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AN EXPLICIT BOUND FOR THE ERROR TERM OF THE

DEVELOPMENT AT s = 1 OF A SET OF LACUNARY SERIES

GIUSEPPE MOLTENI

(communicated by A. Laforgia)

Abstract. An explicit bound for the error term of the expansion of Fn(x) :=
∞∑
k=0

knx2k
as

x → 1− is given.

Notation. The symbol δsomething assumes the value 1 when something holds, 0
otherwise; Bn(·) is the n th Bernoulli polynomial and Bn is the n th Bernoulli number;
�x� , {x} and Im x denote the integer, fractional and imaginary parts of x , respectively;
log2(x) denotes the base 2 logarithm; at last, the symbol x → 1− will be used to mean
that x ∈ R , x < 1 and x → 1 .

1. Introduction

In a couple of recent papers [1, 2] where the expected length of certain instantaneous
integer codes for the compression of web graphs (graphs having web pages as nodes
and hyperlinks as arcs) is estimated, the authors needed some results about the behavior
of F0(x) and F1(x) when x approaches 1 , where Fn is the function that for x ∈ C

with |x| < 1 , is defined by

Fn(x) :=
∞∑
k=0

knx2k
.

Such functions are probably the simplest examples of lacunary series whose essential
properties are well known in literature; for example, the asymptotic behavior in a
neighborhood of almost every point of the boundary of their natural domain is easily
described by the iterated logarithm law proved by Erdös and Gál. On the other hand,
the Euler-Mc Laurin summation formula gives almost immediately that

Fn(x) =
1

n + 1
(− log2(1 − x))n+1 + O((− log2(1 − x))n) as x → 1− .

The aim of the present paper is to improve this result providing an explicit bound for
the constant appearing into the O -term. Actually we prove that
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THEOREM. Let L(x) := − log2(1 − x) . If x → 1− , then for every n � 0

|Fn(x) −
(

1
n+1Ln+1(x) − γ

log 2Ln(x) + 1
2δn=0

)| � (4.49 ∗ 10−6 + on(1))Ln(x),

where γ is the Euler-Mascheroni constant.

In order to appreciate this result, in Section 3. some numerical tests and conjectures
are given.

Next section is devoted to the proof of the theorem.

2. Proof of the theorem

Henceforth we take x → 1− . It is convenient to define ε := − log x ∼ (1 − x)
and

wn(k, ε) := kne−2kε.

Using the Euler-Mc Laurin summation formula (see Ch. I.0 of [9]) we have

Fn(x) =
∞∑
k=0

wn(k, ε) = F̂n(x) + F̌n(x),

where

F̂n(x) := 1
2e−εδn=0 +

∫ ∞

0
wn(k, ε)dk, F̌n(x) :=

∫ +∞

0
w′

n(k, ε)B1({k}) dk (1)

and B1(x) = x − 1/2 is the first Bernoulli polynomial. The behavior of F̂n(x) when
x → 1− is well understood since with simple manipulations it is possible to find the
complete asymptotic expansion of F̂n ; however, the following lemma gives explicitly
only the first two terms, since for our purposes these ones are enough.

LEMMA 1. For every n � 0

F̂n(x) =
(log2(1/ε))n+1

n + 1
+

δn=0

2
+

(
− γ

log 2
+ o(1)

)
(log2(1/ε))n.

Proof. In fact,

F̂n(x) = 1
2e−εδn=0 +

∫ log2(1/ε)

0
kne−2kε dk +

∫ +∞

log2(1/ε)
kne−2kε dk.

A translation in the second integral: k → log2(1/ε) + k gives

= 1
2e−εδn=0 +

∫ log2(1/ε)

0
kne−2kε dk +

∫ +∞

0
(log2(1/ε) + k)ne−2k

dk.

The introduction of a new variable v = 2kε in the first integrale and v = 1/2k in the
second one gives

= 1
2e−εδn=0+

1
log 2

∫ 1

ε

(log2(v/ε))ne−v dv
v

+
1

log 2

∫ 1

0
(log2(1/ε)+log2(1/v))ne−1/v dv

v
.
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The binomial formular for (log2(v/ε))n = (log2 v + log2(1/ε))n gives

= 1
2e−εδn=0+

n∑
m=0

(
n
m

)
log2(1/ε)m

log 2

[∫ 1

ε

(log2 v)n−me−v dv
v

+
∫ 1

0
(log2(1/v))n−me−1/v dv

v

]

and separating the contribute of the diverging terms near ε = 0 we get

= 1
2e−εδn=0 +

n∑
m=0

(
n
m

)
log2(1/ε)m

log 2

[∫ 1

0
(log2 v)n−m e−v − 1

v
dv

−
∫ ε

0
(log2 v)n−m e−v − 1

v
dv +

∫ 1

ε

(log2 v)n−m dv
v

+
∫ 1

0
(log2(1/v))n−me−1/v dv

v

]

= 1
2e−εδn=0 +

n∑
m=0

(
n
m

)
log2(1/ε)m

log 2

[∫ 1

0
(log2 v)n−m e−v − 1

v
dv + O(ε(log ε)n−m)

− (log2 ε)n−m+1

n − m + 1
· log 2 +

∫ 1

0
(log2(1/v))n−me−1/v dv

v

]

= log2(1/ε)n+1
n∑

m=0

(
n
m

)
(−1)n−m

n − m + 1
+

n∑
m=0

(
n
m

)
log2(1/ε)m

log 2
×

×
[∫ 1

0
(log2 v)n−m e−v − 1 + (−1)n−me−1/v

v
dv

]
+ 1

2δn=0 + O(ε(log ε)n)

=
log2(1/ε)n+1

n + 1
+

n∑
m=0

(
n
m

)
log2(1/ε)m

log 2

[∫ 1

0
(log2 v)n−m e−v − 1 + (−1)n−me−1/v

v
dv

]
+ 1

2δn=0 + O(ε(log ε)n).

The proof is concluded by noting that
∫ 1

0
e−v−1+e−1/v

v dv = −γ (see [3], Art. 178.)

�
In order to get good upper-bounds for F̌n wehave to take advantage of the variations

in sign of the oscillating term B1({k}) appearing in (1). The following simple lemma
provides the main tool.

LEMMA 2. Let g : R → R be integrable, bounded and 1 -periodic with∫ 1
0 g(u)du = 0 . Let M := supx,y∈[0,1]

∫ y
x g(u)du . Let a < b ∈ R and let f : [a, b] → R

be monotonic. Then,

∣∣∣∫ b

a
f (x)g(x) dx

∣∣∣ � M(|f (a)| + |f (b)|).

Proof. By the second mean value formula (see Ch. 0.1 of [9]), we have

∫ b

a
f (x)g(x) dx = f (a)

∫ ξ

a
g(x)dx + f (b)

∫ b

ξ
g(x)dx
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for some ξ ∈ [a, b] . By hypothesis g is periodic and its mean value is zero, hence

∣∣∣∫ b

ξ
g(x)dx

∣∣∣, ∣∣∣∫ ξ

a
g(x)dx

∣∣∣ � M,

so that the desired inequality follows. �
We do not apply this lemma directly to the integral defining F̌n , but to the integral

appearing in the following formula (Euler-Mc Laurin formula with arbitrary index)

F̌n(x) =
m−1∑
l=1

(−1)l+1Bl+1

(l + 1)!
w(l)

n (k, ε)
∣∣∣+∞

0
− (−1)m

m!

∫ +∞

0
w(m)

n (k, ε)Bm({k}) dk, (2)

where Bm({k}) is the m th Bernoulli polynomial, Bm := Bm(0) is the m th Bernoulli
number and w(m)

n (k, ε) is the m th partial derivative of wn(k, ε) with respect to k . When
m = 1 such formula actually is the definition of F̌n ; as we will see, the theorem will
follow from a suitable choice of the parameter m .

As first taskwehave to get a convenient upper-bound for Mm := sup
x,y

∫ y
x Bm({k})dk ,

where Bm({k}) is the m th Bernoulli polynomial. This is the simplest step since the
recursive definition Bm(x) = m

∫ x
0 Bm−1(v)dv implies that

(m + 1)Mm = sup
x,y∈[0,1]

(Bm+1(x) − Bm+1(y)),

so that Mm can be computed using the bounds for Bm+1(x) that have been proved by
Lehmer in [6]. Actually, the following non-optimal but simply proved bounds for Mm

are sufficient for our purposes.

LEMMA 3. For every m > 0 , we have

Mm �
{ 1

2 |Bm| = m!ζ(m)
(2π)m , if m is even,

2
m+1 |Bm+1| = 2·m!·ζ(m+1)

π(2π)m , if m is odd,

where ζ is the Riemann zeta function.

Proof. We use some simple and well known results. When m is even, m � 2 ,
Bm({x}) has only two roots into [0, 1] which are symmetric with respect to 1/2 ;
furthermore |Bm({x})| � |Bm| for every x , so that the first inequality follows.

When m is odd, the unique roots of Bm({x}) in [0, 1] are 0 , 1
2 and 1 (only 1

2 if
m = 1 ). Since every root is simple, we have

Mm =
∣∣∣∫ 1/2

0
Bm({u}) du

∣∣∣ = 1
m+1 |Bm+1( 1

2 ) − Bm+1|

= 1
m+1 |(2−m − 1)Bm+1 − Bm+1| = 2

m+1 (1 − 2−1−m)|Bm+1|,
proving the second inequality. �
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REMARK 1. Lehmer [6] (see also Delange [4, 5]) proved that for m even the
unique zero of Bm belonging to (0, 1/2) tends to 1/4 as m → ∞ ; as a consequence
the upper-bound Mm � (1/4+ o(1))|Bm| holds as m → ∞ ; this weak improvement is
not important here since we will not consider Mm for arbitrarily large m .

Now we have to find the intervals where w(m)
n (k, ε) is monotonic as a function of

k , at least for ε small enough. Evidently, these intervals will be known when the roots
of w(m+1)

n (k, ε) will be known, therefore an explicit formula fo w(m)
n (k, ε) is needed.

The following lemma provides such description in terms of the exponential polynomials
φm(x) (see [8]), i.e., in terms of polynomials recursively defined by⎧⎨

⎩
φm(x) = 0 if m < 0,

φ0(x) = 1,

φm+1(x) = x(φ ′
m(x) + φm(x)) if m � 0.

LEMMA 4. Let y := 2kε . Then for every m � 0 ,

w(m)
n (k, ε) = e−y

n∑
u=0

(
n
u

)
m(u)k

n−uφm−u(−y) logm−u 2,

with {
m(0) = 1 for every m,

m(u) = m(m − 1) · · · (m − u + 1) if u > 0.

Its proof by induction on m is quite simple and we leave it to the reader. Three
examples of this identity are:

w(m)
0 (k, ε) = e−yφm(−y) logm 2,

w(m)
1 (k, ε) = e−y

(
kφm(−y) logm 2 + mφm−1(−y) logm−1 2

)
,

w(m)
2 (k, ε) = e−y

(
k2φm(−y) logm 2 + 2mkφm−1(−y) logm−1 2

+ m(m − 1)φm−2(−y) logm−2 2
)
.

Previous lemma shows that the roots of w(m)
0 (k, ε) can be calculated immediately

if the roots of φm are known. We will see that a similar fact holds also for the roots of
every w(m)

n (k, ε) , at least when ε is small enough: as a consequence the next step is to
study the roots of φm . Such polynomials appear frequently in combinatorial analysis
(a fact which is not surprising since φm(x) =

∑m
k=1 S(m, k)xk where S(m, k) is the

Stirling number of second kind) but we have not been able to locate in letterature an
explicit reference for the following result.

LEMMA 5. For every m � 1 , 0 is a simple zero of φm and the m − 1 non-zero
roots of φm are simple, real, negative and interlaced to those ones of φm−1 , i.e., if
ηm−1 < · · · < η2 < η1 < η0 = 0 are the roots of φm and ζm−2 < · · · < ζ2 < ζ1 <
ζ0 = 0 those ones of φm−1 , we have

ηm−1 < ζm−2 < ηm−2 < · · · < η2 < ζ1 < η1 < 0.
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Proof. It is convenient to introduce Φm(x) := φm(x)ex , so that Φ0(x) = ex and
Φm+1(x) = xΦ′

m(x) by the recursion formula for φm . If we prove that Φm admits m
simple real roots, interlaced to those ones of Φm−1(x) , then the claim about the roots
of φm(x) follows since the roots of Φm and those ones of φm are the same, multiplicity
included. As a preliminary fact we note that the degree of φm is m for every m and that
when m > 0 the recursion formula implies that 0 is a simple root of Φm . In particular,
the claim holds when m = 0 .

By induction, Φm has m − 1 simple and negative roots, besides 0 . Every couple
of consecutive roots of Φm delimits an interval containing an extremal point for Φm

which is a root of Φ′
m . There are m−1 such intervals, therefore there are m−1 distinct

roots of Φ′
m . Such points are extremal points for Φm , therefore their multiplicity as

root of Φ′
m is odd: if any of them has a multiplicity greater than 1 then the roots

we have found for Φ′
m would be � (m − 2) + 3 = m + 1 , when the multiplicity is

considered, but this is impossible since every such root is also a negative root of Φm+1

which admits m negative roots, at most. This fact proves that the roots of Φ′
m we have

found are simple roots of Φm+1 and are interlaced to those ones of Φm . Also 0 is a
simple root of Φm+1 so that we actually have found m simple roots of Φm+1 . Let γm+1

be the smallest root of Φm+1 we have found up to now. We note that

lim
x→+∞Φm+1(x) = +∞, lim

x→−∞Φm+1(x) = 0(−1)m+1

,

and that the sign of Φm+1(x) changes when x crosses a root (since every roots is
simple), therefore another root of Φm+1 , lower than γm+1 , exists. Also such root is
simple, otherwise Φm+1 would have more than m + 1 roots. �

It is convenient to denote by ζm,0 = 0 < ζm,1 < ζm,2 < · · · < ζm,m−1 the opposite

of the roots of φm . The following two lemmas describe the roots of w(m)
n (k, ε) in the

limit ε → 0 .

LEMMA 6. For every m � 2 and n � 0 , there exists a positive constant ε̄

depending on m and n such that for ε < ε̄ the equation w(m)
n (k, ε) = 0 under the

restriction 2kε � ζm,1 has m − 1 simple roots: k̃m,n,j(ε) with j = 1, · · · , m − 1 , say.
Furthermore, k̃m,n,j(ε) = log2(1/ε) + log2 ζm,j + om,n(1) for every j = 1, · · · , m − 1 ,
as ε → 0 .

Proof. Let y := 2kε . By Lemma 4, w(m)
n (k, ε) = 0 if and only if Gm,n,ε(y) = 0 ,

where

Gm,n,ε(y) :=
n∑

u=0

(
n
u

)
m(u)(log(y/ε))n−uφm−u(−y).

We take y as new independent variable. By hypothesis y � ζm,1 . The claim is evident
if n = 0 , hence we can suppose that n � 1 . We prove the claim by several steps.

i) For ε → 0 and uniformly on y > ζm,1 we have

Gm,n,ε(y) = (log(y/ε))nφm(−y) + O(ym−1(log(y/ε))n−1),



AN EXPLICIT BOUND FOR THE ERROR TERM 179

hence, if for infinitely many εi converging to 0 there exists a point yi such that
Gm,n,εi(yi) = 0 and 0 < a < yi < b for some constants a, b independent of i , then
φm(−yi) → 0 .

ii) By Lemma 5 the roots of φm and φm−1 are simple and interlaced. Furthermore,
φm(x) > 0 when x > 0 , so that{ φm(−ζm,j) = 0 =⇒ (−1)jφm−1(−ζm,j) > 0

φm−1(−ζm−1,j) = 0 =⇒ (−1)jφm(−ζm−1,j) < 0,

for every m and j .

iii) We prove that for ε small enough there exists a solution of Gm,n,ε(y) = 0 in
the segment [ζm,1, ζm−1,1) . In fact,

Gm,n,ε(ζm,1) = (log(ζm,1/ε))nφm(−ζm,1) + mn(log(ζm,1/ε))n−1φm−1(−ζm,1)

+ Om,n((log(1/ε))n−2)

= mn(log(ζm,1/ε))n−1φm−1(−ζm,1) + Om,n((log(1/ε))n−2).

Since φm−1(−ζm,1) < 0 by Step ii), we have that Gm,n,ε(ζm,1) < 0 when ε is small
enough. Moreover,

Gm,n,ε(ζm−1,1) = (log(ζm,1/ε))nφm(−ζm−1,1) + Om,n((log(1/ε))n−1)

so that Gm,n,ε(ζm−1,1) > 0 by Step ii), when ε is small enough.

iv) Weprove that for ε small enough the solution of Gm,n,ε(y) = 0 in [ζm,1, ζm−1,1)
is unique and simple. In fact, let y1(ε) be the solution whose existence is proved in
previous step. Let y2(ε) � y1(ε) be a second root belonging to the same interval
[ζm,1, ζm−1,1) , with y2(ε) = y1(ε) meaning that y1(ε) is a non-simple root. Then, there
exists a point z(ε) such that y1(ε) � z(ε) � y2(ε) and G′

m,n,ε(z(ε)) = 0 . By Step i),
y1(ε) and y2(ε) tend to ζm,1 , so that z(ε) → ζm,1 , too. Then

0 = G′
m,n,ε(z(ε))

= −(log(z(ε)/ε))nφ ′
m(−z(ε)) + n(log(z(ε)/ε))n−1 φm(−z(ε))

z(ε)

+ Om,n((log(1/ε))n−1)
= (log(1/ε))n(−φ ′

m(−ζm,1) + om,n(1))

which is impossible for ε small enough since φ ′
m(−ζm,1) 
= 0 , being −ζm,1 a simple

root of φm by Lemma 5.

v) We prove that for ε small enough Gm,n,ε(y) 
= 0 in the segment [ζm−1,1, ζm,2) .
In fact,

Gm,n,ε(ζm,2) = (log(ζm,1/ε))nφm(−ζm,2) + mn(log(ζm,2/ε))n−1φm−1(−ζm,2)

+ Om,n((log(1/ε))n−2)

= mn(log(ζm,2/ε))n−1φm−1(−ζm,2) + Om,n((log(1/ε))n−2),
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which byStep ii) is positivewhen ε is small enough. Sinceweknow that Gm,n,ε(ζm−1,1) >
0 , it follows that if Gm,n,ε(y) has a root in [ζm−1,1, ζm,1) , then in this segment there
are two roots, at least. Let y1(ε) � y2(ε) be a couple of such roots. Then there exists
an intermediate point z(ε) such that y1(ε) � z(ε) � y2(ε) and G′

m,n,ε(z(ε)) = 0 . By
Step i), y1(ε) and y2(ε) tend to ζm,2 , so that z(ε) → ζm,2 , too. Then

0 = G′
m,n,ε(z(ε)) = (log(1/ε))n(−φ ′

m(−ζm,2) + om,n(1))

which is impossible for ε small enough since φ ′
m(−ζm,2) 
= 0 by Lemma 5.

vi) The argumentwe just employed can be repeated in every segment [ζm,j, ζm,j+1)
when j = 1, . . . , m− 2 , proving the existence of a unique, simple root of Gm,n,ε(y) = 0
in every subinterval [ζm,j, ζm−1,j) whenever ε is small enough. Furthermore, we proved
that the root belonging to [ζm,j, ζm,j+1) tends to ζm,j as ε → 0 . The argument can easily
adapted to provide the same conclusions also for the last interval [ζm,m−1, +∞) noting
that (−1)mGm,n,ε(ζm,m−1) < 0 and that (−1)mGm,n,ε(+∞) = +∞ when ε is small
enough.

vii) The proof concludes noting that 2kε = y = ζm,j + om,n(1) implies

k = log2(1/ε) + log2 ζm,j + om,n(1).

�

LEMMA 7. For every m � 0 and n � 0 the equation w(m)
n (k, ε) = 0 under

the restriction ε < 2kε < ζm,1 has no solutions when m > n . On the contrary, when
m � n , there exists a positive constant ε̄ depending on m and n such that for ε < ε̄ the
equation has M � m roots, at most: k̄m,n,j(ε) with j = 1, · · · , M , say. Furthermore,
every such root satisfies 2k̄m,n,j(ε)ε → 0 as ε → 0 .

Proof. As in previous lemma we set y := 2kε and

Gm,n,ε(y) :=
n∑

u=0

(
n
u

)
m(u)(log(y/ε))n−uφm−u(−y)

so that w(m)
n (k, ε) = 0 if and only if Gm,n,ε(y) = 0 . We take y as new independent

variable. By hypothesis ε < y < ζm,1 . The claim is evident if n = 0 , hence we can
suppose that n � 1 . We prove the claim by several steps.

i) Suppose m > n . We prove that Gm,n,ε(y) < 0 when y ∈ (ε, ζm,1) so that, in
particular, equation Gm,n,ε(y) = 0 has no solutions here. In fact, by Lemma 5 every
φm−u with m − u > 0 is negative in (−ζm−u,1, 0) since 0 is a simple root of φm−u

and φm−u(x) is positive when x > 0 . Furthermore, −ζm−u,1 � −ζm,1 since the roots
are interlaced: these two facts show that every φm−u(−y) appearing in Gm,n,ε(y) is
negative in (0, ζm,1) , being by hypothesis m > n . Since log(y/ε) > 0 , the first claim
follows.

ii) Suppose m � n . Then the terms with m < u � n appearing in the definition
of Gm,n,ε(y) do not contribute to the sum (because in this case m(u) = 0 ). Besides,
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we can divide Gm,n,ε(y) by (log(y/ε))n−m which is not zero in range ε < y < ζm,1 ,
getting in this way that Gm,n,ε(y) = 0 if and only if G̃m,n,ε(y) = 0 , where

G̃m,n,ε(y) :=
m∑

u=0

(
n
u

)
m(u)(log(y/ε))m−uφm−u(−y).

iii) When m � n one root at least in (0, ζm,1) exists because G̃m,n,ε(ε) =
(n

m

)
m(m)

> 0 and
G̃m,n,ε(ζm,1) = (log(1/ε))m−1(mnφm−1(−ζm,1) + o(1))

which is negative when ε is small enough since φm−1(−ζm,1) < 0 (see Step ii) in proof
of Lemma 6).

iv) Let us consider the equation

m∑
u=0

(
n
u

)
m(u)φm−u(−y)Hm−u = 0, (3)

defining m algebraic functions Hj = Hj(y) , for j = 1, . . . , m . Let j = 1, . . . , M be
those ones which assume positive real values when 0 < y < ζm,1 : one such function
at least exists by previous step. Since φm(−y) is not zero in (0, ζm,1) , every Hj is
analytical in this interval. We note that for suitable positive constants c1 and c2 ,

Hj(y) ∼ c1

y1/m
, H′

j (y) ∼ − c2

y1+1/m
, as y → 0+ , ∀l = 1, . . . , M. (4)

In fact, the polynomials φm−u(−y) with u < m and appearing in (3) are divisible by
−y , while the polynomial with u = m is constant and non-zero, therefore Hj diverges
as y → 0+ . As a consequence

Hm
j (φm(−y) + O(H−1

j )) +
(

n
m

)
m(m) = 0,

the first claim follows from this equality since φm(−y) ∼ −φ ′
m(0)y as y → 0 and

φ ′
m(0) > 0 . The second claim follows by the first one simply taking the derivative

of (3) with respect to y .

v) We prove that

lim sup
y→ζ−m,1

Hj(y) < +∞, ∀j = 1, . . . , M. (5)

In fact, let use suppose that there exists a sequence yl < ζm,1 such that yl → ζm,1 and
a second diverging sequence Hl satisfying (3) with y = yl . Dividing (3) by Hm−1

l we
get

φm(−yl)Hl + mnφm−1(−yl) + O(H−1
l ) = 0.

Since by Lemma 5 both φm−1(−y) and φm(−y) are negative as y ∈ (0, ζm,1) we
conclude that Hl → −∞ .
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vi) For every ε > 0 , every solution y = y(ε) of G̃m,n,ε(y) = 0 must satisfy

log(y/ε) = Hj(y), i.e., ε = ye−Hj(y), (6)

for some j = 0, . . . , M . R.H.S. of (6) is positive when y > 0 and tends to 0+ as
y → 0+ by first claim in (4). Moreover, its derivative is (1 − yH′

j )e
−Hj so that R.H.S.

has only finitely many oscillations on every compact subset of (0, ζm,1) (since Hj is
analytical here). Actually, R.H.S. has only finitely many oscillations also in the larger
interval (0, ζm,1 − η) for every η > 0 , since (1 − yH′

j ) diverges to +∞ as y → 0+

by (4). Besides, lim infy→ζ−m,1
ye−Hj(y) > 0 by Step v). As a consequence, for ε small

enough, Equation (6) admits only one solution yj = yj(ε) and such solution tends to
zero as ε → 0 . Since there are M � m distinct equations of type (6), also the last
claim of Lemma 7 is proved.

�
We are now able to prove the following result.

LEMMA 8. For every m > 0 let

bm := 2( 2ζ(m+1)
π δm odd + ζ(m)δm even)

( log 2
2π

)m
m∑

j=1

|φm(−ζm+1,j)|e−ζm+1,j .

Then, for every m > 0 and n � 0 we have

|F̌n|(x) � (bm + om,n(1))(log2(1/ε))n as x → 1− .

Proof. By Lemma 4 we have w(m)
n (0, ε) = m(n)φm−n(−ε) logm−n 2 = Om,n(ε)

where

Om,n(ε) :=
{

Om(ε) if n = 0,

Om,n(1) if n > 0,
as ε → 0 .

By this fact, from (2) we have

F̌n(x) = Om,n(ε) − (−1)m

m!

∫ +∞

0
w(m)

n (k, ε)Bm({k}) dk. (7)

Let k̃m,n,j(ε) for j = 1, . . . , m − 1 be the sequence of points we found in Lemma 6.
Define k̃m+1,n,m(ε) := +∞ . Let k̄m,n,j(ε) for j = 1, . . . , M be the sequence of points
we found in Lemma 7. Define k̄m+1,n,0(ε) := 0 . By (7) we have

|F̌n(x)| � Om,n(ε) + 1
m!

∣∣∣∫ +∞

0
w(n)

m (k, ε)Bm({k}) dk
∣∣∣

� Om,n(ε) + 1
m!

M−1∑
j=0

∣∣∣∫ k̄m+1,n,j+1

k̄m+1,n,j

w(m)
n (k, ε)Bm({k}) dk

∣∣∣
+ 1

m!

∣∣∣∫ k̃m+1,n,1

k̄m+1,n,M

w(m)
n (k, ε)Bm({k}) dk

∣∣∣ + 1
m!

m−1∑
j=1

∣∣∣∫ k̃m+1,n,j+1

k̃m+1,n,j

w(m)
n (k, ε)Bm({k}) dk

∣∣∣.
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In Lemmas 6 and 7 we proved that w(m)
n (k, ε) is monotonous in intervals (k̄m+1,n,j,

k̄m+1,n,j+1) , (k̃m+1,n,j , k̃m+1,n,j+1) and (k̄m+1,n,M , k̃m+1,n,1) , so that Lemma 2 can be used
here, obtaining

|F̌n(x)| � Om,n(ε) + Mm
m!

M−1∑
j=0

(
|w(m)

n (k̄m+1,n,j, ε)| + |w(m)
n (k̄m+1,n,j+1, ε)|

)

+ Mm
m!

(
|w(m)

n (k̃m+1,n,1, ε)| + |w(m)
n (k̄m+1,n,M , ε)|

)

+ Mm
m!

m−1∑
j=1

(
|w(m)

n (k̃n+1,n,j, ε)| + |w(m)
n (k̃m+1,n,j+1, ε)|

)

= Om,n(ε) + Mm
m! |w(m)

n (k̄m+1,n,0, ε)| + 2Mm
m!

M∑
j=1

|w(m)
n (k̄m+1,n,j, ε)|

+ 2Mm
m!

m−1∑
j=1

|w(m)
n (k̃m+1,n,j, ε)| + Mm

m! |w(m)
n (k̃m+1,n,m, ε)|.

Since w(m)
n (k̄m+1,n,0, ε) = w(m)

n (0, ε) = Om,n(ε) and w(m)
n (k̃m+1,n,m, ε) = w(m)

n (+∞, ε) =
0 , previous inequality becomes

|F̌n(x)| � Om,n(ε) + 2Mm
m!

M∑
j=1

|w(m)
n (k̄m+1,n,j, ε)| + 2Mm

m!

m−1∑
j=1

|w(m)
n (k̃m+1,n,j, ε)|. (8)

By Lemma 7 we know that each 2k̄m+1,n,jε tends to zero. As a consequence, k̄m+1,n,j(ε) <

log2(1/ε) when ε is small enough. Using the explicit formula for w(m)
n (k, ε) we found

in Lemma 4, we have that

w(m)
n (k̄m+1,n,j, ε) � e−2k̄m+1,n,j(ε)ε((k̄m+1,n,j(ε))nφm(−2k̄m+1,n,j(ε)ε) + (k̄m+1,n,j(ε))n−1)

� (log(1/ε))nφm(−2k̄m+1,n,j(ε)ε) + (log(1/ε))n−1.

We note that φm(x) is divisible by x when m > 0 , and we know that 2k̄m+1,n,j(ε)ε → 0 ,
hence the previous inequality gives

w(m)
n (k̄m+1,n,j, ε) = om,n((log(1/ε))n),

so that (8) becomes

|F̌n(x)| � Om,n(ε) + om,n((log(1/ε))n) + 2Mm
m!

m−1∑
j=1

|w(m)
n (k̃m+1,n,j, ε)|.

In this estimate the term Om,n(ε) is always dominated by the term om,n(·) , therefore,
we proved that

|F̌n(x)| � om,n((log(1/ε))n) + 2Mm
m!

m−1∑
j=1

|w(m)
n (k̃m+1,n,j, ε)|.
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By Lemma 6 we known that k̃m+1,n,j = log2(1/ε) + log2 ζm+1,j + om,n(1) , so that using

again the explicit formula for w(m)
n (k, ε) we get

|w(m)
n (k̃m+1,n,j, ε)| ∼ e−ζm+1,j |φm(−ζm+1,j)| logm 2(log2(1/ε))n,

hence

|F̌n(x)| � om,n((log(1/ε))n) + 2Mm logm 2
m!

m−1∑
j=1

e−ζm+1,j |φm(−ζm+1,j)|(log2(1/ε))n.

The proof concludes introducing the upper-bounds of Lemma 3 for Mm in previous
estimate. �

Previous lemma shows that the best bound for |F̌n| will be attaint by choosing m
giving the smallest bm . We can prove that such minimum exists. In fact, for every m
there exists j̄ such that

|φm(−ζm+1,j̄)|e−ζm+1,j̄ = max
x∈(−∞,0)

|φm(x)|ex,

therefore,
bm 
 ( log 2

2π
)m

max
(−∞,0)

|φm(x)|ex 
 ( log 2
2π

)m|φm(−1)|.

It is known that the growth of the Bell numbers φm(1) is over-exponential (see for
example [7]). Modifying a little bit the argument in [7] it is possible to prove that also
φm(−1) grows in over-exponential way so that bm → +∞ as m diverges. Actually, a
computation we performed by the PARI program shows that bm decreases for m � 13
with b13 � 4.49 ∗ 10−6 , then suddenly increases (Figure 1). As a consequence, it
seams that the best choice we can make is m = 13 . Choosing m = 13 in Lemma 8 the
theorem follows.
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Figure 1. Values of log(bm) for 1 < m < 50 .

A further improvement can be attaint renouncing to estimate Mm by Lemma 3
and using its exact value. We do not present the details of this computation since the
formula we get in this way is much more involuted and the upper-bound we found in
this way is only very weakly better than the previous one: 4.41 ∗ 10−6 against previous
4.49 ∗ 10−6 .



AN EXPLICIT BOUND FOR THE ERROR TERM 185

3. What is the true behavior of F̌n ?

About F̌0

Computations we performed using the arbitrary precision arithmetic of PARI show
that F̌0(x) oscillates with an amplitude which is practically constant over the range
10−57 < 1 − x < 10−9 (Figure 2, Left). The amplitude of these oscillations is
1.5 ∗ 10−6 , i.e., exactly of the order of the upper-bound we proved in previous section.
Figure 2 (Left) suggests that data will be probably better displayed if a logarithmic scale
will be used for the abscissa. In fact, when the abscissa is L(x) the graphs appear almost
sinusoidal (Figure 2, Right): the Fourier transform of these numerical data shows a very
high peak close to the frequency 1 (Figure 3). Roughly speaking, therefore, Figures 2
and 3 suggest that

α sin(2πL(x) + β), with α ≈ 1.58 ∗ 10−6, β suitable,

provide an excellent fit for F̌0(x) as x → 1− .
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Figure 2. (Left) The overlapped graphes of F̌0(x) in different ranges: (continue line)
10−15 < 1 − x < 10−18 , (dashed line) 10−39 < 1 − x < 10−42 , (small dashes line)

10−54 < 1 − x < 10−57 . The ordinata has been magnified by a factor 106 .
(Right) Same data, but logarithmic abscissa.
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Figure 3. Numerical Fourier transform of F̌0(x) in different ranges: (continue line)
10−15 < 1 − x < 10−18 , (dashed line) 10−39 < 1 − x < 10−42 , (small dashes line)

10−54 < 1 − x < 10−57 .
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About F̌1

The computations reveal two interesting and unexpected aspects. The first one is
that F̌1(x)/L(x) is still of order 10−3 when 1 − x ≈ 10−230 (see Figure 4). This fact
means that such range cannot yet be considered as ‘close enough’ to 1 : by Lemma 8,
in fact, we know that F̌1(x)/L(x) must be lower than 4.49 ∗ 10−6 when 1− x is small
enough.

The second one is that oscillations are present also for 1 − x ≈ 10−130 , but being
of order ≈ 10−6 they are completely hidden by the main term which is still of order
≈ 10−3 , as we told. The oscillations reveal them-self if we remove from the data their
linear baseline, see Figure 5.

At last, we note that the oscillating graphs we produced appear again as simple
sinusoids: in fact, the Fourier transform of the oscillating part of F̌1(x)/L(x) shows a
strong peak around the frequency ≈ 1 (see Figure 6): the same frequency we already
noted for F̌0(x) . As we will see in next paragraph, this fact can be heuristically
explicated as a consequence of the functional equation F0(x) = F1(x) − F1(x2) + x .
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Figure 4. Graph of F̌1(x)/L(x) when 10−133 < 1 − x < 10−130 (left) and
10−233 < 1 − x < 10−230 (right). Logarithmic abscissa. The ordinata has been magnified by

a factor 106 .
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Figure 5. Oscillating part of F̌1(x)/L(x) when 10−133 < 1 − x < 10−130 (left) and
10−233 < 1 − x < 10−230 (right). Logarithmic abscissa. The ordinata has been magnified by

a factor 106 .
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Figure 6. Fourier transform of the oscillating part of F̌1(x)/L(x) in different ranges:
10−133 < 1 − x < 10−130 (left) and 10−233 < 1 − x < 10−230 (right).

About F̌n , n > 1 .

We do not have done any numerical test for F̌n(x) with n > 1 , but we can
formulate some conjectures. In fact, functions Fn satisfy the relation

n∑
m=0

(−1)m

(
n
m

)
Fn(x2m

) = n!F0(x) −
n∑

m=1

m−1∑
k=0

(−1)m

(
n
m

)
(k − m)nx2k

relating Fn directly with F0 . As x → 1− this identity gives

n∑
m=0

(−1)m

(
n
m

)
F̌n(x2m

) = n!F̌0(x) + o(1), (9)

thus, it is quite natural to expect that F̌n(x)/Ln(x) oscillates with the same mean
frequency of F̌0(x) . Formula (9) provides also an interesting, heuristic argument
explicating why this frequency is so near an integer. Let us assume that (in some
heuristic meaning)

F̌n(x) ≈ αLn(x) sin(2πνL(x) + β)

for some constants α, ν, β , as x → 1− . Then

F̌n(x2m
) ≈ αLn(x) sin(2πνL(x) + 2πmν + β + o(1)),

so that from (9) we get

n!F̌0(x) + o(1) ≈ αLn(x)
( n∑

m=0

(−1)m

(
n
m

)
sin(2πνL(x) + 2πmν + β + o(1))

)

≈ αLn(x) · Im
[
e2πiνL(x)+iβ+o(1)(1 − e2πiν)n

]
.

By this formula we see that ν must be an integer, otherwise R.H.S. has oscillations of
order Ln(x) whereas we know that L.H.S. is bounded.
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