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Abstract. We give relations between the parameters E(X) and f (X) , introduced by the first
author in [4], and other geometric constants. Main results in [4] and [5] are derived and strength-
ened. More precisely, a wider class of Banach spaces with uniform normal structure is obtained.
A relation between E(X) and E(X∗) is also given.

1. Introduction

Let X be a Banach space. If dimX � 2 , then we say that X is nontrivial. Denote
by SX and BX the unit sphere and the closed unit ball of X , respectively. Parameters

E(X) = sup{‖x + y‖2 + ‖x − y‖2 : x, y ∈ SX}
and

f (X) = inf{‖x + y‖2 + ‖x − y‖2 : x, y ∈ SX}
were introduced and studied by the first author [4]. The values of these parameters in
the lp spaces and function spaces Lp[0, 1] are estimated. Among the other results, it
was proved that (a) if E(X) < 8 or f (X) > 2 , then X is uniformly nonsquare; (b) if
E(X) < 5 or f (X) > 32

9 , then X has uniform normal structure.
In this short paper, we give relations between E(X) , f (X) and other geometric

constants. Consequently, main results in [4] and [5] are derived and strengthened. More
precisely, we prove that a Banach space X and its dual space X∗ have uniform normal
structure if E(X) < 3 +

√
5 . Moreover, if E(X) < 2 + 2

√
3 , then X∗ has uniform

normal structure. The exact values of E(Lp[0, 1]) and E(�p) when 1 < p < 2 are also
obtained.

Recall that a Banach space X is said to have uniform normal structure if there
exists 0 < c < 1 such that for any closed bounded convex subset K of X that contains
more than one point, there exists x0 ∈ K such that

sup{‖x0 − y‖ : y ∈ K} < c sup{‖x− y‖ : x, y ∈ K}.
It follows from W. A. Kirk’s result (see [8, 10]) that every Banach space X with uniform
normal structure has the fixed point property, that is for every nonexpansive mapping T
from each bounded closed convex subset C ⊂ X into itself always has a fixed point.
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In a recent paper, M. Kato, L. Maligranda and Y. Takahashi [9] gave a sufficient
condition for uniform normal structure in terms of the von Neumann–Jordan constant
CNJ(X) , which was defined in 1937 by J. A. Clarkson [2] as

CNJ(X) = sup

{‖x + y‖2 + ‖x − y‖2

2(‖x‖2 + ‖y‖2)
: x, y ∈ X and ‖x‖ + ‖y‖ �= 0

}
.

This result has been recently improved by the second author in [13], where among
other things, it was proved that X and X∗ have uniform normal structure whenever
CNJ(X) < 1+

√
3

2 .
Another constantswhichwere used to give sufficient conditions for uniformnormal

structure are J(X) and g(X) defined as

J(X) = sup{min{‖x + y‖, ‖x− y‖} : x, y ∈ SX},
g(X) = inf{max{‖x + y‖, ‖x− y‖} : x, y ∈ SX}.

J. Gao and K.-S. Lau proved in [7] that a Banach space X has normal structure if
J(X) < 3

2 (equivalently, g(X) > 4
3 ), and again this result has been recently improved

by S. Dhompongsa, A. Kaewkhao and S. Tasena, who proved in [3, Theorem 2.1] that

the constant 3
2 can be replaced by 1+

√
5

2 .

2. Results

PROPOSITION 1. For any nontrivial Banach space X ,
(i) f (X) � 2(g(X))2 ;
(ii) E(X) = sup{4(1−δX(ε))2 +ε2 : ε ∈ [0, 2]} , where δX(ε) = inf{1− 1

2‖x+y‖ :
x, y ∈ SX, ‖x − y‖ = ε} is the modulus of convexity of X (see [1]).

Proof. (i) Let x, y ∈ SX , then ‖x + y‖2 + ‖x− y‖2 � 2 max{‖x + y‖2, ‖x− y‖2} .
This implies that f (X) � 2(g(X))2 .

(ii) Let x, y ∈ SX . Then ‖x − y‖ = ε for some ε ∈ [0, 2] and so ‖x + y‖ �
2(1 − δX(ε)) . This implies that ‖x + y‖2 + ‖x − y‖2 � 4(1 − δX(ε))2 + ε2 . On
the other hand, let ε ∈ [0, 2] , we choose sequences {xn} and {yn} in SX so that
‖xn − yn‖ = ε for all n and ‖xn + yn‖ → 2(1 − δX(ε)) (see [11]). This gives
E(X) � ‖xn + yn‖2 + ‖xn − yn‖2 → 4(1− δX(ε))2 + ε2 . This completes the proof.
�

As a consequence of the preceding proposition, we have the following.

COROLLARY 2. Let X be any nontrivial Banach space.
(i) [4, Theorem2.8] If either E(X) < 8 or f (X) > 2 , then X is uniformly nonsquare;
(ii) [4, Theorem 5.3] If E(X) < 5 ( f (X) > 32

9 resp.), then δX(1) > 0 ( g(X) > 4
3

resp.), which in turn implies that X and X∗ have uniform normal structure.

Proof. (i) It is well known that X is uniformly nonsquare if and only if g(X) > 1 ;
equivalently δX(ε) > 0 for some ε ∈ (0, 2) .

(ii) It is easy to see that if E(X) < 5 (or f (X) > 32
9 resp.), then δX(1) > 0

(or g(X) > 4
3 resp.). Finally, we need to prove that g(X) > 4

3 implies δX(ε) > ε−1
2
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for some ε ∈ [1, 2) and the result follows from [12, Corollary 6]. It is known that
J(X) = sup{ε ∈ [0, 2] : ε � 2 − 2δX(ε)} [6, Theorem 3.3] and J(X)g(X) = 2 [6,
Theorem 2.5]. If g(X) > 4

3 , then J(X) < 3
2 . This implies that 3

2 > 2 − 2δX( 3
2 ) , and

so δX( 3
2 ) > (3/2)−1

2 . �

PROPOSITION 3. For any nontrivial Banach space X ,

(J(X))2

2
� E(X)

4
� CNJ(X).

Proof. For x, y ∈ SX , we have 1
2 min{‖x+y‖2, ‖x−y‖2} � 1

4 (‖x+y‖2+‖x−y‖2) �
CNJ(X) . This gives the assertion. �

PROPOSITION 4. For any nontrivial Banach space X ,

(J(X∗))2

2
� E(X)

4
� CNJ(X∗).

Proof. The second inequality holds since CNJ(X∗) = CNJ(X) . To prove the first
inequality, let ε > 0 . We choose u, v ∈ SX∗ so that J(X∗)−ε � min{‖u+v‖, ‖u−v‖} .
Now, let x, y ∈ SX so that

‖u + v‖ − ε � (u + v)(x),
‖u − v‖ − ε � (u − v)(y).

Hence

J(X∗) − 2ε � min{‖u + v‖, ‖u− v‖} − ε

� ‖u + v‖ + ‖u − v‖
2

− ε

� (u + v)(x) + (u − v)(y)
2

=
u(x + y) + v(x − y)

2

� ‖x + y‖ + ‖x − y‖
2

�
(‖x + y‖2 + ‖x − y‖2

2

)1/2

�
(E(X)

2

)1/2
.

Letting ε → 0 yields the assertion. �
The next corollary strengthens results in [4] and [5].

COROLLARY 5. Let X be any nontrivial Banach space.
(i) [5, Theorem 8] If E(X) < 3 +

√
5 , then both X and its dual X∗ have uniform

normal structure.
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(ii) [5, Theorem 9] If f (X) > 12 − 4
√

5 , then X has uniform normal structure.
(iii) [4, Theorem 4.2, Theorem 4.3] If 1 � p � ∞ , then E(Lp[0, 1]) = E(lp) =

22/r+1 where r = min{p, p′} and p′ is the conjugate exponent of p , that is
1/p + 1/p′ = 1 .

Proof. (i) If E(X) < 3 +
√

5 , then J(X) < 1+
√

5
2 and J(X∗) < 1+

√
5

2 . By [3,
Theorem 2.1], X and X∗ have uniform normal structure.

(ii) If f (X) > 12 − 4
√

5 , then g(X) >
√

5 − 1 and so J(X) < 1+
√

5
2 . This

implies X has uniform normal structure.
(iii) It follows from the fact that J(Lp[0, 1]) = J(lp) = 21/r [6, Theorem 3.2] and

CNJ(Lp[0, 1]) = CNJ(lp) = 22/r−1 [2]. �

REMARK 6. There exists a two-dimensional space X for which E(X) �= E(X∗) .
Let X = R

2 with the �2-�1 norm given by

‖|(x1, x2)|‖ =
{

(|x1|2 + |x2|2)1/2, if x1x2 � 0 ;
|x1| + |x2|, if x1x2 � 0 .

Then (see [8, Example 5.8, page 60])

δX(ε) =

⎧⎪⎪⎨
⎪⎪⎩

0, if 0 � ε �
√

2 ;

1 −
√

2 − ε2

2 , if
√

2 � ε �
√

8
3 ;

1 −
√

1 − ε2

8 , if
√

8
3 � ε � 2 .

It follows from Proposition 1 (ii) that E(X) = 6 . The dual space X∗ of X is R
2

equipped with the �2-�∞ norm given by

‖(x1, x2)‖ =
{

(|x1|2 + |x2|2)1/2, if x1x2 � 0 ;
max{|x1|, |x2|}, if x1x2 � 0 .

PROPOSITION 7. E(�2-�∞) = 3 + 2
√

2 .

Proof. In order to calculate E(�2-�∞) , it suffices to take only elements x and y
from the upper half of the unit sphere of �2-�∞ . We suppose for a moment that x is in
the interior of the second quadrant.

We observe that if x = (u, 1) where −1 < u < 0 , then x = (1 − λ )(−1, 1) +
λ (0, 1) for some 0 < λ < 1 . It follows that

‖x + y‖2 + ‖x − y‖2

� (1 − λ )(‖(−1, 1) + y‖2 + ‖(−1, 1)− y‖2) + λ (‖(0, 1) + y‖2 + ‖(0, 1)− y‖2)

� max{‖(−1, 1) + y‖2 + ‖(−1, 1)− y‖2, ‖(0, 1) + y‖2 + ‖(0, 1)− y‖2}
Similarly, if x = (−1, v) where 0 < v < 1 , then

‖x + y‖2 + ‖x − y‖2

� max{‖(−1, 1) + y‖2 + ‖(−1, 1)− y‖2, ‖(−1, 0) + y‖2 + ‖(−1, 0)− y‖2}
= max{‖(−1, 1) + y‖2 + ‖(−1, 1)− y‖2, ‖(1, 0) − y‖2 + ‖(1, 0) + y‖2}.
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This implies that E(�2-�∞) is essentially determined by elements x and y being in the
first quadrant of R

2 or (−1, 1) . We now consider the following cases.

Case 1: x and y are in the first quadrant of R
2 . We write x = (u, v) and

y = (w, z) . It follows that

‖x + y‖2 + ‖x − y‖2 = (u + w)2 + (v + z)2 + max{|u − w|2, |v − z|2}
� (u + w)2 + (v + z)2 + (u − w)2 + (v − z)2

= 4.

Case 2: x is in the first quadrant of R
2 and y = (−1, 1) . In this case, we have

‖x + y‖2 + ‖x − y‖2 = max{|u − 1|2, |v + 1|2} + max{|u + 1|2, |v − 1|2}
= |v + 1|2 + |u + 1|2
= 3 + 2(u + v)

� 3 + 4

(
u2 + v2

2

)1/2

= 3 + 2
√

2.

Consequently, E(�2-�∞) � 3 + 2
√

2 . Moreover, equality is attained for x =
(1/

√
2, 1/

√
2) and y = (−1, 1) and this completes the proof. �

We now present a relationship between E(X) and E(X∗) .

PROPOSITION 8. Let X be a Banach space. Then
(i) E(X) �

√
8E(X∗) and

(ii) E(X∗) �
√

8E(X) .

Proof.(i) First we observe that

E(X) = sup{‖x + y‖2 + ‖x − y‖2 : x, y ∈ BX}.
Let x, y ∈ SX . We choose u, v ∈ SX∗ so that

u(x + y) = ‖x + y‖ and v(x − y) = ‖x − y‖.
Take u′ = ‖x+y‖

2 u and v′ = ‖x−y‖
2 v . It follows that ‖u′‖ � 1 and ‖v′‖ � 1 . Therefore,

‖x + y‖2 + ‖x − y‖2 = 2(u′(x + y) + v′(x − y))
= 2((u′ + v′)(x) + (u′ − v′)(y))
� 2(‖u′ + v′‖‖x‖ + ‖u′ − v′‖‖y‖)
= 2(‖u′ + v′‖ + ‖u′ − v′‖)
� 2

√
2
(‖u′ + v′‖2 + ‖u′ − v′‖2

)1/2

�
√

8E(X∗).

(ii) If X is not reflexive, then X is not uniformly nonsquare and so by Corollary
2, E(X∗) = E(X) = 8 and the inequality holds immediately. On the other hand, if X
is reflexive, then E(X∗∗) = E(X) . It follows from (i) that

E(X∗) �
√

8E(X∗∗) =
√

8E(X).

�
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REMARK 9. If X is not uniformly nonsquare (for example X = l1, l∞ or c0 ),
then E(X) =

√
8E(X∗) and E(X∗) =

√
8E(X) .

REMARK 10. The idea of the proofs of Propositions 4 and 8 is from [9].

We do not know whether or not J(X) < (1+
√

5)/2 implies that the dual space X∗

has uniform normal structure. We now show the following improvement on a sufficient
condition for uniform normal structure of the dual space.

THEOREM 11. If E(X) < 2 + 2
√

3 , then X∗ has uniform normal structure.

Proof. We follow the idea of [14]. Here and hereafter X̃ and X̃∗ denote the
Banach space ultrapower of X and the dual space X∗ of X , respectively. For more
details on the ultrapower construction, we refer the reader to [15]. We first show that if
E(X̃∗) < 2 + 2

√
3 , then X has normal structure. We note here that E(X̃∗) < 2 + 2

√
3

implies that X̃ is reflexive and hence X is superreflexive. If X does not have normal
structure, then by Lemma 2 of [14], there are vectors x̃1, x̃2, x̃3 ∈ S

X̃
and f̃ 1, f̃ 2, f̃ 3 ∈ S

X̃∗
such that

(a) ‖x̃i − x̃j‖ = 1 and f̃ i(x̃j) = 0 for all i �= j ,
(b) f̃ i(x̃i) = 1 for i = 1, 2, 3 , and
(c) ‖x̃3 − (x̃2 + x̃1)‖ � ‖x̃2 + x̃1‖ .

It now follows that

E(X̃∗) � ‖f̃ 2 + f̃ 1‖2 + ‖f̃ 2 − f̃ 1‖2

�
(
(f̃ 2 + f̃ 1)

( x̃2 + x̃1

‖x̃2 + x̃1‖
))2

+
(
(f̃ 2 − f̃ 1)(x̃2 − x̃1)

)2

=
4

‖x̃2 + x̃1‖2
+ 4,

and

E(X̃∗) � ‖f̃ 3 + f̃ 1‖2 + ‖f̃ 3 − f̃ 1‖2

�
(
(f̃ 3 + f̃ 1)

( x̃3 − x̃2 + x̃1

‖x̃3 − x̃2 + x̃1‖
))2

+
(
(f̃ 3 − f̃ 1)(x̃3 − x̃1)

)2

=
4

‖x̃3 − x̃2 + x̃1‖2
+ 4.

Next, we choose g̃1, g̃2 ∈ S
X̃∗ so that

g̃1(x̃3 − x̃2 + x̃1) = ‖x̃3 − x̃2 + x̃1‖,
g̃2(x̃3 − x̃2 − x̃1) = ‖x̃3 − x̃2 − x̃1‖.

Then

‖g̃1 + g̃2‖ + ‖g̃1 − g̃2‖ � ‖g̃1 + g̃2‖‖x̃3 − x̃2‖ + ‖g̃1 − g̃2‖‖x̃1‖
� (g̃1 + g̃2)(x̃3 − x̃2) + (g̃1 − g̃2)(x̃1)
= g̃1(x̃3 − x̃2 + x̃1) + g̃2(x̃3 − x̃2 − x̃1)
= ‖x̃3 − x̃2 + x̃1‖ + ‖x̃3 − x̃2 − x̃1‖.
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Hence,

E(X̃∗) � 2

(‖g̃1 + g̃2‖ + ‖g̃1 − g̃2‖
2

)2

� 2

(‖x̃3 − x̃2 + x̃1‖ + ‖x̃3 − x̃2 − x̃1‖
2

)2

� 2

(‖x̃3 − x̃2 + x̃1‖ + ‖x̃2 + x̃1‖
2

)2

� 8

E(X̃∗) − 4
,

or equivalently E(X̃∗) � 2 + 2
√

3 which is a contradiction.
Finally, as proved above, we have if E(X∗∗) = E(X) < 2 + 2

√
3 , then X∗ has

normal structure. To conclude X∗ has uniform normal structure, we just invoke the fact
that E(X) = E(X̃) . This completes the proof. �

COROLLARY 12. ([13, Theorem 2]) If CNJ(X) < (1 +
√

3)/2 , then X and X∗

have uniform normal structure.
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