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Abstract. AproportionallymodularDiophantine inequality is an expression of the form axmod b �
cx , where a , b and c are positive integers. In this paper we present an algorithm that allows
us to calculate the smallest positive integer that is solution of an inequality of this type. We also
obtain an algorithm that computes the Frobenius number and the number of gaps of a numerical
semigroup generated by three positive integers.

1. Introduction

Given two integers m and n with n �= 0 , we denote by m mod n the remainder
of the division of m by n . Following the notation of [8], a proportionally modular
Diophantine inequality is an expression of the form ax mod b � cx , where a , b and c
are positive integers. Our principal aim in this paper is to give an algorithm that allows
us to calculate the smallest positive integer that is solution of an inequality of this type.
This algorithm as we will see has a great similarity with the Euclides algorithm for
computing the greatest common divisor of two integers.

Given a subset A of N (here N denotes the set of nonnegative integers), then we
will denote by 〈A〉 the submonoid of (N, +) generated by A . That is, 〈A〉 =
{s1a1 + · · · + snan | n ∈ N\ {0} , s1, . . . , sn ∈ N and a1, . . . , an ∈ A} . In this paper,
and as an application of the above mentioned algorithm, we also give an algorith-
mic method that, given three positive integers n1 , n2 and n3 , calculates the smallest
positive multiple of n3 that belongs to 〈 n1, n2〉 .

Finally, combining these results with those obtained in [7] we will obtain an
algorithm that computes the Frobenius number and the number of gaps (see [4]) of a
numerical semigroup generated by three positive integers.
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2. Preliminaries

Given the proportionally modular Diophantine inequality ax mod b � cx , we
denote by S (a, b, c) the set of integer solutions of this inequality, S (a, b, c) = {x ∈
N | ax mod b � cx} .

A numerical semigroup is a subset S of N , that is closed under addition, 0 ∈ S
and such that N\S is finite. In [8] we saw that S (a, b, c) is a numerical semigroup. Not
all numerical semigroups are of this form. We will refer to these type of semigroups as
proportionally modular numerical semigroups.

If S is a numerical semigroup, then the smallest positive integer that belongs to S
is an important invariant of S called the multiplicity of S and we denote it by m (S)
(see for example [1]). Our principal aim in this paper is to give an algorithm that allows
us to calculate the multiplicity of S (a, b, c) . It is an open problem to give a formula
for the multiplicity of S (a, b, c) , from the integers a , b and c . This problem is still
open in the case c = 1 .

Let α < β be two positive rational numbers and let T be the submonoid of(
Q+

0 , +
)

(here Q+
0 denotes the set of nonnegative rational numbers) generated by

the closed interval [α, β ] = {x ∈ Q | α � x � β} . In [8] we saw that T ∩ N

is a proportionally modular numerical semigroup and that all proportionally modular
numerical semigroupcan be obtained in this way. The following result is a reformulation
of [8, Corollary 9].

PROPOSITION 1.
(1) Let a , b and c be positive integers such that c < a < b and let T be the

submonoid of Q+
0 generated by

[
b
a ,

b
a−c

]
. Then T∩N = {x ∈ N | axmod b �

cx} .
(2) Conversely, let a1 , b1 , a2 and b2 be positive integers such that b1

a1
< b2

a2
and

let T be the submonoid of Q+
0 generated by

[
b1
a1

, b2
a2

]
. Then T ∩ N = {x ∈

N | a1b2x mod b1b2 � (a1b2 − a2b1) x} .

Following the notation of (2) of the above proposition we will refer to T ∩ N

as the proportionally modular numerical semigroup associated to the interval
[

b1
a1

, b2
a2

]

and we will denote it by S
([

b1
a1

, b2
a2

])
. Since the inequality ax mod b � cx has the

same solutions of the inequality (a mod b) x mod b � cx , we can assume that a < b .
Moreover, if c � a , then S (a, b, c) = N . Therefore we can suppose that a , b and c
are positive integers such that c < a < b . Consequently the condition imposed in (1)
of the above proposition is not restrictive.

The following result is a reformulation of [8, Lemma 1] and will be used several
times in this paper.

LEMMA 2. Let α < β be positive rational numbers. Then a positive integer x
belongs to S ([α, β ]) if and only if there exists a positive integer y such that α � x

y � β .
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3. The algorithm

In this section, assume that α and β denote positive rational numbers such that
α < β . Our aim is to give an algorithm that allows us to compute the multiplicity of
S ([α, β ]) .

LEMMA 3. If S ([α, β ]) has multiplicity m �= 1 , then there exists a unique
positive integer t such that α � m

t � β .

Proof. Since m ∈ S ([α, β ]) , by Lemma 2, we deduce that there exists a positive
integer t such that α � m

t � β . Let us see that t in this setting is unique. Assume
to the contrary that there exists an integer a � 2 such that α � m

a < m
a−1 � β . As[

m
a , m

a−1

]
⊆ [α, β ] , in view of Lemma 2, we have that S

([
m
a , m

a−1

])
⊆ S ([α, β ]) .

By Proposition 1 we know that S
([

m
a , m

a−1

])
= {x ∈ N | amx modm2 � mx} =

{x ∈ N | ax modm � x} . Since m �= 1 , 1 /∈ S ([α, β ]) and therefore 1 /∈
S

([
m
a , m

a−1

])
. Thus a · 1 modm > 1 . Then a (m − 1) modm = m − (a modm) �

m − 1 and consequently m − 1 ∈ S
([

m
a , m

a−1

])
, which contradicts the fact that m is

the multiplicity of S ([α, β ]) . �
Observe that asserting that S ([α, β ]) has multiplicity different from1 is equivalent

to saying that S ([α, β ]) �= N . Lemma 3 allows us to give the following definition. If
I is a closed interval of Q+

0 such that S (I) �= N , then we call the “small point” of I ,
and denote it by P (I) , the fraction m

t , where m is the multiplicity of S (I) and t is
the unique positive integer such that m

t ∈ I .

LEMMA 4. Assume that S ([α, β ]) �= N and P ([α, β ]) = m
t . If s

x ∈ [α, β ] , then
t � x .

Proof. If s
x ∈ [α, β ] , then by applying Lemma 2 we know that s ∈ S ([α, β ])

and therefore m � s . If t > x , then m
t < m

x � s
x . Thus α � m

t < m
x � β , which

contradicts Lemma 3. �
Observe that as a consequence of the previous lemma we have that P (I) is the

fraction of I with the smallest numerator and also with the smallest denominator.

LEMMA 5. Let us assume that S ([α, β ]) �= N , a ∈ N and P ([α, β ]) = m
t . Then

S ([a + α, a + β ]) �= N and P ([a + α, a + β ]) = m+ta
t .

Proof. If a = 0 , then S ([a + α, a + β ]) = S ([α, β ]) �= N . If a � 1 then
a + α > 1 and in view of Lemma 2 we easily deduce that 1 /∈ S ([a + α, a + β ]) .
Therefore S ([a + α, a + β ]) �= N . Since α � m

t � β , we have that a+α � a+ m
t �

a + β , that is, a + α � m+ta
t � a + β . To conclude the proof we only have to

see that m + ta is the multiplicity of S ([a + α, a + β ]) . Suppose that there exists a
positive integer x ∈ S ([a + α, a + β ]) such that x < m + ta . By applying Lemma 2
we have that there exists a positive integer y such that a + α � x

y � a + β . Therefore

α � x−ay
y � β , and thus in view of Lemma 2, x − ay ∈ S ([α, β ]) . By applying
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Lemma 4 we know that t � y . Consequently x − ay � x − at < m + ta − ta = m,
which contradicts the fact that m is the multiplicity of S ([α, β ]) . �

Given a rational number x we denote by �x	 the integer max{z ∈ Z | z � x} and
by 
x� the integer min{z ∈ Z | x � z} . The following two results follow easily.

LEMMA 6. If S ([α, β ]) �= N and [α, β ] contains an integer, then P ([α, β ]) =
�α�
1 .

LEMMA 7. If [α, β ] does not contain an integer, then �α	 = �β	 .

The next result is the key to give the announced algorithm.

PROPOSITION 8. Let a1 , b1 , a2 and b2 be positive integers such that b1
a1

< b2
a2

,

S
([

b1
a1

, b2
a2

])
�= N and

[
b1
a1

, b2
a2

]
contains no integers. Then a2

b2 mod a2
< a1

b1 mod a1
and

S
([

a2
b2 mod a2

, a1
b1 mod a1

])
�= N . Moreover, if P

([
a2

b2 mod a2
, a1

b1 mod a1

])
= m

t , then

P
([

b1
a1

, b2
a2

])
=

t+
⌊

b1
a1

⌋
m

m .

Proof. By Lemma 7, we have that
⌊

b1
a1

⌋
=

⌊
b2
a2

⌋
. If b1

a1
< b2

a2
, then b1

a1
−

⌊
b1
a1

⌋
<

b2
a2
−

⌊
b2
a2

⌋
and therefore b1 mod a1

a1
< b2 mod a2

a2
. Observe that as

[
b1
a1

, b2
a2

]
does not contain

an integer, both b1
a1

and b2
a2

are not integers, and consequently b1 mod a1 �= 0 and
b2 mod a2 �= 0 . Thus we have a2

b2 mod a2
< a1

b1 mod a1
.

Notice that b2 mod a2 < a2 and therefore 1 < a2
b2 mod a2

. In view of Lemma 2 we

easily deduce that 1 /∈ S
([

a2
b2 mod a2

, a1
b1 mod a1

])
. Hence S

([
a2

b2 mod a2
, a1

b1 mod a1

])
�= N .

If P
([

a2
b2 mod a2

, a1
b1 mod a1

])
= m

t , then m
t ∈

[
a2

b2 mod a2
, a1

b1 mod a1

]
and therefore

t
m ∈

[
b1 mod a1

a1
, b2 mod a2

a2

]
. Hence t

m +
⌊

b1
a1

⌋
∈

[
b1 mod a1

a1
+

⌊
b1
a1

⌋
, b2 mod a2

a2
+

⌊
b1
a1

⌋]
.

Since
⌊

b1
a1

⌋
=

⌊
b2
a2

⌋
we have that

t+
⌊

b1
a1

⌋
m

m ∈
[

b1
a1

, b2
a2

]
. To conclude the proof it suffices

to prove that t +
⌊

b1
a1

⌋
m is the multiplicity of S

([
b1
a1

, b2
a2

])
. Assume to the contrary

that there exists a positive integer x ∈ S
([

b1
a1

, b2
a2

])
such that x < t +

⌊
b1
a1

⌋
m. As

x ∈ S
([

b1
a1

, b2
a2

])
, by applying Lemma 2, there exists a positive integer y such that

x
y ∈

[
b1
a1

, b2
a2

]
. Thus x

y −
⌊

b1
a1

⌋
∈

[
b1 mod a1

a1
, b2 mod a2

a2

]
and consequently y

x−
⌊

b1
a1

⌋
y
∈[

a2
b2 mod a2

, a1
b1 mod a1

]
. Since P

([
a2

b2 mod a2
, a1

b1 mod a1

])
= m

t , we deduce that m � y and

by applying Lemma 4 also t � x−
⌊

b1
a1

⌋
y . Thus t � x−

⌊
b1
a1

⌋
y < t+

⌊
b1
a1

⌋
m−

⌊
b1
a1

⌋
y .

Therefore t < t + (m − y)
⌊

b1
a1

⌋
, which is absurd since m � y . �

The previous lemma allows us to give the following definition. Let I be a closed
interval of positive rational numbers not containing any integer. We define its “reduced
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interval”, and denote it by R (I) , in the following way. If I =
[

b1
a1

, b2
a2

]
with a1 , b1 ,

a2 and b2 positive integers, then R (I) =
[

a2
b2 mod a2

, a1
b1 mod a1

]
.

Notice that the above mentioned definition does not depend on the chosen fractions
as extremes of the interval I . In fact, it suffices to observe that if m and n are positive

integers, then I =
[

nb1
na1

, mb2
ma2

]
and ma2

(mb2) mod (ma2)
= ma2

m(b2 mod a2)
= a2

b2 mod a2
. Similarly,

na1
(nb1) mod (na1)

= a1
b1 mod a1

.
Given a closed interval I of positive rational numbers we define recursively the

following sequence of closed intervals:
I1 = I
In+1 = R (In) if In contains no integers, otherwise In+1 = In .

We will refer to {In}n∈N\{0} as the sequence of intervals associated to I . Observe
that if Ik contains an integer, then In = Ik , for every n � k .

Before we state the following result, let us remember the Euclides algorithm for
calculating the greatest common divisor of two positive integers (see [3]).

Input: b and a positive integers.
Output: the greatest common divisor of b and a .

Begin
(x, y) := (b, a)
While y �= 0 do (x, y) := (y, x mod y)
Return x

End.

LEMMA 9. Let I be a closed interval and let {In}n∈N\{0} be the sequence of
intervals associated to I . Then there exists a positive integer k such that Ik contains
an integer.

Proof. Let a1 , b1 , a2 and b2 be positive integers such that I =
[

b1
a1

, b2
a2

]
. Let

(x1, y1) , (x2, y2) , ... be the values of the variable (x, y) in the Euclides algorithm for
calculating the greatest common divisor of b1 and a1 . In view of the definition of the
sequence {In}n∈N\{0} , we deduce that if In does not contain any integer, then xn

yn
is an

end of the interval In . To conclude the proof we only need to observe that the Euclides
algorithm stops in a finite number of steps. �

Next, we give an example that illustrates the previous lemma.

EXAMPLE 10. Let I =
[

33
13 ,

66
25

]
. Let us construct the sequence of intervals

associated to I .

I1 =
[
33
13

,
66
25

]
, I2 =

[
25
16

,
13
7

]
, I3 =

[
7
6
,
16
9

]
, I4 =

[
9
7
,
6
1

]
.

Observe that I4 already contains an integer. Therefore In = I4 for all n � 4 .

If I is a closed interval with no integers in it, then as a consequence of Lemma 7,
we have that �x	 = �y	 , for all x, y ∈ I . This integer is denoted by �I	 .
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The next result establishes a relation between the “small points” of the elements
of the sequence of intervals associated to a closed interval of positive rational numbers
without integers.

LEMMA 11. Let I be a closed interval such that S (I) �= N and let {In}n∈N\{0}
be the sequence of intervals associated to I . Let l be the smallest positive integer such
that Il contains an integer. For k ∈ {2, . . . , l} , P (Ik−1) = 1

P(Ik)
+ �Ik−1	 .

Proof. It suffices to observe that from Proposition 8 we know that if P (Ik) = m
t ,

then P (Ik−1) = t+�Ik−1�m
m = t

m + �Ik−1	 . �

We are now ready to give the algorithm announced in the beginning of this section.

ALGORITHM 12. Input: I a closed interval of positive rational numbers such that
S (I) �= N .

Output: The multiplicity of the semigroup S (I) .

1. Compute the sequence of intervals associated to I until we find the first interval of
the sequence that contains an integer. Let us denote such intervals by I1, I2, . . . , Il .

2. If Il = [α, β ] , then P (Il) = �α�
1 .

3. Calculate P (I1) by applying successively that P (In−1) = 1
P(In) + �In−1	 .

4. The multiplicity of S (I) is the numerator of P (I1) .

EXAMPLE 13. Let us calculate the multiplicity of the semigroup S
([

33
13 ,

66
25

])
by

applying the results given so far. First of all, let us calculate the sequence of intervals
associated to I =

[
33
13 , 66

25

]
until we find the first term of the sequence that contains an

integer. We already made the computation in the Example 10:

I1 =
[
33
13

,
66
25

]
, I2 =

[
25
16

,
13
7

]
, I3 =

[
7
6
,
16
9

]
, I4 =

[
9
7
,
6
1

]
.

By applying Lemma 6, we know that P (I4) = 2
1 . Now successively applying Lemma

11 we have:

P (I3) =
1
2

+ 1 =
3
2
, P (I2) =

2
3

+ 1 =
5
3
, P (I1) =

3
5

+ 2 =
13
5

.

Therefore, 13 is the multiplicity of S
([

33
13 ,

66
25

])
.

REMARK 14.
1. In this note we intend to show how, given a closed interval I , we can de-

cide if S (I) �= N . Assume that a1 , b1 , a2 and b2 are positive integers

such that I =
[

b1
a1

, b2
a2

]
. In view of Proposition 1 we know that S (I) = {x ∈

N | a1b2x mod b1b2 � (a1b2 − a2b1) x} . Observe that S (I) = N if and only if
1 ∈ S (I) , which is equivalent to a1b2 mod b1b2 � a1b2 − a2b1 .

2. Also observe that if c < a < b , then S (a, b, c) = S
([

b
a ,

b
a−c

])
. As b

a > 1 , by

applying Lemma 2 we deduce that S (a, b, c) �= N .
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In the following example, we apply Algorithm 12 to calculate the smallest positive
integer that is solution of a proportionally modular Diophantine inequality.

EXAMPLE 15. We find the smallest positive integer that satisfies the inequality
231x mod 938 � 3x . To this end, by using Proposition 1, it suffices to calculate the
multiplicity of S

([
938
231 ,

938
228

])
, which can be obtained by applying Algorithm 12.

1. I1 =
[

938
231 ,

938
228

]
, I2 =

[
228
26 , 231

14

]
.

2. As I2 contains an integer, P (I2) = 9
1 .

3. P (I1) = 1
9 + 4 = 37

9 .

4. 37 is the multiplicity of S
([

938
231 ,

938
228

])
.

Therefore 37 is the smallest positive integer that is solution of the inequality 231xmod938
� 3x .

4. An application

Let n1 , n2 and n3 be three positive integers. Our aim in this section will be to
give an algorithm that allows us to calculate the smallest positive multiple of n3 that
belongs to 〈 n1, n2〉 .

We start by introducing two lemmas that will tell us that we can focus on the case
where n1 and n2 are relatively prime.

LEMMA 16. Let n1 , n2 and n3 be positive integers and let d = gcd{n1, n2, n3} .
If ξ n3

d is the smallest positive multiple of n3
d that belongs to

〈
n1
d , n2

d

〉
, then ξn3 is the

smallest positive multiple of n3 that belongs to 〈 n1, n2〉 .

Proof. It suffices to observe that if k is a positive integer, then k n3
d ∈ 〈

n1
d , n2

d

〉
if

and only if kn3 ∈ 〈 n1, n2〉 . �

LEMMA 17. Let n1 , n2 and n3 be positive integers such that gcd{n1, n2, n3} = 1
and let d = gcd{n1, n2} . If ξn3 is the smallest positive multiple of n3 that belongs to〈

n1
d , n2

d

〉
, then ξdn3 is the smallest positive multiple of n3 that belongs to 〈 n1, n2〉 .

Proof. Let ξn3 be the smallest positive multiple of n3 that belongs to 〈 n1, n2〉 .
Let us see that ξ = ξd . Since ξn3 ∈

〈
n1
d , n2

d

〉
, ξn3 = λ n1

d +μ n2
d , for some λ ,μ ∈ N .

Therefore ξdn3 = λn1 + μn2 ∈ 〈 n1, n2〉 . Consequently ξ � ξd . As ξn3 ∈
〈 n1, n2〉 , ξn3 = sn1 + tn2 , for some s, t ∈ N . Thus d|ξn3 . As gcd{n1, n2, n3} = 1 ,

gcd{d, n3} = 1 and in consequence d|ξ . Then we have that ξ
d n3 = s n1

d + t n2
d and

therefore ξ � ξ
d . �

The following result is a reformulation of [9, Lemma 4].

LEMMA 18. Let n1 and n2 be relatively prime positive integers and let u be a pos-
itive integer such that un2 ≡ 1 (mod n1) . Then 〈 n1, n2〉 = {x ∈ N | un2x mod n1n2 �
x} .
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Observe that if n1 and n2 are relatively prime, then by Bézout’s lemma, there
exist positive integers u and v such that un2 − vn1 = 1 . Moreover these integers are
calculable by the so called extended Euclides algorithm (see for example [3]).

PROPOSITION 19. Let n1 , n2 and n3 be positive integers such that gcd{n1, n2} =
1 and let u be a positive integer such that un2 ≡ 1 (mod n1) . If m is the multiplicity
of the semigroup S (un2n3, n1n2, n3) , then mn3 is the smallest positive multiple of n3

that belongs to 〈 n1, n2〉 .

Proof. Let k be a positive integer. In view of Lemma 18 we deduce that
kn3 ∈ 〈 n1, n2〉 if and only if un2n3k mod n1n2 � n3k and this is equivalent to
k ∈ S (un2n3, n1n2, n3) . �

Now we will present the algorithm announced at the beginning of this section.

ALGORITHM 20. Input: n1 , n2 and n3 positive integers such that gcd{n1, n2} =
1 .

Output: ξ = min{k ∈ N\{0} | kn3 ∈ 〈 n1, n2〉 } .
1. Calculate, using the extended Euclides algorithm, a positive integer u such that

un2 ≡ 1 (mod n1) .
2. Calculate by applying Algorithm 12 the multiplicity m of

S (un2n3, n1n2, n3) = S (un2n3 mod n1n2, n1n2, n3) .

3. Return m .

We finish this paper by illustrating the steps of this algorithm with an example.

EXAMPLE 21. Let us calculate the smallest positive multiple of 37 that belongs
to 〈 68, 79〉 .

1. By applying the extended Euclides algorithm we calculate a positive integer u
such that 79 · u ≡ 1 (mod68) . Consider u = 31 .

2. Let us calculate the multiplicity of

S (31 · 79 · 37, 68 · 79, 37) = S (90613, 5372, 37) = S (4661, 5372, 37) .

The sequence of intervals associated to I =
[

5372
4661 ,

5372
4624

]
is

I1 =
[
5372
4661

,
5372
4624

]
, I2 =

[
4624
748

,
4661
711

]
, I3 =

[
711
395

,
748
136

]
.

As I3 contains an integer, we have that P (I3) = 2
1 . Then P (I2) = 1

2 + 6 = 13
2

and P (I1) = 2
13 + 1 = 15

13 . Therefore the multiplicity of S (4661, 5372, 37) is
15 .

3. Thus 15 · 37 is the smallest positive multiple of 37 that belongs to 〈 68, 79〉 .
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5. The Frobenius number and the number of gaps of a numerical semigroup
generated by three positive integers

Let S be a numerical semigroup. Since N\S is finite, the set Z\S has a maximum.
This integer is called the Frobenius number of S (see [4]) and we will denote it by g (S) .
For a set A , we write #A for its cardinality. The elements of N\S are the so called
gaps of S . The set of gaps of S is denoted by H (S) .

It is well-known (see for example [6]) that every numerical semigroup S is finitely
generated and therefore there exists a finite subset A of N such that S = 〈A〉 . We
say that A is a minimal system of generators of S if no proper subset of A generates
S. It is also well-known (see for instance [6]) that S∗\ (S∗ + S∗) is the unique minimal
system of generators of S , with S∗ = S\ {0} .

Let S be a numerical semigroup minimally generated by {n1, n2} . Then Sylvester
proved in [10, 11] that g (S) = n1n2 − n1 − n2 and #H (S) = (n1−1)(n2−1)

2 . If S is
minimally generated by {n1, . . . , np} , with p > 2 , then it is still an open problem
to find formulas for g (S) and #H (S) in terms of n1, . . . , np . Particulary, the case
p = 3 is not solved. In this section, and as an application of the results presented in
the previous section, we give an algorithm that computes the Frobenius number and the
number of gaps of a numerical semigroup minimally generated by {n1, n2, n3} . The
complexity of this algorithm is the same of the Euclides algorithm, and therefore of
O (log n) complexity (see [3]). In this sense is at the same level of the best existing
algorithms to solve this problem (see [4]).

Along this paragraph we shall suppose that S is a numerical semigroup minimally
generated by {n1, n2, n3} . In the study of g (S) and #H (S) we can assume that
gcd {ni, nj} = 1 , for i �= j with i, j ∈ {1, 2, 3} . This is due to the following. If
d = gcd {n1, . . . , np−1} , then Johnson showed in [2] that

g (〈 n1, . . . , np−1, np〉 ) = d · g
(〈n1

d
, . . . ,

np−1

d
, np

〉)
+ (d − 1) np

and Rödseth gives in [5] the formula

#H (〈 n1, . . . , np−1, np〉 ) = d · #H
(〈n1

d
, . . . ,

np−1

d
, np

〉)
+

1
2

(np − 1) (d − 1) .

Hence, we can suppose that gcd {n1, n2} = gcd {n1, n3} = gcd {n2, n3} = 1 . Denote
by ci the positive integer min {x ∈ N\ {0} | xni ∈ 〈 nj, nk〉 } , with {i, j, k} = {1, 2, 3} .
In [7, Proposition 15] it is proved that

g (S) =
1
2

((c1 − 2)n1 + (c2 − 2)n2 + (c3 − 2)n3 + Δ)

with

Δ =
√

(c1n1 + c2n2 + c3n3)2 − 4(c1n1c2n2 + c1n1c3n3 + c2n2c3n3 − n1n2n3)

and in [7, Proposition 17] that

#H (S) =
1
2
((c1 − 1)n1 + (c2 − 1)n2 + (c3 − 1)n3 − c1c2c3 + 1).
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Observe that, by applying Algorithm 20, we obtain c1 , c2 and c3 . Now, using the
previous formulas, we have g (S) and #H (S) .
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