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FOR A FORCED DUFFING EQUATION WITH

THREE–POINT NONLINEAR BOUNDARY CONDITIONS

BASHIR AHMAD, AHMED ALSAEDI AND BADRA ALGHAMDI

(communicated by V. Lakshmikantham)

Abstract. We develop a generalized quasilinearization method for a forced Duffing equation with
three-point nonlinear boundary conditions and obtain two monotone sequences of approximate
solutions converging quadratically to the unique solution of the problem.

1. Introduction

The method of quasilinearizaion (QSL) provides an adequate approach for obtain-
ing approximate solutions of nonlinear problems. The origin of the quasilinearizaion
lies in the theory of dynamic programming [1-3]. This method applies to semilin-
ear equations with convex (concave) nonlinearities and generates a monotone scheme
whose iterates converge quadratically to the solution of the problem at hand. The as-
sumption of convexity proved to be a stumbling block for the further development of
the method. The nineties brought new dimensions to this technique. The most inter-
esting new idea was introduced by Lakshmikantham [4-5] who generalized the method
of quasilinearizaion by relaxing the convexity assumption. This development was so
significant that it attracted the attention of many researchers and the method was exten-
sively developed and applied to a wide range of initial and boundary value problems
for different types of differential equations, see [6-17] and references therein. Some
real-world applications of the quasilinearization technique can be found in [18-22].

Multi-point nonlinear boundary value problems, which refer to a different family
of boundary conditions in the study of disconjugacy theory [23], have been addressed
by many authors, for example, see [24-26]. In this paper, we study a generalized quasi-
linearization method for a forced Duffing equation with nonlinear three-point boundary
conditions. In fact, two monotone sequences of upper and lower solutions converging
quadratically to the unique solution of the problem are presented.
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2. Preliminaries

We consider a three-point boundary value problem for the forced Duffing equation
given by

x′′ + kx′ + f (t, x) = 0, (2.1)

x(0) = a, x(1) = g(x(1/2)), (2.2)

where f is continuous with f x < 0 on [0, 1] × R and g : R −→ R is continuous.
Here, we remark that the three-point nonlinear boundary conditions (2.2) [15] give

rise to Dirichlet boundary conditions for a = 0 and g = 0 which have been addressed
in [27-28] whereas g = constant corresponds to a nonhomogeneous Dirichlet boundary
value problem [29].

By Green’s function method, the solution, x(t) of (2.1)–(2.2) can be written as

x(t) = a

[
e−k − e−kt

e−k − 1

]
+ g(x(1/2))

[
1 − e−kt

1 − e−k

]
+

∫ 1

0
Gk(t, s)f (s, x(s))ds,

where

Gk(t, s) =

⎧⎨
⎩

eks

k(1−ek) [1 − ek(1−s)][1 − e−kt], 0 � t � s,
eks

k(1−ek) [1 − ek(1−t)][1 − e−ks], s � t � 1.

We say that α ∈ C2[0, 1] is a lower solution of the boundary value problem
(2.1)–(2.2) if

α′′(t) + kα′(t) + f (t,α(t)) � 0, t ∈ [0, 1],

α(0) � a, α(1) � g(α(1/2)),

and β ∈ C2[0, 1] is an upper solution of (2.1)–(2.2) if

β ′′(t) + kβ ′(t) + f (t, β(t)) � 0, t ∈ [0, 1]

β(0) � a, β(1) � g(β(1/2)).

Now, we present comparison and existence results related to (2.1)–(2.2) which
play a pivotal role in proving the main result.

THEOREM 2.1. Assume that f is continuous with f x < 0 on [0, 1] × R and g is
continuous on R satisfying a one-sided Lipschitz condition: g(x)−g(y) � L(x−y), 0 �
L < 1. Let β and α be the upper and lower solutions of (2.1)–(2.2) respectively. Then
α(t) � β(t), t ∈ [0, 1].

Proof. Define h(t) = α(t) − β(t). For the sake of contradiction, we suppose that
h(t) > 0 for some t ∈ [0, 1]. First we take t0 ∈ (0, 1). Then by the definition of lower
and upper solutions and the assumption f x < 0, we obtain

h′′(t0) + kh′(t0) = α′′(t0) + kα′(t0) − β ′′(t0) − kβ ′(t0)
� −f (t0,α(t0)) + f (t0, β(t0)) > 0.

Now, employing a standard procedure [30] in the applications of upper and lower
solutions, let h(t) have a local positive maximum at t0 ∈ (0, 1), then h′(t0) = 0 and
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h′′(t0) � 0, which contradicts the above inequality. Thus, for t0 ∈ (0, 1), we have
α(t) � β(t). Now, suppose that h(t) has a local positive maximum at t0 = 1, then
h′(1) = 0 and h′′(1) < 0. On the other hand, using the definition of lower and upper
solutions together with the fact that g satisfies a one sided Lipschitz condition, we find
that

h(1) = α(1) − β(1) � g(α(
1
2
)) − g(β(

1
2
)) < α(

1
2
) − β(

1
2
) = h(

1
2
),

which is a contradiction. Similarly, we get a contradiction for t0 = 0. Hence we
conclude that α(t) � β(t) on [0, 1]. �

THEOREM 2.2. Assume that f is continuous on [0, 1] × R with f x < 0 and g is
continuous on R satisfying a one-sided Lipschitz condition: g(x)−g(y) � L(x−y), 0 �
L < 1. Further, we assume that there exist an upper solution β and a lower solution
α of (2.1)–(2.2) such that α(t) � β(t), t ∈ [0, 1]. Then there exists a solution x(t) of
(2.1)–(2.2) satisfying α(t) � x(t) � β(t), t ∈ [0, 1].

Proof. Let us define F and ĝ by

F(t, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f (t, β) − x − β
1 + x − β

, if x(t) > β(t),

f (t, x), if α(t) � x(t) � β(t),

f (t,α) − x − α
1 + |x − α| , if x(t) < α(t),

ĝ(x) =

⎧⎪⎨
⎪⎩

g(β( 1
2 )), if x > β( 1

2 ),

g(x), if α( 1
2 ) � x � β( 1

2 ),

g(α( 1
2 )), if x < α( 1

2 ).

Since F(t, x) and ĝ(x) are continuous and bounded,a standard application of Schauder’s
fixed point theorem ensures the existence of a solution, x of the problem

x′′(t) + kx′(t) + F(t, x(t)) = 0, t ∈ [0, 1],
x(0) = a, x(1) = ĝ(x(1/2)).

In order to complete the proof, we need to show that α(t) � x(t) � β(t) on [0, 1].
For that, we set h(t) = α(t) − x(t) and observe that h(0) � 0. For the sake of the
contradiction, let h(t) > 0 for some t ∈ (0, 1]. We define

t0 = inf{τ ∈ [0, 1] : h(τ) � h(t), 0 � t � 1},

and note that 0 < t0 by continuity. As ĝ satisfies a one-sided Lipschitz condition on
[α( 1

2 ), β( 1
2 )], it follows that

h(1) = α(1) − x(1) � ĝ(α(1/2)) − ĝ(x(1/2)) < (α(1/2) − x(1/2)) = h(1/2).
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As in the proof of Theorem 2.1, let h(t) have a local maximum at t0 ∈ (0, 1)
implying that h′(t0) = 0 and h′′(t0) � 0. On the other hand, by the definition of upper
and lower solutions together with the assumption Fx < 0, we have

h′′(t0) + kh′(t0) = α′′(t0) + kα′(t0) − (x′′(t0) + kx′(t0))
� −F(t0,α(t0)) + F(t0, x(t0)) > 0.

This contradicts our supposition. Hence α(t) − x(t) � 0. Similarly, it can be shown
that x(t) � β(t). Thus, it follows that α(t) � x(t) � β(t), t ∈ [0, 1]. �

3. Main Result

THEOREM 3. Assume that
(A1) α0, β0 are lower and upper solutions of (2.1)–(2.2) respectively.
(A2) f (t, x) ∈ C([0, 1]×R) be such that f x < 0 and (f xx(t, x)+φxx(t, x)) � 0, where

φxx(t, x)) � 0 for some continuous function φ(t, x) on [0, 1]× R.
(A3) g is continuous on R such that g′, g′′ exist and 0 � g′ < 1 , (g′′(x)+ψ ′′(x)) � 0

with ψ ′′ � 0 on R for some continuous function ψ(x).
Then there exist monotone sequences {αn}, {βn} that converge quadratically in the
space of continuous functions on [0, 1] to the unique solution x of (2.1)–(2.2).

Proof. Define F : [0, 1]× R → R by

F(t, x) = f (t, x) + φ(t, x),

and G : R → R by
G(x) = g(x) + ψ(x).

Using the generalized mean value theorem together with (A2) and (A3), we obtain

f (t, x) � f (t, y) + Fx(t, y)(x − y) + φ(t, y) − φ(t, x), (3.1)

g(x) � g(y) + G′(y)(x − y) + ψ(y) − ψ(x). (3.2)

Now, we set

F(t, x;α0) = f (t,α0) + Fx(t,α0)(x − α0) + φ(t,α0) − φ(t, x),

F(t, x;α0, β0) = f (t, β0) + Fx(t,α0)(x − β0) + φ(t, β0) − φ(t, x),

and

h(x(1/2);α0, β0) = g(α0(1/2)) + G′(β0(1/2))(x(1/2)− α0(1/2))
+ ψ(α0(1/2)) − ψ(x(1/2)),

ĥ(x(1/2); β0) = g(β0(1/2)) + G′(β0(1/2))(x(1/2)− β0(1/2))
+ ψ(β0(1/2)) − ψ(x(1/2)).

Consider the BVPs

x′′(t) + kx′(t) + F(t, x;α0) = 0, t ∈ [0, 1], (3.3)
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x(0) = a, x(1) = h(x(1/2);α0, β0), (3.4)
and

x′′(t) + kx′(t) + F(t, x;α0, β0) = 0, t ∈ [0, 1], (3.5)
x(0) = a, x(1) = ĥ(x(1/2), β0). (3.6)

Let us show that α0 and β0 are respectively lower and upper solutions of (3.3)–
(3.4). By definition of lower solution and the fact that F(t,α0;α0) = f (t,α0), we
get

α′′
0 + kα′

0 + F(t,α0;α0) = α′′
0 + kα′

0 + f (t,α0) � 0,

α0(0) � a, α0(1) � g(α0(1/2)) = h(α0(1/2);α0; β0),
which implies that α0 is a lower solution of (3.3)–(3.4). Using (3.1) and the definition
of upper solution, we have

β ′′
0 + kβ ′

0 + F(t, β0;α0)
= β ′′

0 + kβ ′
0 + f (t,α0) + Fx(t,α0)(β0 − α0) + φ(t,α0) − φ(t, β0)

� β ′′
0 + kβ ′

0 + f (t, β0) � 0.

Moreover, β0(0) � a and there exists c0 ∈ (α0(1/2), β0(1/2)) such that

g(β0(1/2)) − h(β0(1/2);α0, β0)
= g(β0(1/2)) − g(α0(1/2))− G′(β0(1/2))(β0(1/2) − α0(1/2))

− ψ(α0(1/2)) + ψ(β0(1/2))
= G(β0(1/2)) − G(α0(1/2)) − G′(β0(1/2))(β0(1/2) − α0(1/2))
= [G′(c0) − G′(β0(1/2))](β0(1/2) − α0(1/2)) � 0.

Thus, β0 is an upper solution of (3.3)–(3.4). Hence, by Theorem 2.2, there is a solution
α1 of (3.3)–(3.4) satisfying

α0(t) � α1(t) � β0(t), t ∈ [0, 1]. (3.7)

Note that Theorem 2.2 applies since h′ = g′(β0(1/2)). Similarly, β0 is an upper
solution of (3.5)–(3.6) as

F(t, β0;α0; β0) = f (t, β0), g(β0(1/2)) = ĥ(β0(1/2); β0).

As before, using (3.1), we obtain

α′′
0 + kα′

0 + F(t,α0;α0, β0)
= α′′

0 + kα′
0 + f (t, β0) + Fx(t,α0)(α0 − β0) + φ(t, β0) − φ(t,α0)

� α′′
0 + kα′ + f (t,α0) � 0.

Also, α0(0) � a and there exists c1 ∈ (α0(1/2), β0(1/2)) such that

ĥ(α0(1/2); β0) − g(α0(1/2))
= g(β0(1/2)) − g(α0(1/2)) + ψ(β0(1/2))− ψ(α0(1/2))

+ G′(β0(1/2))(α0(1/2)− β0(1/2))
= G(β0(1/2)) − G(α0(1/2))

+ G′(β0(1/2))(α0(1/2)− β0(1/2))
= [G′(c1) − G′(β0(1/2))](β0(1/2)− α0(1/2)) � 0.
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Thus, α0 is a lower solution of (3.5)–(3.6). Again, by Theorem 2.2, there exists a
solution β1 of (3.5)–(3.6) such that

α0(t) � β1(t) � β0(t), t ∈ [0, 1]. (3.8)

Now, we show that α1 � β1. To do this we prove that α1, β1 are lower and upper
solutions of (2.1)–(2.2) respectively. Using the fact that α1 is a solution of (3.3)–(3.4),
we get

α′′
1 (t) + kα′

1(t) + f (t,α1)
� α′′

1 (t) + kα′
1(t) + f (t,α0) + Fx(t,α0)(α1 − α0) + φ(t,α0) − φ(t,α1)

= α′′
1 (t) + kα′

1(t) + F(t,α1;α0) = 0,

α1(0) = a,

and

g(α1(1/2)) − α1(1)
= g(α1(1/2)) − g(α0(1/2)) − G′(β0(1/2))(α1(1/2)− α0(1/2))

− ψ(α0(1/2)) + ψ(α1(1/2))
= [G′(c2) − G′(β0(1/2))](α1(1/2) − α0(1/2)) � 0,

where c2 ∈ (α0(1/2),α1(1/2)). This implies that α1 is a lower solution of (2.1)–(2.2).
Similarly, it can be shown that β1 is an upper solution of (2.1)–(2.2). By Theorem 2.1,
it follows that

α1(t) � β1(t), t ∈ [0, 1]. (3.9)

Combining (3.7), (3.8) and (3.9) yields

α0(t) � α1(t) � β1(t) � β0(t), t ∈ [0, 1].

Continuing this process, by induction, one can prove that

αn(t) � αn+1(t) � βn+1(t) � βn(t), t ∈ [0, 1], n = 0, 1, ...,

where αn+1 satisfies the problem

x′′(t) + kx′(t) + F(t, x;αn) = 0, t ∈ [0, 1],
x(0) = a, x(1) = h(x(1/2);αn, βn),

and βn+1 satisfies the BVP

x′′(t) + kx′(t) + F(t, x;αn, βn) = 0, t ∈ [0, 1],

x(0) = a, x(1) = ĥ(x(1/2); βn).

Since [0, 1] is compact and the convergence is monotone, it follows that the
convergence of each sequence {αn} and {βn} is uniform. Employing the standard
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arguments [15, 20], we conclude that x is the limit point of each of the two sequences
and consequently, we get

x(t) = a

[
e−k − e−kt

e−k − 1

]
+ g(x(1/2))

[
1 − e−kt

1 − e−k

]
+

∫ 1

0
Gk(t, s)f (s, x(s))ds.

This proves that x is the unique solution of (2.1)–(2.2).
In order to prove that each of the sequences {αn}, {βn} converges quadratically,

we set qn = βn − x � 0, pn = x − αn � 0, where x denotes the unique solution
of (2.1)–(2.2). We only show the quadratic convergence with pn as the details for the
quadratic convergence for qn are similar. Applying the mean value theorem, there exist
αn � c3, c4 � x and αn � ζ1 � αn+1 such that

p′′n+1 + kp′n+1

= −f (t, x)+f (t,αn)+Fx(t,αn)(αn+1−αn)+φ(t,αn)−φ(t,αn+1)
= −f x(t, c3)(x−αn)+Fx(t,αn)(αn+1−x+x−αn)−φx(t, ζ1)(αn+1−αn)
= [−Fx(t, c3)+Fx(t,αn)+φx(t, c3)−φx(t, ζ1)]pn+[−Fx(t,αn)+φx(t, ζ1)]pn+1

� [−Fx(t, x)+Fx(t,αn)+φx(t,αn)−φx(t, x)]pn+[−Fx(t, ζ1)+φx(t, ζ1)]pn+1

= −Fxx(t, c4)p2
n−φxx(t, c3)p2

n−f x(t, ζ1)pn+1

� −M‖pn‖2,

where A is a bound on ‖Fxx‖, B is a bound on ‖φxx‖ for t ∈ [0, 1] and M = A+B. Here
‖.‖ denotes the supremum norm on C[0, 1]. Also there exist αn(1/2) � c5, c6 � x,
c5 � c7 � βn(1/2) and αn � ζ2 � αn+1 such that

Pn+1(t) = [g(x(1/2)) − h(αn+1(1/2);αn, βn)]
(

1 − e−kt

1 − e−k

)

+
∫ 1

0
Gk(t, s)[f (s, x) − F(s,αn+1;αn)]ds

= [g(x(1/2)) − g(αn(1/2) − G′(βn(1/2))(αn+1 − αn(1/2))

−ψ(αn(1/2))+ψ(αn+1(1/2))]
(

1−e−kt

1−e−k

)
−

∫ 1

0
Gk(t, s)[p′′n+1+kp′n+1]ds

� [(G′(c5) − G′(βn(1/2)) − (ψ ′(c6) − ψ ′(ζ2)))pn(1/2)

+ (G′(βn(1/2))−ψ ′(ζ2))pn+1(1/2)]
(

1−e−kt

1−e−k

)
+M‖pn‖2

∫ 1

0
|Gk(t, s)|ds

� [−G′′(c7)(βn(1/2)−c5)pn(1/2)+g′(βn(1/2))pn+1(1/2)]
[
1−e−kt

1−e−k

]
+M1‖pn‖2

� [−G′′(c7)(βn(1/2)−αn(1/2))pn(1/2)+g′(βn(1/2))pn+1(1/2)]+M1‖pn‖2

= [−G′′(c7)(qn(1/2)+pn(1/2))pn(1/2)+g′(βn(1/2))pn+1(1/2)]+M1‖pn‖2

� M2(
1
2
q2

n(1/2) +
3
2
p2

n(1/2)) + g′(βn(1/2))pn+1(1/2) + M1‖pn‖2

� (
3
2
M2 + M1)‖pn‖2 +

M2

2
‖qn‖2 + λ‖pn+1‖,
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where ‖g′‖ � λ < 1, M1 provides a bound on M
∫ 1

0 |Gk(t, s)|ds, M2 provides a bound
on ‖G′′‖. Letting M3 = 3

2M2 + M1, M4 = M2
2 and solving algebraically for ‖pn+1‖,

we obtain

‖pn+1‖ � 1
1 − λ

[M3‖pn‖2 + M4‖qn‖2].
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