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Abstract. We study the hypersingular integral

Th,α f (x) = lim
ε→0

∫
|y|>ε

b(|y|)eih(|y|)Ω(y′)
|y|n+α f (x − y) dy

and the fractional integral

Ih,α f (x) =
∫
Rn

b(|y|)eih(|y|)Ω(y′)
|y|n−α f (x − y) dy

in Triebel-Lizorkin spaces and weighted Lp spaces. Here Ω ∈ Hr(Sn−1), and b(|y|) and
h(|y|) are measurable radial functions which satisfy some suitable conditions. We also consider
the above integrals along some surfaces of revolution. The results in this paper extend some
known results about hypersingular integrals and fractional integrals.

Introduction

The subject of singular integral operators is well known for many years. It is
initially pioneered by Calderón and Zygmund (see [2, 3]), and is subsequently studied
by many other authors. For instance, the reader may view [4-6, 10-11, 16-18] among
many other references for a good survey. In this note, we are particularly interested in
some variations of singular integrals, i.e., fractional integrals and singular integrals that
are strongly singular at infinity and at the origin respectively. Recently the authors in
[4] proved that the singular integral operator

Tα f (x) = lim
ε→0

∫
|y|>ε

b(|y|)Ω(y′)
|y|n+α f (x − y) dy

(
Ω ∈ Hr(Sn−1), r = (n − 1)/(n − 1 + α), α > 0

)
is a bounded map from Ḟs+α, q

p (Rn) to Ḟs, q
p (Rn) for s ∈ R, 1 < p, q < ∞, where

Ḟs, q
p (Rn) is the Triebel-Lizorkin space. By introducing an oscillating factor ei|y|−β

in
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the kernel of the singular integral (that is motivated by the Bochner-Riesz means), the
author in [12-13] showed that the singular integral operator along surface

TΓ,α f (x, xn+1) = lim
ε→0

∫
|y|>ε

b(|y|)ei|y|−β
Ω(y′)

|y|n+α f (x − y, xn+1 − Γ(|y|)) dy

(Ω ∈ H1(Sn−1))

is bounded in Lp(Rn+1) for β/(β − α) < p < β/α, β > 2α > 0.
These two results motivated us to investigate this subject in further detail. As a

consequence, we have obtained new results (with Ω ∈ Hr(Sn−1) ) which extend both
of the results above. It should be noted that by introducing the oscillating factor eih(|y|)

in the kernel, we can obtain parallel results for the fractional integral Ih,α f (x) defined
in the abstract. Moreover, we also consider these integrals both in Triebel-Lizorkin
spaces and in weighted Lp spaces, with Ω ∈ Lr(Sn−1) (r � 1) which does not satisfy
the mean value zero property. We divide this paper in three sections. The first section
deals with singular integrals in Triebel-Lizorkin spaces. Fractional integrals in Triebel-
Lizorkin spaces are discussed in the second section. Finally, the third section involves
fractional integrals in weighted Lp spaces.

1. Singular integrals in Triebel-Lizorkin spaces

We briefly review some function spaces.

The Hardy Space Hr(Sn−1). The Poisson kernel on Sn−1 is defined by Pty′(x′) =
(1 − t2)
|ty′ − x′|n , where 0 � t < 1 and x′, y′ ∈ Sn−1. Let S ′(Sn−1) stand for the space

of Schwartz distributions on Sn−1 . For any Ω ∈ S ′(Sn−1), we define the radial
maximal function P+Ω(x′) by P+Ω(x′) = sup

0�t<1
| < Pty′ ,Ω > | , where < Pty′ ,Ω >

denotes the pairing between Pty′ and Ω. The Hardy space Hr(Sn−1) , 0 < r < ∞ ,
is the linear space of distributions Ω ∈ S ′(Sn−1) with the finite norm ||Ω||Hr(Sn−1) =
||P+Ω||Lr(Sn−1) < ∞. See [7-8] for more details.

The Triebel-Lizorkin space Ḟs, q
p (Rn). Fix a radial function φ ∈ S (Rn) such

that supp(φ̂) ⊂ {ξ ∈ R
n : 1/2 � |ξ | � 2} , 0 � φ̂(ξ) � 1, φ̂(ξ) � c > 0 if

3/5 � |ξ | � 5/3, and
∞∑

j=−∞
φ̂2

2j(|ξ |) = 1 for all ξ �= 0, where φ̂2j(ξ) = φ̂(2jξ). Note

that φ2j(x) = 2−jn φ(2−jx), x ∈ R
n. For 1 < p, q < ∞, s ∈ R, the Triebel-Lizorkin

space Ḟs, q
p (Rn) is the space of all distributions f with the norm defined by

||f ||Ḟs, q
p (Rn) =

∥∥∥∥∥∥
(∑

j

|2−jsφ2j ∗ f |q
)1/q

∥∥∥∥∥∥
Lp(Rn)

< ∞.

It is well known that S (Rn) is dense in Ḟs, q
p (Rn) for s ∈ R, 1 < p, q < ∞. See

[20-21] for more information on this subject.
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For α > 0, we denote the following singular integrals by

Tf (x) = p.v.
∫

Rn

b(|y|)Ω(y′)
|y|n f (x − y) dy,

Tα f (x) = lim
ε→0

∫
|y|>ε

b(|y|)Ω(y′)
|y|n+α f (x − y) dy,

Th,α f (x) = lim
ε→0

∫
|y|>ε

b(|y|)eih(|y|)Ω(y′)
|y|n+α f (x − y) dy,

and

Th,α,Γf (x, xn+1) = lim
ε→0

∫
|y|>ε

b(|y|)eih(|y|)Ω(y′)
|y|n+α f (x − y, xn+1 − Γ(|y|)) dy,

where x, y ∈ R
n, xn+1 ∈ R, and Γ(|y|) is a measurable radial function defined on R

n.
For the rest of this paper, the letter C will denote a positive constant which may vary at
each occurence, but it is independent of the essential variables.

THEOREM 1. Let Ω ∈ Hr(Sn−1), 0 < r = (n − 1)/(n − 1 + γ ) � 1, γ � 0.
Let N denote the smallest non-negative integer such that 4(N + 1) > p̃γ q̃, where
p̃ = max {p, p/(p − 1)} and q̃ = max {q, q/(q− 1)} . Suppose that < Ω, Ym >= 0
for all spherical polynomials Ym defined on Sn−1 with degree m � N. Assume that
b(|y|) is a bounded measurable function on R

+ (= [0,∞) ) such that either b(t) is
monotone on R

+ or b′(t) ∈ L1(R+). Suppose that h′′(t) � Ct−β−2 for all t ∈ (0,∞)
and for some fixed β > 0. Then we have

||Th,α f ||Ḟs, q
p (Rn) � C||f ||Ḟs+γ , q

p (Rn)

for β/(β + γ − α) < p, q < β/(α − γ ), s ∈ R, provided that β > 2(α − γ ) � 0
and 0 < γ � α.
The above result also holds if γ = 0, s = 0 and q = 2. That is,

||Th,α f ||Ḟ0, 2
p (Rn) � C||f ||Ḟ0, 2

p (Rn)

for β/(β − α) < p < β/α, and β > 2α > 0.
Moreover, if b(|y|) is merely a bounded function, then

||Tα f ||Ḟs, q
p (Rn) � C||f ||Ḟs+α, q

p (Rn)

for 1 < p, q < ∞ , s ∈ R and α > 0.

Proof of Theorem 1. It suffices to prove the theorem by considering Ω(y′) as
an (r,∞) atom a(y′) on Sn−1 (see [5, 7-8]). We may assume without of loss of
generality that suppa(y′) ⊂ B(1, ρ)

⋂
Sn−1, where 1 = (1, 0, ..., 0). Consider a

family of analytic operators Tz defined on S (Rn) by

Tzf (x) = p.v.
∫

Rn

a(y′)eih(|y|)b(|y|)f (x − y)
|y|n+α+z

dy.
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We decompose the operator Tz as Tzf (x) =
∑

k Tkf (x) ≡∑k σk ∗ f (x) , where

σ̂k(ζ) =
∫
|y|∼=2k

a(y′)b(|y|)e−iζ ·yeih(|y|)

|y|n+α+z
dy.

We have the following estimates for σ̂k(ζ). �

LEMMA 1. If �z = γ − α � 0, 0 � γ � α, then

|σ̂k(ζ)| � C2−kγ (2k|Aρζ |)N+1ρ−γ , (1)

|σ̂k(ζ)| � C2−kγ ρ−γ , (2)

|σ̂k(ζ)| � C2−kγ (2k|Aρζ |)−1/2ρ−γ . (3)

If �z = β/2 − α + γ > 0 and 0 < γ � α, then

|σ̂k(ζ)| � Cz2
−kγ (2k|Aρζ |)N+1ρ−γ , (4)

|σ̂k(ζ)| � Cz2
−kγ ρ−γ . (5)

If γ = 0 and 0 < �z < β/2 − α , then

|σ̂k(ζ)| � Czmin
{

2−k(α+�z), 2k(β/2−α−�z)
}

. (6)

Here Aρζ = (ρ2ζ1, ρζ2, ..., ρζn), Cz = Cγ (1 + |z|) and Cγ = C/γ .

Proof of Lemma 1. We will prove Lemma 1 for the case n � 3, since the proof of
the case n = 2 is essentially similar. For any fixed ζ ∈ R

n, ζ �= 0, choose a rotation
θ such that θ(ζ) = |ζ |1 = |ζ |(1, 0, ..., 0). For x′ ∈ Sn−1, denote x′ = (s, x′2, ..., x

′
n).

Then we have

σ̂k(ζ) =
∫ 2k+1

2k
b(t)eih(t)t−1−α−z

∫
Sn−1

a(θ−1(y′))e−i|ζ |ts dσ(y′)dt,

where θ−1 is the inverse of θ. Observe that a(θ−1(y′)) is again an (r,∞) atom with
support in B(ζ ′, ρ)

⋂
Sn−1, (ζ ′ = ζ/|ζ |) since supp a(y′) ⊂ B(1, ρ)

⋂
Sn−1. Thus

σ̂k(ζ) =
∫ 2k+1

2k
b(t)eih(t)t−1−α−z

∫
R

Fa(s)e−i|ζ |ts dsdt,

where Fa(s) = (1− s2)(n−3)/2χ(−1,1)(s)
∫

Sn−2

a(s, (1 − s2)1/2ỹ) dσ(ỹ) . Note that Fa(s)

has support in (−2r(ζ ′), 2r(ζ ′)) , and r(ζ ′) = Aρζ/|ζ | (see [5, Lemma 2.1] for
properties of Fa(s) ). We now consider the estimates of σ̂k(ζ) in several cases.
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Case 1. �z = γ − α � 0, 0 � γ � α.
By the cancellation and support conditions of Fa(s) we obtain inequality (1). By

a direct integration, we get inequality (2). On the other hand, we write

|σ̂k(ζ)| � C||b||∞2−kγ
∫ 2k+1|ζ |

2k|ζ |
t−1

∣∣∣∣∫
R

Fa(s)e−itsds

∣∣∣∣ dt

� C2−kγ (2k|ζ |)−1/2||F̂a(t)||L2(R) � C2−kγ (2k|ζ |)−1/2|Aρζ ′|−1/2ρ−γ

= C2−kγ |2kAρζ |−1/2ρ−γ ,

which is the desired inequality (3).
Case 2. �z = β/2 − α + γ > 0 and 0 < γ � α.
Using the cancellation condition of Fa(s) inherited from that of Ω , we can write

σ̂k(ζ) =
∫

R

Fa(s)
∫ 2k+1

2k

b(t)eih(t)

t1+α+z

{
e−it|ζ |s −

N∑
k=0

(−i|ζ |st)k

k!

}
dt ds ≡

∫
R

Fa(s)I1(s)ds,

where I1(s) denotes the inner integral in the double integral above. We write

I1(s) =
∫ 2k+1

2k
G′(t)U(t)dt,

where G(t) =
∫ t

2k
b(τ)eih(τ)τ−1−α−zdτ and U(t) = e−i|ζ |st −∑N

k=0
(−i|ζ |st)k

k!
. Note

that |U(t)| � (|ζ |st)N+1 and |U′(t)| � |sζ |N+1tN .
We claim that |G(t)| � Cγ (1 + |z|)2−kγ (Cγ = C/γ ) for 2k � t � 2k+1. To see

this, write

G(t) =
∫ t

2k
Ψ′(τ)b(τ)dτ, where Ψ(τ) =

∫ τ

2k
eih(v)v−1−α−zdv ≡

∫ τ

2k
g′(v)v−1−α−zdv,

with g(v) =
∫ v

2k
eih(r)dr, 2k � r � v � τ � t � 2k+1. By van der Corput’s lemma,

|g(v)| � C v(β+2)/2 for 2k � v � τ � t � 2k+1. Integrating Ψ(τ) by parts yields
for 2k � τ � t � 2k+1, |Ψ(τ)| � Cγ (1 + |z|)2k(β/2−α−�z) ≡ Cz 2−kγ , where Cz =
Cγ (1+ |z|) and Cγ = C/γ . By applying the hypothesis of b(t) and by integrating G(t)
by parts, we obtain |G(t)| � Cz 2−kγ for 2k � t � 2k+1. Recall that Fa(s) has support
in (−2r(ζ ′), 2r(ζ ′)) , and r(ζ ′) = Aρζ/|ζ | (see [5, Lemma 2.1]). Thus integrating
I1(s) by parts yields

|I1(s)| � Cz 2−kγ (2k|ζ s|)N+1 � Cz 2−kγ (2k|ζ r(ξ ′)|)N+1 = Cz 2−kγ (2k|Aρζ |)N+1,

which leads to inequality (4).
Observe that we can also write σ̂k(ζ) as

σ̂k(ζ) =
∫

R

Fa(s)
∫ 2k+1

2k
b(t)t−1−α−zei(h(t)−t|ζ |s)dt ds ≡

∫
R

Fa(s)I2(s)ds.
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Now write I2(s) =
∫ 2k+1

2k
b(t)ψ ′(t)dt where ψ(t) =

∫ t

2k
τ−1−α−zeiφ(τ)dτ, with

φ(τ) = h(τ) − τ|ζ |s. Let g(τ) =
∫ τ

2k
eiφ(r)dr. Then ψ(t) =

∫ t

2k
g′(τ)τ−1−α−zdτ.

Again, by van der Corput’s lemma, |g(τ)| � Cτ(β+2)/2 for 2k � τ � t � 2k+1. Using
integration by parts technique for the integrals ψ(t) , I2(s) , we obtain |ψ(t)| � Cz2−kγ

for 2k � t � 2k+1 and |I2(s)| � Cz2−kγ , whence inequality (5) is obtained.
Case 3. γ = 0 and 0 < �z < β/2 − α.
It’s clear that |σ̂k(ζ)| � C2−k(α+�z). By employing similar techniques as in the

previous case, we get |σ̂k(ζ)| � Cz2k(β/2−α−�z). These two inequalities yield the
desired inequality (6). Lemma 1 is proved. �

Let us choose a radial function φ ∈ S(Rn) so that supp φ̂ ⊂ {ζ : 1/2 � |ζ | � 2} ,

0 � φ̂(|ζ |) � 1, φ̂(|ζ |) � c > 0 if 3/5 � |ζ | � 5/3, and
∑

k φ̂
2(2k|ζ |) = 1 for all

ζ �= 0.
Define φ2k by φ2k(x) = 2−knφ(2−kx). Then φ̂2k (ζ) = φ̂(2kζ) = φ̂(|2kζ |). Define

Ψ by Ψ̂(ζ) = φ̂(ρζ). Then Ψ is also a Schwartz radial function with supp Ψ̂ ⊂
{ζ : 1/2 � ρ|ζ | � 2} , 0 � Ψ̂(|ζ |) � 1, Ψ̂(ζ) � c > 0 if 3/5 � ρ|ζ | � 5/3,

and
∑

k Ψ̂
2(2k|ζ |) = 1 for all ζ �= 0. Define Ψ2k by Ψ2k (x) = 2−knΨ(2−kx). Then

Ψ2k(x) = φ2kρ(x) and Ψ̂2k (ζ) = φ̂2kρ(ζ). For f ∈ S (Rn) , define the operator Sk

(k ∈ Z) by Skf (x) = Ψ2k ∗ f (x). We now decompose the operator Tz as follows.

Tzf =
∑

k

σk ∗
(∑

j

Sj+kSj+kf

)
=
∑

j

∑
k

Sk+j (σk ∗ Sk+jf ) ≡
∑

j

T̃jf ,

where T̃jf =
∑

k Sk+j (σk ∗ Sk+jf ) and recall that Skf = Ψ2k ∗ f .
Let S∗k be the dual operator of Sk . There exists an m ∈ Z such that 2m � ρ � 2m+1.
Let c1 be a fixed constant such that ρ = c12m , 1 � c1 � 2. Now observe that∥∥∥∥∥∥
(∑

j

|(2jρ)−sS∗j f |q
)1/q

∥∥∥∥∥∥
Lp(Rn)

∼=
∥∥∥∥∥∥
(∑

j

|(2jρ)−sSjf |q
)1/q

∥∥∥∥∥∥
Lp(Rn)

=

∥∥∥∥∥∥
(∑

j

|(c12j+m)−sφc12j+m ∗ f |q
)1/q

∥∥∥∥∥∥
Lp(Rn)

=

∥∥∥∥∥∥
(∑

j

|(c12j)−sφc12j ∗ f |q
)1/q

∥∥∥∥∥∥
Lp(Rn)

∼= ||f ||Ḟs, q
p (Rn). (7)

Thus for any g ∈ Ḟ−s, q′
p′ (Rn), we have

| < T̃jf , g > |

=

∣∣∣∣∣
∫

Rn

∑
k

Sk+j (σk ∗ Sk+jf ) (x)g(x)dx

∣∣∣∣∣ =

∣∣∣∣∣
∫

Rn

∑
k

(σk ∗ Sk+jf ) (x)S∗k+jg(x)dx

∣∣∣∣∣
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�
∫

Rn

(∑
k

|(2k+jρ)−sσk ∗ Sk+jf (x)|q
)1/q(∑

k

|(2k+jρ)sS∗k+jg(x)|q′
)1/q′

dx

�

∥∥∥∥∥∥
(∑

k

|(2k+jρ)−sσk ∗ Sk+jf (x)|q
)1/q

∥∥∥∥∥∥
Lp(Rn)

∥∥∥∥∥∥
(∑

k

|(2k+jρ)sS∗k+jg(x)|q′
)1/q′

∥∥∥∥∥∥
Lp′ (Rn)

.

Taking the supremum over all g with ||g||
Ḟ−s, q′

p′ (Rn)
� 1 , we obtain

||T̃jf ||Ḟs, q
p (Rn) � C

∥∥∥∥∥∥
(∑

k

|(2k+jρ)−sσk ∗ Sk+jf (x)|q
)1/q

∥∥∥∥∥∥
Lp(Rn)

. (8)

In particular, when p = q = 2, inequality (8) implies

||T̃jf ||2Ḟs, 2
2

� C
∑

k

∫
Rn

(2k+jρ)−2s|σ̂k(ζ)φ̂(2k+jρζ) ˆf (ζ)|2dζ

� C
∑

k

∫
Dk+j

(2k+jρ)−2s|σ̂k(ζ) ˆf (ζ)|2dζ , (9)

where Dk+j =
{
ζ ∈ R

n : 1/2 � |2k+jρζ | � 2
}

. If �z = β/2 − α + γ > 0 and
0 < γ � α, then inequalities (4), (5) and (9) imply

||T̃jf ||Ḟs, 2
2 (Rn) � Cz ||f ||L2

s+γ (Rn)min
{

2−j(N+1−γ ), 2jγ
}

≡ Cz ||f ||Ḟs+γ , 2
2 (Rn)min

{
2−j(N+1−γ ), 2jγ

}
(10)

whenever s � 0. By duality, we also obtain inequality (10) for all s ∈ R. Since
Tzf =

∑
j T̃jf , inequality (10) implies that

||Tzf ||Ḟs, 2
2 (Rn) � Cz ||f ||Ḟs+γ , 2

2 (Rn) for �z = β/2−α+γ > 0 and 0 < γ � α. (11)

For the case �z = γ − α � 0, we use inequalities (1), (2) and (9) to obtain the
following inequalities

||T̃jf ||Ḟs, 2
2 (Rn) � C2−j(N+1−γ )||f ||Ḟs+γ , 2

2 (Rn) (12)

and ||T̃jf ||Ḟs, 2
2 (Rn) � C2jγ ||f ||Ḟs+γ , 2

2 (Rn). (13)

Note that |σk ∗ Sk+jf (x)| � ||b||∞2−kγ ρ−γ
∫
|y|∼=2k

|A(y′)||y|−n|Sk+jf (x − y)|dy, where

A(y′) = ργ a(y′) is a (1,∞) atom. By Hölder’s inequality, we have

|σk ∗ Sk+jf (x)|q � C2−kγ qρ−γ q||A||q/q′
L1(Sn−1)

∫
|y|∼=2k

|A(y′)||y|−n|Sk+jf (x − y)|qdy

and therefore
||σk ∗ Sk+jf ||q � C2−kγ ρ−γ ||Sk+jf ||q. (14)
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When p = q, inequalities (8) and (14) imply

||T̃jf ||Ḟs, q
q (Rn) � C

{∑
k

(2k+jρ)−sq
∫

Rn
|σk ∗ Sk+jf (x)|qdx

}1/q

� C2jγ

{∫
Rn

∑
k

(2k+jρ)−(s+γ )q|Sk+jf (x)|qdx

}1/q

� C2jγ ||f ||Ḟs+γ , q
q (Rn).

(15)

If p > q, we infer from inequality (8) that there exists a function h ∈ L(p/q)′(Rn) with
||h||(p/q)′ = 1 such that

||T̃jf ||qḞs, q
p (Rn)

� C
∑

k

∫
Rn

|(2k+jρ)−sσk ∗ Sk+jf (x)|qh(x)dx. (16)

Recall that |σk ∗ Sk+jf (x)|q � C2−kγ qρ−γ qLk(|Sk+jf |q)(x), where

Lk(f )(x) =
∫
|y|∼=2k

|A(y′)||y|−nf (x − y)dy.

Denote L∗
k to be the dual operator of Lk and let NAf (x) = supk∈Z

L∗
k (|f |)(x). By

the method of rotation and by the Lp boundedness of the Hardy-Littlewood maximal
function, we have ||NAf ||Lp � C||f ||p for 1 < p < ∞. Thus inequality (16) becomes

||T̃jf ||qḞs, q
p (Rn)

� C2jγ q
∑

k

∫
Rn

(2k+jρ)−(s+γ )qLk(|Sk+jf |q)(x)h(x)dx

� C2jγ q
∫

Rn

{∑
k

|(2k+jρ)−(s+γ )Sk+jf (x)|q
}

NAh(x)dx

� C2jγ q

∥∥∥∥∥∑
k

(2k+jρ)−(s+γ )Sk+jf

∥∥∥∥∥
q

p

||h||(p/q)′.

Therefore ||T̃jf ||Ḟs, q
p (Rn) � C2jγ ||f ||Ḟs+γ , q

p (Rn), which together with inequality (15)
yields

||T̃jf ||Ḟs, q
p (Rn) � C2jγ ||f ||Ḟs+γ , q

p (Rn) for p � q. (17)

Now set q = 2 in (17) and by duality, we obtain

||T̃jf ||Ḟs, 2
p (Rn) � C2jγ ||f ||Ḟs+γ , 2

p (Rn) for 1 < p < ∞, j ∈ Z. (18)

Interpolating between (12)-(13) and (18) for a fixed q = 2 (see [21, p. 185])
yields

||T̃jf ||Ḟs, 2
p (Rn) � C2−θj||f ||Ḟs+γ , 2

p (Rn) (19)

and ||T̃jf ||Ḟs, 2
p (Rn) � C2jγ ||f ||Ḟs+γ , 2

p (Rn) (20)

where θ ∼= (2(N + 1) − γ p̃)/p̃ > 0.
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Recall that S (Rn) is dense in Ḟs, q
p (Rn) for s ∈ R, 1 < p, q < ∞. Thus we

may view the tempered distribution f as a Schwartz function f ∈ S (Rn) and apply
Riesz-Thorin interpolation theory (for a fixed q ) to obtain the same results above.

Interpolating (19)-(20) and (17) yields

||T̃jf ||Ḟs, q
p (Rn) � C2−δ |j|||f ||Ḟs+γ , q

p (Rn) (21)

for 1 < q � p < ∞, and δ = min {γ , (4(N + 1) − γ p̃q̃)/p̃q̃)} > 0. Since Tzf =∑
j T̃jf , we infer from inequality (21) that

||Tzf ||Ḟs, q
p (Rn) � C||f ||Ḟs+γ , q

p (Rn) (22)

for 1 < q � p < ∞, and by duality we obtain (22) for 1 < p, q < ∞, s ∈ R. Finally,
an application of complex interpolation between (11) and (22) yields

||Th,α f ||Ḟs, q
p (Rn) � C||f ||Ḟs+γ , q

p (Rn) (23)

for β/(β + γ −α) < p, q < β/(α − γ ), s ∈ R, provided that β/2 > α − γ � 0 and
0 < γ � α.

We nowconsider the case γ = 0. Recall the Schwartz functions φ and φ2k defined
earlier. We change the definition of Ψ (which was defined earlier) by redefining Ψ
as Ψ̂(ζ) = φ(Aρζ), where again Aρζ = (ρ2ζ1, ρζ2, ..., ρζn). We then define Ψ2k by
Ψ2k(x) = 2−knΨ(2−kx). Let Skf = Ψ2k ∗ f , and let S∗k denote the dual operator of Sk.
Now observe that for q = 2 and s = 0, we have∥∥∥∥∥(∑

k

|S∗k f |2)1/2

∥∥∥∥∥
Lp(Rn)

∼=
∥∥∥∥∥(∑

k

|Skf |2)1/2

∥∥∥∥∥
Lp(Rn)

∼=
∥∥∥∥∥(∑

k

|Ψk ∗ f |2)1/2

∥∥∥∥∥
Lp(Rn)

∼= ||f ||Lp(Rn) (by Littlewood-Paley theory)
∼= ||f ||Ḟ0, 2

p (Rn)

∼=
∥∥∥∥∥(∑

k

|φk ∗ f |2)1/2

∥∥∥∥∥
Lp(Rn)

.

That is, the identity (7) remains valid for our new operator Sk if q = 2 and s = 0.
Now for 0 < �z < β/2 − α, we use the fact that Tzf =

∑
k σk ∗ f and inequality

(6) to obtain ||Tzf ||Ḟ0, 2
2 (Rn) � Cz||f ||Ḟ0, 2

2 (Rn). Note that this inequality is the same as

inequality (11) with s = 0 and γ = 0. By applying inequalities (1) and (3), we obtain

||T̃jf ||Ḟ0, 2
2 (Rn) � C2−j||f ||Ḟ0, 2

2 (Rn) and

||T̃jf ||Ḟ0, 2
2 (Rn) � C2j/2||f ||Ḟ0, 2

2 (Rn).
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Note again that the two inequalities above are similar to the inequalities (12) and
(13) with s = 0 and γ = 0. Thus if we run parallel arguments as in the previous case
in which γ > 0, we obtain inequality (23) for s = 0 , γ = 0, and q = 2. That is,
||Th,α f ||Ḟ0, 2

p (Rn) � C||f ||Ḟ0, 2
p (Rn) for β/(β − α) < p < β/α, provided that β > 2α.

It remains to show the boundedness of Tα f in Triebel-Lizorkin spaces. Note that the
oscillating factor eih(|y|) in Tzf is not essentially involved in the proof of the case
�z = γ − α � 0. Also, the proof of this case only requires the function b(|y|) to be
bounded. Thus, the result follows from inequality (22) with γ = α and Tα f = Tzf
with z = 0. That is, ||Tα f ||Ḟs, q

p (Rn) � C||f ||Ḟs+α, q
p (Rn) for 1 < p, q < ∞ , s ∈ R and

α > 0. The proof of Theorem 1 is complete. �

REMARK 1. If Γ(|y|) is a C1 increasing function on its compact support and if
Γ′(t) is increasing on its support, then

||Th,α,Γf ||Lp(Ḟs, q
p (Rn),R) � C||f ||Lp(Ḟs+γ , q

p (Rn),R)

for β/(β + γ −α) < p, q < β/(α− γ ), s ∈ R, provided that β > 2(α − γ ) � 0 and
0 < γ � α. Also,

||Th,α,Γf ||Lp(Rn+1) � C||f ||Lp(Rn+1)

for β/(β − α) < p < β/α, with β > 2α > 0.

The proof of the above results is similar to the proof of Theorem 1, with some
slight modifications. For instance, Skf (x) in the proof of Theorem 1 should be replaced
by Skf (x, xn+1) = (Ψ2k ⊗ δ) ∗ f (x, xn+1), where δ is the Dirac distribution acting on
the variable xn+1 ∈ R.

Note also that σ̂k(ζ , ζn+1) =
∫
|y|∼=2k

a(y′)b(|y|)e−iζ ·ye−iζn+1Γ(|y|)eih(|y|)

|y|n+α+z
dy.

By the same integration techniques as in the proof of Theorem 1 (with b(|y|) being
replaced by b(|y|)e−iζn+1Γ(|y|) ) and by the hypothesis of Γ(|y|) , we see that σ̂k(ζ , ζn+1)
also satisfies inequalities (1)-(6) in Lemma 1, with the constants that are independent
of ζn+1 (see [12, Lemma 1]). Also, the two dimensional maximal function

MΓf (x1, x2) = sup
k∈Z

{
1
2k

∫ 2k+1

2k
|f (x1 − t, x2 − Γ(t))| dt

}

is bounded in Lp(R2) for all p > 1 (see [14, Corollary 1]). This result together with
the method of rotation imply that NAf (x, xn+1) is bounded in Lp(Rn+1) for all p > 1,
where NAf (x, xn+1) is obviously defined in a similar manner as NAf (x) in the proof of
Theorem 1.

If Ω(y′) ∈ H1(Sn−1) , then the condition that Γ(|y|) has compact support can be
relaxed. We state the following theorem.

THEOREM 2. Let Ω(y′) ∈ H1(Sn−1) with the mean value zero property and let
b(|y|) be given as in Theorem 1. Suppose that h′(t) is increasing on (0,∞) , h′′(t)
is decreasing on (0,∞) with |h′′(t)| � Ct−β−2 and |h(3)(t)| � Ct−β−3 for all
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t ∈ (0,∞) and some β > 0, β > 3α > 0. If Γ, Γ′, and Γ′′ are increasing on
(0,∞) with Γ(0) = 0 = Γ′(0), then

||Th,α,Γf ||Lp(Rn+1) � C||f ||Lp(Rn+1)

for 2β/(2β − 3α) < p < 2β/3α, with β > 3α > 0.

Proof of Theorem 2. From remark 1, it suffices to show that the two dimensional
maximal function MΓf (x1, x2) is bounded in Lp(R2) for all p > 1 , and

|σ̂k(ζ , ζn+1)| � C min(|2kAρζ |, |2kAρζ |−1/2) when �z = −α � 0,

and |σ̂(ζ , ζn+1)| � C uniformly for all (ζ , ζn+1) ∈ R
n+1 when 0 < �z < β/3 − α.

Here σ̂(ζ , ζn+1) =
∫

Rn

a(y′)b(|y|)e−iζ ·ye−iζn+1Γ(|y|)eih(|y|)

|y|n+α+z
dy. For the Lp bounds of

MΓf (x1, x2) , see [10, Corollary 5.3]. The first estimate of |σ̂k(ζ , ζn+1)| is easily
obtained by the same techniques as in the proof of inequalities (1) and (3) in Lemma 1.

It remains to prove the second estimate of |σ̂k(ζ , ζn+1)|. We write

σ̂k(ζ , ζn+1) =
∫

R

Fa(s)
∫

R

b(t)eiφ(t)t−1−α−zdtds ≡
∫

R

Fa(s)I3(s)ds,

where φ(t) = −|ζ |ts − ζn+1Γ(t) + h(t).

Denote I3(s) =
∫ 1

0
...dt +

∫ ∞

1
...dt ≡ I4(s) + I5(s). It is clear that I5(s) � C if 0 <

�z < β/3−α. Now write I4(s) =
∫ 1

0
b(t)G′(t)dt, where G(t) =

∫ t

0
eiφ(τ)τ−1−α−zdτ.

If ζn+1 < 0, then φ ′′(r) = h′′(r) − ζn+1Γ′′(r) � h′′(r) � Cr−β−2 � Cτ−β−2

for 0 < r � τ � t � 1. By van der Corput’s lemma, |G(τ)| � Cτ(β+2)/2 for
0 � τ � t � 1. If ζn+1 � 0, then |φ (3)(r)| � |h(3)(r)| � Cr−β−3 � Cτ−β−3 for
0 < r � τ � t � 1. Hence, |G(τ)| � Cτ(β+3)/3 for 0 � τ � t � 1. In either case,
|G(τ)| � Cτ(β+3)/3 for 0 � τ � t � 1. Finally, by integrating by parts, we obtain
|I4(s)| � C, and consequently |σ̂(ζ , ζn+1)| � C uniformly for all (ζ , ζn+1) ∈ R

n+1 ,
with 0 < �z < β/3 − α. Theorem 2 is proved. �

THEOREM 3. Consider the singular integral Th,α defined in Theorem 1, but with
Ω ∈ Lr(Sn−1) (r > 1) , and Ω needs not satisfy the cancellation condition. Then

||Th,α f ||Ḟs1 , q
p (Rn) � C||f ||Ḟs2 , q

p (Rn)

for β/(β − α − γ ) < p, q < β/(α + γ ), s2 = s1 − γ (β − 2α − 2γ )/β , s1 ∈ R,
provided that β > 2(α + γ ), α � 0, 0 < γ < 2/(r′p̃q̃), and r′ is the conjugate of r.

Proof of Theorem 3. The proof of this theorem is essentially similar to the proof of
Theorem 1. Recall the analytic operator Tzf defined in Theorem 1. We need to prove
the following inequalities.

||Tzf ||L2(Rn) � Cz||f ||L2(Rn) when �z = β/2 − α − γ > 0, and (24)
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||Tzf ||Ḟs, q
p (Rn) � C||f ||

Ḟs−γ , q
p (Rn) for 1 < p, q < ∞, s ∈ R, (25)

when �z = −γ − α < 0.
Observe that if �z = β/2 − α − γ > 0, then |σ̂k(ζ)| � Czmin

{
2kγ , 2−k(β/2−γ )

}
.

On the other hand, if �z = −γ − α < 0, then |σ̂k(ζ)| � Cmin
{
2kγ , 2kγ (2k|ζ |)−δ}

where 0 < δ < 1/2r′ and 1
r + 1

r′ = 1. Therefore, it is straightforward to see that
inequalities (24)-(25) hold. Finally, an application of interpolation yields the desired
result. Theorem 3 is proved. �

2. Fractional integrals in Triebel-Lizorkin spaces

We denote the following fractional integrals by

Iα f (x) =
∫

Rn

b(|y|)Ω(y′)
|y|n−α f (x − y) dy,

Ih,α f (x) =
∫

Rn

b(|y|)eih(|y|)Ω(y′)
|y|n−α f (x − y) dy,

and

Ih,α,Γf (x, xn+1) =
∫

Rn

b(|y|)eih(|y|)Ω(y′)
|y|n−α f (x − y, xn+1 − Γ(|y|)) dy,

where x, y ∈ R
n, x ∈ R, and Γ(|y|) is a measurable radial function defined on R

n.

THEOREM 4. Let b(|y|) be given as in Theorem 1. Assume that |h′′(t)| � Ctβ−2

for all t > 0 and some β > 0.
If Ω is given as in Theorem 1, then

||Ih,α f ||Ḟs, q
p (Rn) � C||f ||Ḟs+γ , q

p (Rn)

for β/(β − γ − α) < p, q < β/(α + γ ), s ∈ R, provided that β > 2(α + γ ) and
γ > 0. Moreover, if γ = 0 and β > 2α > 0, then

||Ih,α f ||Ḟ0, 2
p (Rn) � C||f ||Ḟ0, 2

p (Rn)

for β/(β − α) < p < β/α.
On the other hand, if Ω ∈ Lr(Sn−1) (r > 1) without satisfying the cancellation

condition, then
||Ih,α f ||Ḟs1 , q

p (Rn) � C||f ||Ḟs2 , q
p (Rn)

for (β − 4γ )/(β − α − 3γ ) < p, q < (β − 4γ )/(α − γ ), s2 = s1 − γ (β − 2α −
2γ )/(β − 4γ ), s1 ∈ R, provided that β > 2(α + γ ), α � γ > 0, 0 < γ < 2/(r′p̃q̃),
and r′ is the conjugate of r. Also, if b(|y|) is merely a bounded function, then

||Iα f ||Ḟs, q
p (Rn) � C||f ||

Ḟs−α, q
p (Rn)

for 1 < p, q < ∞ and s ∈ R.
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Proof of Theorem 4. We consider a family of analytic operators Iz defined by

Izf (x) = p.v.
∫

Ω(y′)eih(|y|)b(|y|)f (x − y)
|y|n−α+z

dy.

Since the proof of this theorem is analogous to the proof of Theorem 1, we will
outline some necessary steps in this proof, and omit the details. If Ω ∈ Hr(Sn−1) , then
we must show that

||Izf ||Ḟs, q
p (Rn) � C||f ||Ḟs+γ , q

p (Rn) for 1 < p, q < ∞, s ∈ R, γ > 0 (26)

and �z = γ+α.

||Izf ||Ḟ0, 2
p (Rn) � C||f ||Ḟ0, 2

p (Rn) for 1 < p < ∞,�z = α, and γ = 0. (27)

||Izf ||Ḟs, 2
2 (Rn) � Cz||f ||Ḟs+γ , 2

2 (Rn) for �z = γ + α − β/2 < 0 and γ > 0. (28)

||Izf ||Ḟ0, 2
2 (Rn) � Cz||f ||Ḟ0, 2

2 (Rn) for �z = α − β/2 < 0 and γ = 0. (29)

If Ω ∈ Lr(Sn−1) (r > 1) instead of Ω ∈ Hr(Sn−1) , then we need to prove the
following inequalities

||Izf ||Ḟs, q
p (Rn) � C||f ||

Ḟ
s−γ , q
p (Rn) for 1 < p, q < ∞, s ∈ R, 0 < γ � α (30)

and �z = α − γ � 0,

and ||Izf ||Ḟ0, 2
2 (Rn) � Cz||f ||Ḟ0, 2

2 (Rn) for �z = α + γ − β/2 < 0. (31)

Note also that by setting γ = α (i.e., �z = 0 ) in inequality (30), we will obtain the
results for the fractional integral Iα f . Theorem 4 is proved. �

REMARK 2. If Ω ∈ Hr(Sn−1) and Γ satisfies the same conditions mentioned in
Remark 1, then

||Ih,α,Γf ||Lp(Ḟs, q
p (Rn),R) � C||f ||Lp(Ḟs+γ , q

p (Rn),R)

for β/(β − γ − α) < p, q < β/(α + γ ), s ∈ R, provided that β > 2(α + γ ) and
γ > 0. Also,

||Ih,α,Γf ||Lp(Rn+1) � C||f ||Lp(Rn+1)

for β/(β − α) < p < β/α, with β > 2α > 0.

3. Fractional integrals in weighted Lp spaces

We now consider fractional integrals in weighted Lp spaces with the special case

h(|y|) = ei|y|β . That is,

Iα,β f (x) =
∫

Rn
Ω(y′)|y|α−nei|y|β f (x − y) dy,

where α, β > 0. A quick review of the elementary properties of Ap weights can be
found in [18]. For the rest of this paper, Ω ∈ Lr(Sn−1), 1 � r < ∞, and Ω needs
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not satisfy the mean value zero property. We denote r′ to be the conjugate of r, i.e.,
1
r
+

1
r′

= 1. We consider two cases: β = 1, and β > 0 , β �= 1. We have the following

results.

THEOREM 5. Let Ω ∈ Lr(Sn−1), r > 1, 0 < α < 1/r′, β = 1. Then

||Iα,β f ||p � C||f ||p for 2/(2 − αr′) < p < 2/(αr′).

Moreover, if 1 < r � 2, 0 < α < 2/(r′2), and ω(x) is a positive function in A(p/r′),
p > r′, then

||Iα,β f ||Lp(ω tdx) � C||f ||Lp(ω tdx) for r′ < p < 2/(αr′) and 0 < t < 1 − αr′p/2.

Proof of Theorem 5. We write Iα,β f (x) =
∫
|y|�1

...dy +
∫
|y|>1

...dy ≡ J1f (x) +

J2f (x). Observe that

||J1f ||p � C||Ω||L1(Sn−1)||f ||p for 1 < p < ∞. (32)

Now write J2f (x) =
∑∞

j=0 Ijf (x), where Ijf (x) =
∫
|y|∼=2j

Ω(y′)|y|α−nei|y|f (x − y) dy.

By taking the Fourier transform of Ijf (x), we have Îjf (ζ) = mj(ζ) ˆf (ζ), where

mj(ζ) =
∫
|y|∼=2j

Ω(y′)|y|α−nei|y|e−iζ ·ydy. Let

F(s) = (1 − s2)(n−3)/2χ(−1,1)(s)
∫

Sn−2

Ω(s, (1 − s2)1/2ỹ) dσ(ỹ),

and note that
∫

R

|F(s)| ds � ||Ω||L1(Sn−1). We then have mj(ζ) =
∫

R

F(s)Nj(s|ζ |) ds,

where Nj(u) = 2jα
∫ 2

1
tα−1ei2jt(1−u)dt. If |ζ | � 1/2, then |u| = |sζ | � 1/2 since

|s| � 1. By van der Corput’s lemma, |Nj(u)| � C2j(α−1). Therefore,

|mj(ζ)| � C2j(α−1)
∫

R

|F(s)| ds � C2j(α−1)||Ω||L1(Sn−1) � C2j(α−1), |ζ | � 1/2. (33)

If |ζ | > 1/2, we write

mj(ζ) =
∫ 2j+1

2j
tα−1eit

(∫
R

F(s)e−it|ζ |sds

)
dt = |ζ |−α

∫ 2j+1|ζ |

2j|ζ |
tα−1ei|ζ |−1tF̂(t) dt.

Thus by Hölder’s inequality and by Hausdorff-Young’s inequality, we obtain

|mj(ζ)| � C|ζ |−α(2j|ζ |)α−1/r′ ||F̂||r′ � C|ζ |−1/r′2j(α−1/r′)||Ω||Lr(Sn−1)

� C2j(α−1/r′), |ζ | > 1/2.
(34)
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Combining inequalities (33)and (34) yields

|mj(ζ)| � C2j(α−1/r′) for all ζ ∈ R
n. (35)

By Plancherel’s Theorem, we have

||Ijf ||2 � C2j(α−1/r′)||f ||2. (36)

It is obvious that

||Ijf ||1 � C2jα ||Ω||L1(Sn−1)||f ||1 (37)

||Ijf ||∞ � C2jα ||Ω||L1(Sn−1)||f ||∞. (38)

Interpolating (36)-(37) and (36)-(38) yields for 2/(2 − αr′) < p < 2/(αr′) ,

||Ijf ||p � C2
j(α− 2

r′ p̃ )||f ||p, where 0 < α < 2/(r′p̃) and p̃ = max {p, p′} . (39)

Therefore ||J2f ||p �
∞∑
j=0

||Ijf ||p � C||f ||p for 2/(2 − αr′) < p < 2/(αr′). (40)

Combining (32) and (40) yields

||Iα,β f ||p � C||f ||p for 2/(2 − αr′) < p < 2/(αr′). (41)

Now suppose 0 < α < 2/(r′2) and ω ∈ Ap/r′ , p > r′. Note that

|Ijf (x)| � C2jα ||Ω||Lr(Sn−1)

(
M(f r′)(x)

)1/r′
,

where Mf (x) is the Hardy-Littlewood maximal function. Thus we have for p > r′,

||Ijf ||Lp(ωdx) � C2jα ||M(f r′)||1/r′

Lp/r′ (ωdx)
� C2jα ||f r′ ||1/r′

Lp/r′ (ωdx)
= C2jα ||f ||Lp(ωdx). (42)

For r′ < p < 2/(αr′), we interpolate between (39) and (42) with the same p
but change of measures (see [19]) to obtain ||Ijf ||Lp(ω tdx) � C2−δ j||f ||Lp(ω tdx), where

δ = 2(1−t)
r′p̃ − α = 2(1−t)

r′p − α > 0, provided that 0 < t < 1 − αr′p/2. Thus

||J2f ||Lp(ω tdx) �
∞∑
j=0

||Ijf ||Lp(ω tdx) � C||f ||Lp(ω tdx),

0 < t < 1 − αr′p/2, r′ < p < 2/(αr′).

(43)

Nowwrite J1f (x) =
∑0

j=−∞ Ijf (x), where Ijf (x) =
∫
|y|∼=2j

|y|α−nΩ(y′)ei|y|f (x − y) dy.

Recall from inequality (42) that ||Ijf ||Lp(ωdx) � C2jα ||f ||Lp(ωdx) for p > r′. Therefore

||J1f ||Lp(ωdx) �
∑0

−∞ ||Ijf ||Lp(ωdx) � C||f ||Lp(ωdx). In particular,

||J1f ||Lp(ω tdx) � C||f ||Lp(ω tdx) for r′ < p < 2/(αr′) and 0 < t < 1 − αr′p/2. (44)

Combining the inequalities (43) and (44) yields

||Iα,β f ||Lp(ω tdx) � C||f ||Lp(ω tdx) (45)

for r′ < p < 2/(αr′) , 0 < t < 1−αr′p/2 and ω ∈ Ap/r′ . The proof of Theorem 5 is
complete. �
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COROLLARY 5.1. Let Ω ∈ Lr(Sn−1) , 1 < r � 2, 0 < α < 2/r′2, and β = 1. If
ω1/(1−p) ∈ Ap′/r′ , 2/(2 − αr′) < p < r, then ||Iα,β f ||Lp(ω tdx) � C||f ||Lp(ω tdx) for 0 <
t < 1 − αr′p′/2.

Proof of Corollary 5.1. Denote I∗α,β to be the dual of Iα,β . For f ∈ Lp(ω tdx),

g ∈ Lp′(ω t/(1−p)dx) with ||g||Lp′ (ω t/(1−p)dx) � 1, we have∣∣∣∣∫
Rn

Iα,β f (x)g(x) dx

∣∣∣∣ =
∣∣∣∣∫

Rn
f (x)I∗α,βg(x) dx

∣∣∣∣
�
(∫

Rn
|f (x)|pω t(x)dx

)1/p(∫
Rn

|I∗α,βg(x)|p′ω−tp′/p(x)dx

)1/p′

� C||f ||Lp(ω tdx)||g||Lp′ (ω t/(1−p)dx) � C||f ||Lp(ω tdx),

where the first inequality follows from Hölder’s inequality and the second inequality
follows from Theorem5. Now let g run over the unit ball of Lp′(ω t/(1−p)dx), we obtain
the result. Corollary 5.1 is proved �

COROLLARY 5.2. Let Ω ∈ Lr(Sn−1) , 1 < r � 2, 0 < α < 2/r′2, β = 1,
2/(2 − αr′) < p0 < r, r′ < p1 < 2/(αr′), and ω ∈ Ap1/r′ . Then

||Iα,β f ||Lps (ωr(s)dx) � C||f ||Lps (ωr(s)dx),

where ps =
p0p1

(1 − s)p1 + p0s
, r(s) =

tp0s
(1 − s)p1 + p0s

, 0 < s < 1, and t ∈ (0, 1 −
αr′p1/2).

Proof of Corollary 5.2. By interpolating between (41) and (45) with change of
measures (see [1, p.119]), we obtain the above result. �

COROLLARY 5.3. Let Ω ∈ Lr(Sn−1) , r > n/(n − α), 0 < α < 1/r′, β = 1,

r′ < p1 < n/α, 1/q1 = 1/p1 − α/n. Suppose ω(x) � 0 and v(x) = ω r′(x) satisfies
inequality (1.1) in [15], i.e.,(

1
|Q|
∫

Q
vq(x)dx

)1/q( 1
|Q|
∫

Q
v−p′(x)dx

)1/p′

� C, (46)

where C is independent of the n-dimensional cube Q, 1 < p < n/γ , 0 < γ < n, and
1/q = 1/p−γ /n. Then for 2 < ps < p1, we have ||Iα,β f ||Lqs (ωqssdx) � C||f ||Lps (ωpssdx),

where 0 < s < 1, ps =
2p1

(1 − s)p1 + 2s
, and qs =

2q1

(1 − s)q1 + 2s
.

Proof of Corollary 5.3. Write Iα,β f (x) =
∑

j Ijf (x), and by taking the Fourier

transform,weobtain Îjf (ζ) = mj(ζ) ˆf (ζ), with mj(ζ) =
∫
|y|∼=2j

|y|α−nΩ(y′)ei|y|e−iζ ·ydy.

If j � 0, then it is clear that |mj(ζ)| � C2jα . If j > 0, then recall from inequality (35)
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that |mj(ζ)| � C2j(α−1/r′). Thus |mj(ζ)| � C2−δ |j|, where δ = min {α, 1/r′ − α} >
0. It follows from Plancherel’s Theorem that

||Ijf ||2 � C2−δ |j|||f ||2 (47)

Observe that

|Ijf (x)| � 2jα
∫
|y|∼=2j

|y|−n|Ω(y′)f (x − y)| dy

� C2jα ||Ω||1/r
Lr(Sn−1)

(∫
|y|∼=2j

|y|−n|f (x − y)|r′dy

)1/r′

.

Thus

|Ijf (x)|r′ � C
1

2jn(1−αr′/n)

∫
|y|∼=2j

|f (x − y)|r′dy

� C(f r′)∗γ (γ = αr′), (48)

where f ∗
γ = sup

j∈Z

{
1

2jn(1−αr′/n)

∫
|y|∼=2j

|f (x − y)|dy

}
. Let p̃ = p1/r′, q̃ = q1/r′. Then

1 < p̃ < n/γ and 1/q̃ = 1/p̃ − γ /n, where γ = αr′. For v(x) = ω r′(x) which
satisfies inequality (46), we have(∫

Rn
|Ijf (x)|q1ωq1(x)dx

)r′/q1

=
∥∥∥(Ijf (x))r′

∥∥∥
Lq̃(vq̃dx)

� C
∥∥∥(f r′)∗γ

∥∥∥
Lq̃(vq̃dx)

� C||f r′ ||Lp̃(vp̃dx) = C

(∫
Rn

|f (x)|p1ωp1(x)dx

)r′/p1

,

where the first inequality follows from (48) and the second inequality follows from [15,
Theorem 3]. It follows that

||Ijf ||Lq1 (wq1 dx) � C||f |||Lp1 (wp1dx). (49)

Interpolating between (47) and (49) with change of measures (see [1, p.119]), we get

||Ijf (x)||Lqs (ωqssdx) � C2−δ(1−s)|j|||f ||Lps (ωpssdx), where 0 < s < 1, ps =
2p1

(1−s)p1+2s
,

qs =
2q1

(1−s)q1+2s
, 1/q1 = 1/p1 − α/n, and r′ < p1 < n/α. Consequently,

||Iα,β f ||Lqs (ωqssdx) �
∑

j

||Ijf (x)||Lqs (ωqssdx) � C||f ||Lps (ωpssdx).

Corollary 5.3 is proved. �
By interpolating between (41) and the results of [9, Theorem 1] and [9, Theorem

2] respectively, we obtain the following corollaries.
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COROLLARY 5.4. Let Ω ∈ Lr(Sn−1) , r > n/(n − α), 0 < α < 1/r′, β = 1,

2/(2 − αr′) < p0 < 2/(αr′), r′ < p1 < n/α, 1/q1 = 1/p1 − α/n, and wr′ ∈
A(p1/r′,q1/r′). Then

||Iα,β f ||Lqs (ωqssdx) � C||f ||Lps (ωpssdx),

where 0 < s < 1, ps =
p0p1

(1 − s)p1 + p0s
, and qs =

p0q1

(1 − s)q1 + p0s
.

COROLLARY 5.5. Let Ω ∈ Lr(Sn−1) , r > 1, 0 < α < 1/r′, β = 1 , 2/(2 −
αr′) < p0 < 2/(αr′), 1 < p1 < nr/(n + αr), 1/q1 = 1/p1 − α/n, and w−r′ ∈
A(q′1/r′,p′1/r′). Then

||Iα,β f ||Lqs (ωqssdx) � C||f ||Lps (ωpssdx),

where 0 < s < 1, ps =
p0p1

(1 − s)p1 + p0s
, and qs =

p0q1

(1 − s)q1 + p0s
.

We now consider the case β > 0, β �= 1.

THEOREM 6. Suppose Ω ∈ L1(Sn−1). If β > 2α > 0, β �= 1, then

||Iα,β f ||p � C||f ||p for β/(β − α) < p < β/α.

Moreover, if Ω ∈ Lr(Sn−1), β/(β − α) < r � 2, and ω ∈ Ap/r′ , p > r′, then

||Iα,β f ||Lp(ω tdx) � C||f ||Lp(ω tdx) for r′ < p < β/α, and 0 < t < 1 − αp/β .

Proof of Theorem 6. The proof of this theorem is similar to the proof of Theorem

5. We write Iα,β f (x) =
∫
|y|�1

...dy +
∫
|y|>1

...dy ≡ J1f (x) + J2f (x).

Then ||J1f ||p � C||Ω||L1(Sn−1)||f ||p for 1 < p < ∞. Now write J2f (x) =
∑∞

j=0 Ijf (x),

with Îjf (ζ) = mj(ζ) ˆf (ζ). Note that

mj(ζ) =
∫
|y|∼=2j

Ω(y′)|y|α−nei|y|β e−iζ ·ydy ≡
∫

R

F(s)Nj(s|ζ |) ds,

with Nj(u) = 2jα
∫ 2

1
tα−1ei2j(tβ−tu)dt. By van de Corput’s lemma, we obtain |Nj(u)| �

C2−j(β/2−α), and thus |mj(ζ)| � C||Ω||L1(Sn−1)2
−j(β/2−α). By Plancherel’s Theorem,

we have
||Ijf ||2 � C2−j(β/2−α)||f ||2. (50)

Also it is clear that
||Ijf ||1 � C2jα ||f ||1, and (51)

||Ijf ||∞ � C2jα ||f ||∞. (52)

Interpolating between (50)-(51) and (50)-(52), we obtain

||Ijf ||p � C2j(α−β/p̃)||f ||p, (53)

where p̃ = max {p, p′} , and α < β/p̃ , if β/(β − α) < p < β/α.
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Thus ||J2f ||p �
∑∞

j=0 ||Ijf ||p � C||f ||p for β/(β − α) < p < β/α. Therefore,

||Iα,β f ||p � ||J1f ||p + ||J2f ||p � C||f ||p, β/(β − α) < p < β/α.

Now suppose Ω ∈ Lr(Sn−1) , β/(β − α) < r � 2, β > 2α > 0, and β �= 1.
From the proof of Theorem 5, we have for ω ∈ Ap/r′ , (p > r′) ,

||Ijf ||Lp(ωdx) � C2jα ||f ||Lp(ωdx), j ∈ Z. (54)

Thus ||J1f ||Lp(ωdx) �
0∑

j=−∞
||Ijf ||Lp(ωdx) � C||f ||Lp(ωdx) for p > r′. (55)

By interpolating between (53) and (54) with the same p but with change of measures,
we obtain for r′ < p < β/α,

||Ijf ||Lp(ω tdx) � C2−jδ ||f ||Lp(ω tdx), (56)

where δ = (1 − t)β/p − α > 0 if 0 < t < 1 − αp/β . Hence, ||J2f ||Lp(ω tdx) �∑∞
j=0 ||Ijf ||Lp(ω tdx) � C||f ||Lp(ω tdx) for r′ < p < β/α, 0 < t < 1 − αp/β .

Recall from (55) that ||J1f ||Lp(ωdx) � C||f ||Lp(ωdx) for p > r′.
In particular, ||J1f ||Lp(ω tdx) � C||f ||Lp(ω tdx) for r′ < p < β/α, 0 < t < 1 − αp/β .

Consequently, ||Iα,β f ||Lp(ω tdx) � C||f ||Lp(ω tdx) for r′ < p < β/α, 0 < t <
1 − αp/β . The proof of Theorem 6 is complete. �

COROLLARY 6.1. Let Ω ∈ Lr(Sn−1), β/(β − α) < r � 2, β > 2α > 0, β �= 1.
If ω1/(1−p) ∈ Ap′/r′ , β/(β − α) < p < r, then

||Iα,β f ||Lp(ω tdx) � C||f ||Lp(ω tdx) for 0 < t < 1 − αp′/β .

COROLLARY 6.2. Let Ω ∈ Lr(Sn−1), β/(β − α) < r � 2, β > 2α > 0, β �= 1,
β/(β − α) < p0 < r, r′ < p1 < β/α, and ω ∈ Ap1/r′ . Then

||Iα,β f ||Lps (ωr(s)dx) � C||f ||Lps (ωr(s)dx),

where ps =
p0p1

(1 − s)p1 + p0s
, r(s) =

tp0s
(1 − s)p1 + p0s

, 0 < s < 1, and t ∈ (0, 1 −
αp1/β).

COROLLARY 6.3. Let Ω ∈ Lr(Sn−1) , r > n/(n − α), 0 < α < n, β > 2α > 0,
β �= 1, r′ < p1 < n/α, and 1/q1 = 1/p1 − α/n. Suppose ω(x) � 0 and v(x) =
ω r′(x) satisfies inequality (1.1) in [15], i.e.,(

1
|Q|
∫

Q
vq(x)dx

)1/q( 1
|Q|
∫

Q
v−p′(x)dx

)1/p′

� C, (57)

where C is independent of the n-dimensional cube Q, 1 < p < n/γ , 0 < γ < n, and
1/q = 1/p − γ /n. Then for 2 < ps < p1, we have

||Iα,β f ||Lqs (ωqssdx) � C||f ||Lps (ωpssdx),

where 0 < s < 1, ps =
2p1

(1 − s)p1 + 2s
, and qs =

2q1

(1 − s)q1 + 2s
.
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COROLLARY 6.4. Let Ω ∈ Lr(Sn−1) , r > n/(n − α), 0 < α < n, β > 2α > 0,
β �= 1, 2/(2 − αr′) < p0 < 2/(αr′), r′ < p1 < n/α, 1/q1 = 1/p1 − α/n, and
wr′ ∈ A(p1/r′,q1/r′). Then

||Iα,β f ||Lqs (ωqssdx) � C||f ||Lps (ωpssdx),

where 0 < s < 1, ps =
p0p1

(1 − s)p1 + p0s
, and qs =

p0q1

(1 − s)q1 + p0s
.

COROLLARY 6.5. Let Ω ∈ Lr(Sn−1) , r > 1, 0 < α < n, β > 2α > 0, β �= 1,
2/(2 − αr′) < p0 < 2/(αr′), 1 < p1 < nr/(n + αr), 1/q1 = 1/p1 − α/n, and
w−r′ ∈ A(q′1/r′,p′1/r′). Then

||Iα,β f ||Lqs (ωqssdx) � C||f ||Lps (ωpssdx),

where 0 < s < 1, ps =
p0p1

(1 − s)p1 + p0s
, and qs =

p0q1

(1 − s)q1 + p0s
.

Since the proof of Corollaries (6.1)-(6.5) is similar to the proof of Corollaries
(5.1)-(5.5) respectively, we omit the proof of these corollaries.

REMARK 3. Consider the hypersingular integral

Tα,β f (x) = lim
ε→0

∫
|y|>ε

Ω(y′)|y|n+αei|y|−β
f (x − y) dy.

If β > 2α > 0, β �= 1, then all the results in Theorem 6 and Corollaries 6.1-6.2 also
apply to this integral Tα,β f (x).
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[2] A. P. CALDERÓN, A. ZYGMUND, On the existence of certain singular integrals, Acta Math. 88 , (1952),
85-139.
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1983.
[21] HANS TRIEBEL, "Interpolation Theory, Function Spaces, Differential Operators," (1978) North-Holland

Publishing Company, Amsterdam, New York, Oxford.

(Received February 14, 2006) Dashan Fan
Department of Mathematical Sciences

University of Wisconsin-Milwaukee
Milwaukee
WI 53201

USA

Department of Mathematics
Central China (Huazhong Normal University)

Wuhan 430074
P. R. China

e-mail: fan@uwm.edu

Hung Viet Le
Department of Mathematics

Southwestern Oklahoma State University
Weatherford

OK 73096
USA

e-mail: hung.le@swosu.edu

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


