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A GENERALIZED REVERSE INEQUALITY

OF THE CORDES INEQUALITY

MASARU TOMINAGA

(communicated by S. Saitoh)

Abstract. The Cordes inequality was extended by using concave or convex functions. In this
note, we give reverse inequalities of its extended ones for an increasing strictly concave submul-
tiplicative function. As an application, we obtain a generalization of Bourin’s inequality which
gives an estimation of operator norm by spectral radius.

1. Introduction

Throughout this note, an operator means a bounded linear operator acting on a
Hilbert space H . Let A and B be positive operators on H . The Cordes inequality [5]
for the operator norm asserts

‖ApBp‖ � ‖AB‖p for all 0 � p � 1 . (1.1)

In [1], Araki showed a trace inequality which entailed the following inequality:

‖BpApBp‖ � ‖BAB‖p for all 0 � p � 1. (1.2)

The Araki inequality (1.2) is equivalent to the Cordes inequality (1.1) ([3], [8]). Furuta
[10] proved that (1.1) is equivalent to the Löwner-Heinz inequality (e.g. [14])

A � B � 0 implies Ap � Bp for all 0 � p � 1. (1.3)

Let f be a continuous real valued function on [0,∞) . Then f is semi-operator
monotone, if f (A

1
2 )2 � f (B

1
2 )2 for A � B � 0 , and f is submultiplicative (resp.

supermultiplicative), if f (ab) � f (a)f (b) (resp. f (ab) � f (a)f (b) ) for all a, b � 0 .
The adjoint f ∗ of f is defined by f ∗(t) := f (t−1)−1 for t > 0 ([12]). J. I. Fujii and
M. Fujii essentially gave the extension of (1.1) ([6], cf. [2, Theorem 2.6]).

THEOREM A. If a nonnegative semi-operator monotone function f on (0,∞) is
submultiplicative, then

‖f (A)f ∗(B)‖ � f (‖AB‖) (1.4)
for all positive operators A and B .

We have the following theorem which is a generalization of (1.2) and equivalent
to (1.4). Moreover it is a refinement of [2, Theorem 2.9].

Mathematics subject classification (2000): 47A63.
Key words and phrases: Cordes inequality, reverse inequality, positive operator, operator inequality.

c© � � , Zagreb
Paper MIA-11-16

221



222 MASARU TOMINAGA

THEOREM 1.1. If a nonnegative operator monotone function f on (0,∞) is
submultiplicative, then

‖f ∗(B2)
1
2 f (A2)

1
2 f ∗(B2)

1
2 ‖ � ‖f ∗(B2)

1
2 f (A)f ∗(B2)

1
2 ‖ � f (‖BAB‖) (1.5)

for all positive operators A and B .

In this note, we give complementary inequalities of Theorems A and 1.1. As an
application, we generalize the following Bourin’s reverse inequality [4]: For a positive
definite matrix A with 0 < m � A � M and a positive semidefinite matrix B

‖AB‖ � M + m

2
√

Mm
r(AB) (1.6)

where r(·) is the spectral radius.

2. Estimations of f (‖BAB‖) by ‖f ∗(B2)
1
2 f (A)f ∗(B2)

1
2 ‖

Let f be a real valued continuous function on the interval I(⊃ [m, M]) and

αf = αf (m, M) :=
f (M) − f (m)

M − m
and βf = βf (m, M) :=

Mf (m) − mf (M)
M − m

.

(2.1)
For an increasing strictly concave (resp. strictly convex) differentiable function f on
[m, M] , we put the interval

If = If ,m,M :=
[
f ′(M)
αf

,
f ′(m)
αf

] (
resp. If = If ,m,M :=

[
f ′(m)
αf

,
f ′(M)
αf

])
.

Here for each λ ∈ If the equation f ′(μ) = λαf has a unique solution μ = μλ ∈
[m, M] . Furthermore we put

F(m, M, f ; λ ) :=

⎧⎪⎪⎨
⎪⎪⎩

(1 − λ )f (c1) if 0 < λ < f ′(c1)
αf

f (μλ ) − (μλαf + βf )λ if λ ∈ If
(1 − λ )f (c2) if λ > f ′(c2)

αf

(2.2)

where c1 = M and c2 = m (resp. c1 = m and c2 = M ).
The function F(m, M, p; λ ) for λ > 0 is monotone decreasing and the equation

F(m, M, p; λ ) = 0 has a unique solution λ = λf (∈ If ) ([13], [15]).
In our previous note [13], we have the following result (cf. [11]):

THEOREM B. Let A be a positive operator on a Hilbert space H such that
m � A � M for some scalars 0 < m < M . Let f be a real valued continuous strictly
concave ( resp. strictly convex ) differentiable function on [m, M] with f (m) �= f (M) .
Then for each λ > 0

f (〈Ax, x〉 ) − λ 〈 f (A)x, x〉 � F(m, M, f ; λ ) (2.3)(
resp. f (〈Ax, x〉 ) − λ 〈 f (A)x, x〉 � F(m, M, f ; λ )

)
holds for all unit vectors x ∈ H .

As our main theorem we give complementary inequalities of Theorem 1.1.
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THEOREM 2.1. Let A and B be positive operators on a Hilbert space H such
that m1 � A � M1 and m2 � B � M2 for some scalars 0 < mi < Mi (i = 1, 2) .
Let f and g be nonnegative real valued differentiable functions on (0,∞) . Then the
following assertions (i) and (ii) hold and they are equivalent :

(i) Suppose that f is increasing strictly concave submultiplicative and λf is a
unique solution of F(m1, M1, f ; λ ) = 0 . Then for each λ ∈ (0, λf ]

f (‖BAB‖) � λ sup
t∈[m2,M2 ]

f (t2)f
(

1
t2

)
‖f ∗(B2)

1
2 f (A)f ∗(B2)

1
2 ‖ (2.4)

+ F(m1, M1, f ; λ ) f (M2
2).

(ii) Suppose that g is increasing strictly convex supermultiplicative and λg is a
unique solution of F(g(m1), g(M1), g−1; λ ) = 0 . Then for each λ ∈ (0, λg]

g−1
(
‖g∗(B2)

1
2 g(A)g∗(B2)

1
2 ‖

)
� λ sup

t∈[m2,M2 ]
g−1(g∗(t2))t−2‖BAB‖ (2.5)

+ F
(
g(m1), g(M1), g−1, λ

)
g−1(g∗(M2

2)).

Proof. Firstly we prove the case (i) . For each λ > 0 and unit vector x ∈ H

f (〈BABx, x〉 ) = f

(〈
A

Bx
‖Bx‖ ,

Bx
‖Bx‖

〉
‖Bx‖2

)

� f

(〈
A

Bx
‖Bx‖ ,

Bx
‖Bx‖

〉)
f (‖Bx‖2)

�
{
λ

〈
f (A)

Bx
‖Bx‖ ,

Bx
‖Bx‖

〉
+ F(m1, M1, f ; λ )

}
f (‖Bx‖2) (by (2.3))

= λ

〈
f (B−2)−

1
2 f (A)f (B−2)−

1
2 · f (B−2)

1
2 Bx

‖f (B−2)
1
2 Bx‖ ,

f (B−2)
1
2 Bx

‖f (B−2)
1
2 Bx‖

〉

× f (‖Bx‖2)‖f (B−2)
1
2 Bx‖2

‖Bx‖2
+ F(m1, M1, f ; λ )f (‖Bx‖2)

� λ‖f ∗(B2)
1
2 f (A)f ∗(B2)

1
2 ‖ · f (‖Bx‖2)‖f (B−2)

1
2 Bx‖2

‖Bx‖2

+ F(m1, M1, f ; λ )f (‖Bx‖2).

Here, we have

f (‖Bx‖2)‖f (B−2)
1
2

Bx
‖Bx‖‖

2 = f (‖Bx‖2)
〈

f (B−2)
Bx

‖Bx‖ ,
Bx

‖Bx‖
〉

(2.6)

� f (‖Bx‖2)f
(〈

x
‖Bx‖ ,

x
‖Bx‖

〉)

= f (‖Bx‖2)f
(

1
‖Bx‖2

)

� sup
t∈[m2,M2]

f (t2)f
(

1
t2

)
.
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Moreover since 0 < f (‖Bx‖2) � f (M2
2) and F(m1, M1, f ; λ ) � 0 for λ ∈ (0, λf ] ,

we have 0 < F(m1, M1, f ; λ )f (‖Bx‖2) � F(m1, M1, f ; λ )f (M2
2) . So the desired

inequality (2.4) holds.
Next we show (2.4) =⇒ (2.5). We replace A , B and f by g(A) , g∗(B2)

1
2 and

g−1 , respectively in (2.4). Since (g−1)∗(g∗(X)) = X for all positive operator X and
g∗ is also increasing, the inequality (2.4) ensures the inequality (2.5). Similarly we can
show (2.5) =⇒ (2.4). �

Suppose that f 0(t) := f (t
1
2 )2 is increasing strictly concave submultiplicative and

λf is a unique solution of F(m2
1, M

2
1 , f 0; λ ) = 0 . If we put A2 and f 0 instead of A and

f in (2.4), respectively, then for each λ ∈ (0, λf ]

f (‖AB‖)2 � λ sup
t∈[m2,M2]

f (t)2f

(
1
t

)2

‖f (A)f ∗(B)‖2 + F(m2
1, M

2
1 , f 0; λ ) f (M2)2

which is a complementary inequality of Theorem A.
Putting f (t) = tp (p � 0 ) in Theorem 2.1, we have the following corollary by

using a generalized Kantorovich constant K(h, p) := hp−h
(p−1)(h−1)

(
p−1

p
hp−1
hp−h

)p
for h > 1

(see [9]).

COROLLARY 2.2. Let A and B be positive operators on a Hilbert space H such
that m1 � A � M1 and m2 � B � M2 and hi = Mi

mi
for some scalars 0 < mi < Mi

(i = 1, 2) . Then the following assertions (i) and (ii) hold and they are equivalent :
(i) Suppose that 0 � p � 1 . Then for each λ ∈ (0, K(h, p)−1]

‖BAB‖p � λ‖BpApBp‖ + F(m1, M1, (·)p; λ ) M2p
2 . (2.7)

(ii) Suppose that p � 1 . Then for each λ ∈ (0, K(h, p)]

‖BpApBp‖ 1
p � λ‖BAB‖ + F

(
mp

1, M
p
1 , (·)

1
p , λ

)
M2

2 . (2.8)

REMARK 2.3. We have the following ratio inequality by (2.4) :

f (‖BAB‖) � λf sup
t∈[m2,M2 ]

f (t2)f
(

1
t2

)
‖f ∗(B2)

1
2 f (A)f ∗(B2)

1
2 ‖.

On the other hand, if λf < λ in Theorem 2.1, then we have similar inequalities. For
example we have the following inequality instead of (2.4) :

f (‖BAB‖) � λ sup
t∈[m2,M2]

f (t2)f
(

1
t2

)
‖f ∗(B2)

1
2 f (A)f ∗(B2)

1
2 ‖+ F(m1, M1, f ; λ ) f (m2

2)

because f (‖Bx‖2) � f (m2
2) > 0 and F(m1, M1, f ; λ ) < 0 .

By a similar method we have the following:
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THEOREM 2.4. Let A and B be positive operators on a Hilbert space H such
that m1 � A � M1 and m2 � B � M2 for some scalars 0 < mi < Mi (i = 1, 2) .
Let f and g be nonnegative real valued differentiable functions on (0,∞) . Then the
following assertions (i) and (ii) hold and they are equivalent :

(i) If f is increasing strictly convex submultiplicative, then for each λ > 0

f (‖BAB‖) � λ sup
t∈[m2,M2]

f (t2)f
(

1
t2

) ∥∥∥f ∗(B2)
1
2 f (A)f ∗(B2)

1
2

∥∥∥ (2.9)

− λ F

(
m1m

2
2, M1M

2
2 , f ,

1
λ

)
.

(ii) If g is increasing strictly concave supermultiplicative, then for each λ > 0

g−1
(
‖g∗(B2)

1
2 g(A)g∗(B2)

1
2 ‖

)
� λ sup

t∈[m2,M2]
g−1(g∗(t2))t−2‖BAB‖ (2.10)

− λ F

(
g(m1)g∗(m2

2), g(M1)g∗(M2
2), g

−1,
1
λ

)
.

Proof. We only prove (i) . If we replace λ and A with 1/λ and BAB , respec-
tively in (2.3), then it follows from m1m2

2 � BAB � M1M2
2 that for each unit vector

x ∈ H and λ > 0

f (‖BAB‖) � 〈 f (BAB)x, x〉 � λ f (〈BABx, x〉 ) − λF(m1m
2
2, M1M

2
2 , f ,

1
λ

).

Moreover by the increase of f we have for each unit vector x ∈ H

f (〈BABx, x〉 ) �
〈

f (A)
Bx

‖Bx‖ ,
Bx
‖Bx‖

〉
f (‖Bx‖2)

=

〈
f (B−2)−

1
2 f (A)f (B−2)−

1
2

f (B−2)
1
2 Bx

‖f (B−2)
1
2 Bx‖ ,

f (B−2)
1
2 Bx

‖f (B−2)
1
2 Bx‖

〉

× f (‖Bx‖2)‖f (B−2)
1
2 Bx‖2

‖Bx‖2

�
〈

f (B−2)−
1
2 f (A)f (B−2)−

1
2

f (B−2)
1
2 Bx

‖f (B−2)
1
2 Bx‖ ,

f (B−2)
1
2 Bx

‖f (B−2)
1
2 Bx‖

〉

× sup
t∈[m2,M2 ]

f (t2)f
(

1
t2

)
.

So we have the desired inequality (2.9).

3. An application to Bourin’s inequality

In [4], Bourin showed the inequality (1.6) which is a reverse inequality of the well-
known inequality r(A) � ‖A‖ where r(·) is the spectral radius. As a generalization of
(1.6), we have the following theorem in our previous note [7]:
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THEOREM C. If A and B are positive operators such that m1 � A � M1 for
some scalars 0 < m1 < M1 , then for each λ > 0

‖(BApB)
1
p ‖ � λ r(AB

2
p ) + F

(
mp

1, M
p
1 , (·)

1
p ; λ

)
‖B‖ 2

p for p > 1 . (3.1)

In this section, we give a further generalization of Theorem C by Theorems 2.1
and 2.4.

COROLLARY 3.1. Let A and B be positive operators such that m1 � A � M1

and m2 � B � M2 for some scalars 0 < mi < Mi (i = 1, 2) . Let f be a nonnegative
real valued increasing differentiable function on (0,∞) . Then the following assertions
hold :

(i) Suppose that f is strictly convex supermultiplicative and λf is a unique
solution of F(f (m1), f (M1), f −1; λ ) = 0 . Then for each λ ∈ (0, λf ]

‖f −1(Bf (A)B)‖ � λ sup
t∈[m2,M2]

f −1(t2)f −1

(
1
t2

)
r(A · (f −1)∗(B2)) (3.2)

+ F(f (m1), f (M1), f −1; λ ) f −1(M2
2).

(ii) Suppose that f is strictly concave supermultiplicative. Then for each λ > 0

‖f −1(Bf (A)B)‖ � λ sup
t∈[m2,M2]

f −1(t2)f −1

(
1
t2

)
r(A · (f −1)∗(B2)) (3.3)

− λ F

(
f (m1)m2

2, f (M1)M2
2 , f

−1,
1
λ

)
.

Proof. If we replace g and B by f and (f −1)∗(B2))
1
2 in (2.5) and (2.10),

respectively, then the desired inequalities (3.2) and (3.3) hold, respectively, by

‖XYX‖ = r(XYX) = r(YX2)

for positive operators X and Y . �
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Inequal. Appl., 2 (1999), 83–111.
[14] G.K. PEDERSEN, Some operator monotone functions, Proc. Amer. Math. Soc., 36 (1972), 309–310.
[15] M. TOMINAGA, An estimation of quasi-arithmetic mean by arithmetic mean and its applications, Ni-

honkai Math. J., 17 (2006), 9–26.

(Received December 26, 2006) Masaru Tominaga
Toyama National College of Technology

Hongo-machi
Toyama-shi, 939-8630

JAPAN
e-mail: mtommy@toyama-nct.ac.jp

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


