 1/ _ i
15 lpwae < C2IMG N0 o < CHNP N = Ol oy (42)
For ' < p < 2/(ar’), we interpolate between (39) and (42) with the same p
but change of measures (see [19]) to obtain ||If || (wrary < C27¥||f [|1r(wrar), Where

s = —a =20 — o >0, provided that 0 < ¢ < 1 — ar’p/2. Thus

12f (o) < D Ml oran < CIIF (@),
pn (43)

O<t<l—oarp/2, ¥<p<2/(ar).

Now write Jyf (x) = Z]Q:—ooljf (x), where If (x) = / » Y%7 )Pl (x — y) dy.
Recall from inequality (42) that ||Lf || (wax) < C2j°‘|{|;lﬂy)(wdx> for p > r’. Therefore
1S [|2r (war) < ZO_OO I1Lf || (0ax) < C|If |17 (wax)- In particular,
I | (wiar) < ClIf [|p(arax) for ¥ <p <2/(cr’) and 0 <t <1 —our'p/2. (44)
Combining the inequalities (43) and (44) yields
IHopf |p(wiax) < ClIf |]r(wrax) (45)

for ' <p<2/(ar), 0<t<1—arp/2and o € A,/ The proof of Theorem 5 is
complete. [J
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COROLLARY 5.1. Let Q € L'(S"), 1 <r <2, 0< <2/ and B =1.If
601/(17[)) EAp//r/7 2/(2* OCI‘/) <p<w, then HI ,ﬁf”l}’ o'dx) < C|V‘|U(w’dx) fOI‘O <
t<1—oar'p'/2.

Proof of Corollary 5.1. Denote I, 5 to be the dual of Iog. For f € L(w'dx),

g€ Lpf(wt/(lfp)dx) with HgHLv’(wf/U*P)dx) < 1, we have

(x)1 pg(x) dx

(o rearoros )W ([ epstor’ o imyax) .

< Clf | wiax |18l (@/0-Pay) S ClIf e (@)

[ tanf Wgto)

N

where the first inequality follows from Holder’s inequality and the second inequality

follows from Theorem 5. Now let g run over the unit ball of 74 (0'/1=P)dx), we obtain
the result. Corollary 5.1 is proved [J

COROLLARY 5.2. Let Q € L'(S"1), 1 <r <2 0<a<?2// B=1,
2/2—ar')<po<r, ¥ <pi<2/(ar'), and @ € Ay, ). Then

2o 8 1225 (0r1a) < CIF s (1)

PoP1 . Ipos

—_— )= —— 0<s<1l,and r € (0,1 —
(=)o + pos (T 5)pr + pos (

where ps =
ar'py/2).

Proof of Corollary 5.2. By interpolating between (41) and (45) with change of
measures (see [1, p.119]), we obtain the above result. [J

COROLLARY 5.3. Let Q € L'(S"™ 1), r>n/(n— ), 0 < a < 1/r, B =1,
r <pi<nja, 1/q =1/p, — a/n. Suppose ®(x) >0 and v(x) = 0" (x) satisfies
inequality (1.1) in [15], i.e.,

(o) G e o

where C is independent of the n-dimensional cube Q, 1 <p <n/y, 0 <y < n, and

1/q = 1/p—v/n. Thenfor 2 < p; < p1, we have ||[Io.gf || 145 (wassax) < Cl|f ||1rs (wpssax)
2p) 2q,

(1 —s)p1 + 2s (1 —5)g; +2s

Proof of Corollary 5.3. Write Iopf (x) = > ,Iif (x), and by taking the Fourier

where 0 < s <1, p; = ,and q; =

transform, we obtain I/E(C) = mj(C)fA(C), with m;(§) = / _ \y\“—"Q(y/)e"b"e_ig-ydy.

Iyl=

If j < 0, thenitis clear that |m;({)] < C2%. If j > 0, then recall from inequality (35)
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that |m;(&)| < C2@=1") Thus |m;(¢)| < €271, where & = min {a, 1/r — a} >
0. It follows from Plancherel’s Theorem that

15 112 < €272V]|f I (47)

Observe that

)] < 2° / IR (x— )| dy

|y[=2

l/r'
1/r —n -
< e @l </|| G =) dy> .
y%

Thus

’ 1 /
W < c—/ F (e — )l dy
N

< C; (y = ar), (48)

* 1 ~ / ~ /
where f —jlelg{m/lylgy[f(x—y)|dy}.Letp—pl/r, G=q/7. Then

1 <p<n/yand 1/ = 1/p—y/n, where y = ar’. For v(x) = o (x) which
satisfies inequality (46), we have

( 1;f<x>|41wa<x>dx)//ql = Jwrey|, . <cley
- L4 (vidy)

, 1
<l s =€ ([ reoponar)

where the first inequality follows from (48) and the second inequality follows from [15,
Theorem 3]. It follows that

HlijL‘“ (wdrdx) < CHf‘HU’I (wPrdx) - (49)
Interpolating between (47) and (49) with change of measures (see [1, p.119]), we get

|7 2p)
I; s (wassay) < €209l s (wpssdy), Where 0 1, py= —7——,
|1Zif ()] 295 (wassav) |[f 1225 (opssax), where 0 < s <1, p (s)piiss

1/q1 = 1/p1 — a/n, and ¥ < p; < n/a. Consequently,

L9(vidx)

q = L
Y (1—s)q1+2s’

e | a5 (wssar) < Z ILf ()| 295 (wassary < CIIf [1ps (@pssax) -
J

Corollary 5.3 is proved. O

By interpolating between (41) and the results of [9, Theorem 1] and [9, Theorem
2] respectively, we obtain the following corollaries.
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COROLLARY 5.4. Let Q € L'(S"™ "), r>n/(n—a), 0 < a < 1/, B =1,
2/(2—ar) < po < 2/(ar), ¥ <p <nja, 1/q = 1/p; —a/n, and w' €
Api/r qujr)- Then
Lo f 1195 (wassaxy < CIf || ps (pssar)

pob1 , and g; = Poq1 _

(L —s)p1 + pos (1 —s)gq1 + pos

COROLLARY 5.5. Let Q € L'(S" ), r> 1, 0<a < 1/F, B=1, 2/(2—
ar') < po < 2/(ar), 1 <pi <nr/in+ar), 1/q = 1/pi — a/n, and w™" €
Atgt/r i) Then

where 0 < s < 1, ps =

Lo af 1295 (wassaxy < CIf || ps (pssar)

PoP1 Doq1
(1 —s)p1 + pos (1 —5)q1 + pos
We now consider the case § > 0, § # 1.

THEOREM 6. Suppose Q € L'(S"™1). If B > 20 > 0, B # 1, then

epf |lp < ClIf [Ip for B/(B— o) <p < B/
Moreover, if Q € L'(S"™"), B/(B—0o) <r<2,and @ €A,,, p> 1, then

where 0 < s < 1, p; = ,and gy =

e | @ta) < Cllf | (orav) for ¥ <p < B/o, and 0 <t <1—ap/p.

Proof of Theorem 6. The proof of this theorem is similar to the proof of Theorem
5. We write ogf (x) = / ...dy+/ dy = I () + Iof (x).
yI<1 [y|>1
Then HJLpr ClIQ|[ s [If |]p for 1 < p < oo. Now write Jof (x) = 355 Iif (x),
with ij(C) = mi($)f ({). Note that

m©) = [ el ey = | P olg s

2 .
with Nj(u) = 2% 1212 (=) gy By van de Corput’s lemma, we obtain |N;(u)| <

1
C27/B/2=% and thus |m;({)| < C||Q| L1127 F/>=%) By Plancherel’s Theorem,
we have

1L || < C277 2= |f ). (50)

Also it is clear that ‘
1L 111 < C2%[|f |1, and (51)
£ |loo < C2%If oo (52)

Interpolating between (50)-(51) and (50)-(52), we obtain

15 |l, < 2P| r ||, (53)
where p = max {p,p’'},and o < B/p,if B/(B—a) <p < B/a.
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Thus [af 1, < 3355 11y < CIIFl], for /(B — &) < p < B/ex. Therefore.

o pf Nlp <Nfllp + [Vaf llp < ClIf[lp, B/(B—a) <p<B/o.

Now suppose Q € L'(S" 1), B/(B—a) <r<2, B>2a>0,and B # 1.
From the proof of Theorem 5, we have for w € A,,,/, (p > '),

1L |1 (0ax) < CZjaWHU’(wdx)7 JEZ. (54)

0
Thus [|1if (i < Y [1If (i) < Clf llr@a  forp>r.  (55)
j=—o00
By interpolating between (53) and (54) with the same p but with change of measures,
we obtain for ¥ < p < f/a,

IS |7 (wrax) < C277°|f [|r (wiax)» (56)
where 6 = (1 —1)B/p—a > 0if 0 <t < 1 — ap/B. Hence, ||of [|p(wiar) <
2o M I (wraxy < Cllf || @ran for ¥ <p <B/a, 0<t<1-ap/p.

Recall from (55) that ||J1f |[1p(wax) < ClIf || (wax) for p > 7.

In particular, ||J1f || (wtax) < ClIf ||p(wiax) for ¥ <p <B/a, 0 <t <1—ap/B.
Consequently, ||Iogf || (wayy < ClIf [lp(wiar) for ¥ < p < B/a, 0 <t <

1 — ap/B. The proof of Theorem 6 is complete. [J

COROLLARY 6.1. Let Q € L'(S"7Y), B/(B—a)<r<2, f>20>0, f#1.
If '/(=p) ¢ Apryps B/(B—a) <p<r, then

o pf |1 (wax) < ClIf ||p(arax) for 0 <t <1—op’/B.

COROLLARY 6.2. Let Q € L'(S"7Y), B/(B—a)<r<2, B>20>0, B+#1,
B/(B—o)<po<r, ¥ <pi<B/a, and o € A, . Then
e, s (wrany < CUF ps (i) s
PopP1 IDoS

here py = —PPL____ = PY 1, and t € (0,1 —
where p, =)o +pos r(s) =5 T pos <s<l,andt € (
api/B).

COROLLARY 6.3. Let Q€ L'(S" 1), r>n/(n—a), 0<a <n, B>2a>0,
B#1, ¥ <p <n/a,and 1/q1 = 1/p1 — a/n. Suppose w(x) > 0 and v(x) =
w” (x) satisfies inequality (1.1) in [15], i.e.,

(é /Q v"(x)dx) " (é /Q v_p/(x)dx)l/pl <c (57)

where C is independent of the n-dimensional cube Q, 1 <p <n/y, 0 <y < n, and
1/q=1/p —v/n. Then for 2 < p; < p1, we have

e, |95 (wassax) < CIIf [1rs (@pssan)s

2p; 2q:

here 0 <s<1, py= —P1 __ and gy = —=I1
wiere y P (1 —s)py +2s aned (1 —s)g1 +2s
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COROLLARY 6.4. Let Q € L'(S"™ ), r>n/(n—a), 0< o <n, f>2a>0,
B#1, 2/2—ar) <py<2/(ar), ¥ <p1 <n/a, 1/q1 = 1/p1 — a/n, and
Wr/ EA(I?l/r’,th/r')' Then

‘ |I(X:ﬁf | ‘qu (w9sSdx) g C| V ‘ |LI’S (wPssdx) s

PoP1 Poq1
(1 = s)p1 + pos (1 —=5)q1 + pos

COROLLARY 6.5. Let Q € L'(S"™ 1), r>1, 0<a<n, B>2a>0, B#1,
2/2—ar') < py <2/(ar), 1 <py <nr/(n+ ar), 1/q1 = 1/p1 — a/n, and
Wﬁr S A(qi/r’,p{/r’)' Then

where 0 < s < 1, p; = , and gy =

‘ |I(X:ﬁf | ‘qu (w9sSdx) g C| V ‘ |LI’S (wPssdx) s

poP1 d gy = Poqi1
(1 —=s)p1 +pos’ T

1 —5)q1 +pos
Since the proof of Corollaries (6.1)-(6.5) is similar to the proof of Corollaries
(5.1)-(5.5) respectively, we omit the proof of these corollaries.

where 0 < s <1, p; =

REMARK 3. Consider the hypersingular integral

Tupf (8) =lim [ QO™ £ (x — y)dy.

e—0 [y|>e

If B>20 >0, 1, then all the results in Theorem 6 and Corollaries 6.1-6.2 also
apply to this integral T gf (x).
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