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REMARKS ON EMBEDDING RESULTS OF SINE SERIES

D. S. YU AND S. P. ZHOU

(communicated by L. Leindler)

Abstract. Weconsider some embedding relations among many important functional classes, such
as Sp(λ), Hω

S,β , Hω
β etc..

1. Introduction

Recently, many new kinds of sequences were introduced for extending a lot of
classical results in Fourier analysis. Among them, Leindler (see for example, [2])
defined the class of sequences of rest bounded variation, and denoted by RBVS . The
definition of RBVS can be read as follows: A nonnegative sequence C := {cn} is of
rest bounded variation, or C ∈ RBVS , if cn → 0 and for any m ∈ N it holds that

∞∑
n=m

|Δcn| � K(C)cm,

where Δcn = cn − cn+1, and K(C) denotes a constant only depending on C .
It has been proved that the class1 CQMS and RBVS are not comparable (see

[2]). Very recently, Le and Zhou [1] suggested the following new class of sequences to
include both RBVS and CQMS : Let C := {cn} be a nonnegative sequence tending to
zero, if

2m∑
n=m

|Δcn| � K(C)cm

holds for all m = 1, 2, · · · , then we say C ∈ GBVS.
As a further generalization of GBVS , we [7] defined the following class of se-

quences named as NBVS , which can be stated as follows: Let C := {cn} be a
nonnegative sequence tending to zero, if

2m∑
n=m

|Δcn| � K(C) (cm + c2m)
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holds for all m = 1, 2, · · · , then we say C ∈ NBVS. By the definition of NBVS , we
see that for any C := {cn} ∈ NBVS , it holds that

cn �
2n∑

k=n

|Δck| + c2n � K(C) (cn + c2n) .

Generally speaking, the term c2n can not be canceled, so NBVS essentially extending
monotonicity from “one sided" to “two sided" in some sense.

Very recently, Leindler [4] further extended the definition of RBVS , by introducing
the so-called γRBVS , that is,

DEFINITION 1. Let γ := {γn} be a positive sequence. If a null-sequence C := {cn}
of real numbers has the property

∞∑
k=m

|Δck| � K(C)γm

for all m ∈ N , then we call the sequence C a γRBVS , briefly denoted by C ∈ γRBVS.

If γ ≡ C , then CRBVS ≡ RBVS. Furthermore, a sequence of γRBVS may have
infinitely many zeros and negative terms.

A nondecreasing continuous function ω(δ) defined on the interval [0, 2π] is
called a a modulus of continuity, if it satisfies the properties:

ω(0) = 0, ω(δ1 + δ2) � ω(δ1) + ω(δ2) for any 0 � δ1 � δ2 � δ1 + δ2 � 2π.

Let f (x) be a continuous and 2π−periodic function, and let

f (x) ∼
∞∑

n=1

bn sin nx (1)

be its Fourier series. Denote by sn = sn(f , x) the n th partial sumof (1), by ‖·‖ the usual
supremum norm, and by En = En(f ) the best approximation of f by trigonometric
polynomials of order at most n . Define the modulus of smoothness of order β(> 0)
of the f by

ωβ (f , t) = sup
|h|�t

∥∥∥∥∥
∞∑
k=0

(−1)k

(
β
k

)
f (x + (β − k)h)

∥∥∥∥∥ ,

where (
β
k

)
=
{ β(β−1)···(β−k+1)

k! , k � 1,
1, k = 0.

Set
Hω
β :=

{
f : ωβ(f , δ) = O (ω(δ))

}
,

Sp(λ ) :=

{
f :

∥∥∥∥∥
∞∑

n=1

λn|sn − f |p
∥∥∥∥∥ < ∞

}
,
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where λ := {λn} is monotone (nondecreasing or increasing) sequence of positive
numbers and 0 < p < ∞,

Hω
S,β :=

{
f : f =

∞∑
n=1

bn sin nx, {bn} ∈ RBVS, and ωβ

(
f ,

1
n

)
= O

(
ω
(

1
n

))}
,

HS,Ω :=

{
f : f =

∞∑
n=1

bn sin nx and {bn} ∈ ΩRBVS,Ω := {n−1ω(n−1)}
}

,

Hω ,∗
S,β :=

{
f : f =

∞∑
n=1

bn sin nx, {bn} ∈ NBVS, and ωβ

(
f ,

1
n

)
= O

(
ω
(

1
n

))}
,

A sequence η := {ηn} of positive numbers is quasi β−power-monotone increas-
ing (decreasing ) if there exists a constant K := K(β ,η) � 1 such that

Knβηn � mβηm (nβηn � Kmβηm)

holds for any n � m . If K = 1 , then we neglect the attribute “quasi".

2. Main Results

The main results of the present paper are the follows:

THEOREM 1. It holds the following embedding results

Hω
S,β ⊂ Hω ,∗

S,β ⊂ HS,Ω ∩ Hω
β . (2)

THEOREM 2. Let p � 1 and ω be a modulus of continuity. If λ := {λn} is a
positive monotone sequence such that λ is quasi β−power-monotone increasing with
some β < 1 , then the condition

ω
(

1
n

)
= O

(
(nλn)−1/p

)
implies that

Hω
S,β ⊂ Hω ,∗

S,β ⊂ HS,Ω ⊂ Sp(λ ). (3)

If there exists a positive nondecreasing sequence ρ := {ρn} tending to infinity such
that the sequences {λnρ−p

n } is simultaneously γ−power-monotone increasing with
some γ < 1 and quasi α−power-monotone decreasingwith some α > 1−min(1, β)p ,
and

ω
(

1
n

)
� K

ρn

(nλn)1/p
, (4)

then (3) does not hold; namely, there exists a function f 0 such that

f 0 ∈ Hω
S,β but f 0 
∈ Sp(λ ).
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THEOREM 3. Let 0 < p � 1 and ω be a modulus of continuity. If λ := {λn} is
a positive monotone sequence such that λ is a quasi β−power-monotone increasing
with some β < 1 − p , then the condition

ω
(

1
n

)
= O

(
(n(n2λn2)−1/p

)
implies that

Hω
S,β ⊂ Hω ,∗

S,β ⊂ HS,Ω ⊂ Sp(λ ). (5)

If there exists a positive nondecreasing sequence ρ := {ρn} tending to infinity
such that the sequences {λn2ρ−p

n } is simultaneously γ−power-monotone increasing
with some γ < 2 − p and quasi α−power-monotone decreasing with some α >
2 (1 − min(1, β)p) , and

ω
(

1
n

)
� Kρnn(n2λn2)−1/p,

then (3) does not hold; namely, there exists a function f 0 such that

f 0 ∈ Hω
S,β but f 0 
∈ Sp(λ ).

Theorem 2 and Theorem 3 are more complete than the relevant results of Leindler
[3] and [4].

Since ω
(
f , 1

n

)
= O

(
ω
(

1
n

))
is not anymore an assumption in HS,Ω , then HS,Ω is

not necessary a subclass of Hω
β . However, if we add some more conditions on ω

(
1
n

)
,

then HS,Ω ⊂ Hω can be hold.

THEOREM 4. If the sequence {ω(n−1)} is quasi (1 − ε)−power-monotone in-
creasing with some 1 − min(1, β) < ε < 1 , then

HS,Ω ⊂ Hω
β .

holds.

Theorem 4 improves the proposition of [4], where {ω(n−1)} should be simul-
taneously quasi ε−power-monotone decreasing with some 0 < ε < 1 and quasi
(1 − ε)−power-monotone increasing, and only established for the case β = 1 .

3. Proofs

We need the following lemmas.

LEMMA 1. ([5]) Let β > 0 , and f (x) be a continuous function, Then

En(f ) � Kωβ

(
f ,

1
n

)
� Kn−β

n∑
k=1

kβ−1Ek(f ). (6)

ωα+β (f , δ) � Kωβ(f , δ), for α � 0. (7)
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LEMMA 2. ([6]) Let f (x) be a continuous function, and f (x) has a Fourier series
of the form

∞∑
n=1

bn sin nx, bn � 0,

then

n−β
n∑

k=1

kβbk � Kωβ

(
f ,

1
n

)
, β 
= 2l, l = 1, 2, · · · ..

Proof of Theorem 1. By the definitions of Hω
S,β and Hω ,∗

S,β , it is clear that

Hω
S,β ⊂ Hω ,∗

S,β ⊂ Hω
β .

So we only need to verify that

Hω ,∗
S,β ⊂ HS,Ω. (8)

Let f (x) =
∞∑

n=1
bn sin nx ∈ Hω ,∗

S,β . By the definition of NBVS , we have

bn �
n−1∑
i=k

|Δbi| + bk � K(bk + b2k), [n/2] + 1 � k � n − 1,

hence, by Lemma 2, we deduce that for β 
= 2l, l = 1, 2, · · · ,

bn + b2n � Kn−1

⎛
⎝ n−1∑

k=[n/2]+1

(bk + b2k) +
2n−1∑
k=n+1

(bk + b2k)

⎞
⎠

� Kn−1
2n∑

k=[n/2]+1

(bk + b2k) � Kn−1
4n∑

k=[n/2]+1

bk

� Kn−1−β
4n∑

k=[n/2]+1

kβbk � Kn−1ωβ

(
f ,

1
n

)
� Kn−1ω

(
1
n

)
.

If β = 2l, l = 1, 2, · · · , then by (7), we have

bn + b2n � Kn−1−β−1
4n∑

k=[n/2]+1

kβ+1bk � Kn−1ωβ+1

(
f ,

1
n

)

� Kωβ

(
f ,

1
n

)
� Kn−1ω

(
1
n

)
Therefore, by the definition of NBVS again, we see that

2n∑
k=n

|Δbk| � K(bn + b2n) � Kn−1ω
(

1
n

)
.
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Thus, for 2j � n < 2j+1, j = 1, 2, · · · ,

∞∑
k=n

|Δbk| =
2n−1∑
k=n

|Δbk| +
∞∑
k=j

2k+2−1∑
s=2k+1

|Δbk|

� K

⎛
⎝bn + b2n +

∞∑
k=j

(b2k+1 + b2k+2)

⎞
⎠

� K

⎛
⎝n−1ω

(
1
n

)
+

∞∑
k=j

2−k−1ω
(
2−k−1

)⎞⎠
� Kn−1ω

(
1
n

)
,

which implies that {bn} ∈ ΩRBVS , and thus we finish (8). �

Proof of Theorem 2. First, (3) can be deduced by combining (2) and Theorem 1
of [4].

Set

f 0(x) :=
∞∑

n=1

1
n

ρn

(nλn)1/p
sin nx.

It was proved by Leindler [3] that, under the condition of Theorem 2, f 0 
∈ Sp(λ ), and

En(f 0) � K
ρn

(nλn)1/p
. (9)

We verify that

n∑
k=1

kβ−1ρk

(kλk)1/p
� K

nβρn

(nλn)1/p
, β > 0. (10)

In fact, it can be deduced directly from (see [3])

n∑
k=1

ρk

(kλk)1/p
� K

nρn

(nλn)1/p

for β � 1. If 0 < β < 1 , by noting that the sequence {λnρ−p
n } is quasi α−power-

monotone decreasing with some α > 1 − min(1, β)p = 1 − βp , we have

n∑
k=1

kβ−1ρk

(kλk)1/p
=

n∑
k=1

ρk

(kαλk)1/p

1
k1/p−α/p+1−β � K

ρn

(nαλn)1/p

n∑
k=1

kα/p−1/p−1+β

� K
ρn

(nαλn)1/p
nα/p−1/p+β � K

nβρn

(nλn)1/p
.
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Thus, by (4), (6), (9) and (10),

ωβ

(
f 0,

1
n

)
� Kn−β

n∑
k=1

kβ−1Ek(f 0) � Kn−β
n∑

k=1

kβ−1 ρk

(kλk)1/p

� K
ρn

(nλn)1/p
� Kω

(
1
n

)
,

which means that f 0 ∈ Hω
β .

On the other hand, since the coefficients of f 0 are monotone decreasing (see [3]),
then they belong to RBVS . Hence, f 0 ∈ Hω

S,β . We have completed Theorem 2. �

Proof of Theorem 3. (5) can be derived by (2) and Theorem 2 of [4].
Set

f 0(x) :=
∞∑
n=1

ρn(n2λn2)−1/p sin nx.

Then, under the condition of Theorem 3( see [3] or [4]), f 0 
∈ Sp(λ ), {ρn(n2λn2)−1/p}
is decreasing, and

En(f 0) � K
nρn

(n2λN2)1/p
.

Noting that (see [3])
n∑

k=1

kρk

(k2λk2)1/p
� K

n2ρn

(n2λn2)1/p

and {ρn(n2λn2)−1/p} is α−power-monotone decreasingwith some α > 2 (1 − min(1, β)p) ,
we can derive that

n∑
k=1

kβρk

(k2λk2)1/p
� K

nβ+1ρn

(n2λn2)1/p

by a simialr way as that of (10). Thus, by a similar discussion to the proof of Theorem
2, we have f 0 ∈ Hω

S,β . �

Proof of Theorem 4. We consider the error

Δ(x) := |f (x) − Sn(f , x)| =

∣∣∣∣∣
∞∑

k=n+1

bk sin kx

∣∣∣∣∣ .
By noting that Δ(0) = Δ(π) = 0 , we only need to consider the case x ∈ (0, π). Set
N := [1/x] , and2

Δ(x) �
∣∣∣∣∣

N−1∑
k=n+1

bk sin kx

∣∣∣∣∣+
∣∣∣∣∣
∞∑

k=N

bk sin kx

∣∣∣∣∣ := J1(x) + J2(x). (11)

2If N � n + 1 , then a similar discussion can be made directly to
∞∑

k=n+1
bk sin kx.
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Let

Dn(x) =
n∑

k=1

sin kx.

It is well known that

|Dn(x)| � π
x
.

If f ∈ HS,Ω , by the definition of ΩRBVS , we have

|bn| �
∞∑
k=n

|Δbk| � Kn−1ω
(

1
n

)
, (12)

hence

|J1(x)| � Kx
N−1∑
k=n

k|bk| � Kω
(

1
n

)
x(N − 1) � Kω

(
1
n

)
. (13)

By Abel’s transformation and (12), we have

|J2(x)| �
∞∑

k=N

|Δbk||Dk(x)| + |bN ||DN−1(x)|

� Kx−1

( ∞∑
k=N

|Δbk| + |bN |
)

� KN|bN | � Kω
(

1
N

)
� Kω

(
1
n

)
. (14)

Altogether (11), (13), (14), we obtain that

En(f ) � ‖f − Sn(f )‖ � Kω
(

1
n

)
. (15)

Applying (6) and (15), we get

ωβ

(
f ,

1
n

)
� Kn−β

n∑
k=1

kβ−1Ek(f ) � Kn−β
n∑

k=1

kβ−1ω
(

1
k

)

� Kn−β
n∑

k=1

kβ+ε−2ω
(

1
k

)
k1−ε � Kω

(
1
n

)
.

Hence, f ∈ Hω
β . The proof is over. �
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