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NEW INEQUALITIES FOR MEANS IN TWO VARIABLES

LING ZHU

(communicated by I. Pinelis)

Abstract. In this paper, some bounds for I(x, y) in terms of A(x, y) and L(x, y) , and L(x, y) in
terms of G(x, y) and I(x, y) are established.

1. Introduction

Assuming x and y to be two different positive numbers, let A(x, y) , G(x, y) ,
L(x, y) , and I(x, y) be the arithmetic, geometric, logarithmic, and identric means,
respectively. It is well-known that ( see [1-6])

G(x, y) < L(x, y) < I(x, y) < A(x, y). (1)

First, Carlson [7] gives bounds for L(x, y) in terms of G(x, y) and A(x, y) as
follows

L(x, y) <
1
3
A(x, y) +

2
3
G(x, y). (2)

The further results are obtained by [8] and [9] ( or see [10]) as follows

THEOREM 1 . Inequality

αA(x, y) + (1 − α)G(x, y) < L(x, y) < βA(x, y) + (1 − β)G(x, y) (3)

holds for all positive x and y such that x �= y if and only if α � 0 and β � 1/3 .

Second, Sandor [11] proves that

2
3
A(x, y) +

1
3
G(x, y) < I(x, y). (4)

Alzer and Qiu [8] obtain the following interesting result:
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THEOREM 2 . Inequality

λA(x, y) + (1 − λ )G(x, y) < I(x, y) < μA(x, y) + (1 − μ)G(x, y) (5)

holds for all positive x and y such that x �= y if and only if λ � 2/3 and μ � 2/e .

On the other hand, Sandor [4,12] gives a lower bound for I(x, y) in terms of A(x, y)
and L(x, y) , and obtains

I(x, y) >
A(x, y) + L(x, y)

2
. (6)

In fact, we can obtain the following further results

THEOREM 3 . Inequality

pA(x, y) + (1 − p)L(x, y) < I(x, y) < qA(x, y) + (1 − q)L(x, y) (7)

holds for all positive x and y such that x �= y if and only if p � 1/2 and q � 2/e .

Finally, we give the bounds for L(x, y) in terms of G(x, y) and I(x, y) , and obtain
the following new results.

THEOREM 4 . Inequality

ηG(x, y) + (1 − η)I(x, y) < L(x, y) < ξG(x, y) + (1 − ξ)I(x, y) (8)

holds for all positive x and y such that x �= y if and only if ξ � 1/2 and η � 1 .

Obviously, the right side of (8) is an extension of the following inequality

L(x, y) <
1
2
(G(x, y) + I(x, y)), (9)

which was given by Alzer [5].
In this paper, we shall present new simple proofs of Theorem 1 and 2, then prove

Theorem 3 and 4 by a concise method.

2. Two Lemmas

LEMMA 1 ([13-15]). Let f , g : [a, b] → R be two continuous functions which
are differentiable on (a, b) . Further, let g′ �= 0 on (a, b) . If f ′/g′ is increasing (or
decreasing) on (a, b) , then the functions

f (x) − f (b)
g(x) − g(b)

and
f (x) − f (a)
g(x) − g(a)

are also increasing (or decreasing) on (a, b) .

LEMMA 2 ([16-18]). Let ln and mn (n = 0, 1, 2, · · · ) be real numbers, and let the
power series L(x) =

∑∞
n=0 lnxn and M(x) =

∑∞
n=0 mnxn be convergent for |x| < R .

If mn > 0 for n = 0, 1, 2, · · · , and if ln/mn is strictly increasing (or decreasing) for
n = 0, 1, 2, · · · , then the function L(x)/M(x) is strictly increasing (or decreasing) on
(0, R) .



NEW INEQUALITIES FOR MEANS IN TWO VARIABLES 231

3. A New Proof of Theorem 1

Without loss of generality, we set 0 < x < y . Let u =
√

y/x . Then u > 1 and

L(x, y) − G(x, y)
A(x, y) − G(x, y)

=
u2−1
2 log u − u
u2+1

2 − u
.

Let log u = t , or u = et . Then t > 0 and

L(x, y) − G(x, y)
A(x, y) − G(x, y)

=
sinh t

t − 1

cosh t − 1
.

So we complete the proof of Theorem 1 by proving the next result.

THEOREM 5 . Inequality

α cosh t + (1 − α) <
sinh t

t
< β cosh t + (1 − β) (10)

holds for all t > 0 if and only if α � 0 and β � 1/3 .

Proof. Let f 1(t) = sinh t
t , and g1(t) = cosh t . Then

f ′
1(t)

g′1(t)
=

f 2(t)
g2(t)

, (11)

where f 2(t) = t cosh t − sinh t , and g2(t) = t2 sinh t .

It is easy to show that tanh t
t is decreasing on (0, +∞) , so f ′2 (t)

g′2(t)
= 1

2+(t/ tanh t) is

also decreasing on (0, +∞) . Then f ′1 (t)
g′1(t)

= f 2(t)
g2(t)

= f 2(t)−f 2(0)
g2(t)−g2(0) is decreasing on (0, +∞)

by Lemma 1. Thus H(t) = f 1(t)−f 1(0+)
g1(t)−g1(0+) is decreasing on (0, +∞) by Lemma 1.

Since lim
t→0+

H(t) = 1
3 and lim

t→+∞ H(t) = 0 , the proof of Theorem 5 is complete.

4. A New Proof of Theorem 2

Let t = 1
2 log y

x , we obtain

I(x, y) − G(x, y)
A(x, y) − G(x, y)

=
et coth t−1 − 1
cosh t − 1

,

where t > 0 .
So we finish the proof of Theorem 2 by proving the following results.
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THEOREM 6 . Inequality

λ cosh t + (1 − λ ) < et coth t−1 < μ cosh t + (1 − μ) (12)

holds for all t > 0 if and only if λ � 2/3 and μ � 2/e .

Proof. Let J(t) ≡ et coth t−1−1
cosh t−1 = q1(t)−q1(0+)

r1(t)−r1(0+) , where q1(t) = et coth t−1 , and r1(t) =
cosh t . Then

q′1(t)
r′1(t)

=
1
2
et coth t−1 sinh 2t − 2t

(sinh t)3 ≡ k1(t). (13)

We compute

k′1(t) =et coth t−1 (sinh 2t − 2t)2 + 2(cosh 2t − 1)2 − 3 sinh 2t(sinh 2t − 2t)
4(sinh t)5

=et coth t−1 u1(t)
4(sinh t)5

,

where

u1(t) = (sinh 2t − 2t)2 + 2(cosh 2t − 1)2 − 3 sinh 2t(sinh 2t − 2t).

Let w = 2t . Then w > 0 and

v(w) = u1(t) = (sinhw − w)2 + 2(coshw − 1)2 − 3 sinhw(sinh w − w)

= 4 + w2 + w sinhw − 4 coshw

= 4 + w2 + w
∞∑
n=0

w2n+1

(2n + 1)!
− 4

∞∑
n=0

w2n

(2n)!

=
∞∑

n=3

2(n − 2)
(2n)!

w2n > 0,

so q′1(t)/r′1(t) = k1(t) is increasing on (0, +∞) . This computation leads to the
conclusion that J(t) is increasing on (0, +∞) by Lemma 1. At the same time,
lim

t→0+
J(t) = 2/3 and lim

t→+∞ J(t) = 2/e . So the proof of Theorem 6 is complete.

5. A Concise Proof of Theorem 3

Following the same method, we can compute

I(x, y) − L(x, y)
A(x, y) − L(x, y)

=
I(x,y)
G(x,y) − L(x,y)

G(x,y)
A(x,y)
G(x,y) − L(x,y)

G(x,y)

=
et coth t−1 − sinh t

t

cosh t − sinh t
t

=
t

sinh t e
t coth t−1 − 1

t coth t − 1
,

where 0 < x < y , and t = 1
2 log y

x > 0 .
So we accomplish the proof of Theorem 3 by proving the following result.
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THEOREM 7 . Inequality

p cosh t + (1 − p)
sinh t

t
< et coth t−1 < q cosh t + (1 − q)

sinh t
t

(14)

holds for all t > 0 if and only if p � 1/2 and q � 2/e .

Proof. Let F(t) ≡ t
sinh t e

t coth t−1−1
t coth t−1 = q2(t)−q2(0+)

r2(t)−r2(0+) , where q2(t) = t
sinh t e

t coth t−1 and
r2(t) = t coth t . Then

q′2(t)
r′2(t)

= et coth t−1

(
sinh t − t cosh t
sinh t cosh t − t

+
t

sinh t

)
≡ k2(t). (15)

we compute

k′2(t) = et coth t−1 u2(t)
(sinh t)3(sinh t cosh t − t)2

,

where

u2(t) =2 sinh t(sinh t cosh t − t)2(sinh t − t cosh t) + t(sinh t cosh t − t)3

+ (sinh t)3[t(sinh t)2 cosh t + t2 sinh t − 2(sinh t)3]

=2(sinh t)4 − 4t(sinh t)3 cosh t + 2t2(sinh t)2 − t(sinh t cosh t)3

+ t2(sinh t cosh t)2 + t3 sinh t cosh t − t4 + t(sinh t)5 cosh t + t2(sinh t)4

=
1
4
(cosh 4t − 4 cosh 2t + 3) − t

2
(sinh 4t − 2 sinh 2t) + t2(cosh 2t − 1)

− t
32

(sinh 6t − 3 sinh 2t) +
t2

8
(cosh 4t − 1) + t3 sinh t cosh t − t4 +

t3

2
sinh 2t − t4

+
t

32
(sinh 6t − 4 sinh 4t + 5 sinh 2t) +

t2

8
(cosh 4t − 4 cosh 2t + 3)

=
1
2

∞∑
n=4

dn

(2n + 2)!
t2n+2,

and dn = (2n2 − 7n − 1)16n + [8n + (2n + 2)(2n + 1)(n + 1) + 2(n + 1)]4n > 0 for
n � 4 . So k′2(t) > 0 for t > 0 , and q′2(t)/r′2(t) = k2(t) is increasing on (0, +∞) .
Hence F(t) is increasing on (0, +∞) by Lemma 1. At the same time, lim

t→0+
F(t) = 1/2

and lim
t→+∞F(t) = 2/e . So the proof of Theorem 7 is complete.

6. A Short Proof of Theorem 4

By the transformation t = 1
2 log y

x , we can compute and obtain

L(x, y) − I(x, y)
G(x, y) − I(x, y)

=
L(x,y)
G(x,y) − I(x,y)

G(x,y)

1 − I(x,y)
G(x,y)

=
sinh t

t − et coth t−1

1 − et coth t−1
=

sinh t
t e1−t coth t − 1

e1−t coth t − 1
,

where t > 0 .
So we complete the proof of Theorem 4 by proving the following result.
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THEOREM 8 . Inequality

η + (1 − η)et coth t−1 <
sinh t

t
< ξ + (1 − ξ)et coth t−1 (16)

holds for all t > 0 if and only if ξ � 1/2 and η � 1 .

Proof. Let S(t) ≡ sinh t
t e1−t coth t−1
e1−t coth t−1

= q3(t)−q3(0+)
r3(t)−r3(0+) , where q3(t) = sinh t

t e1−t coth t , and

r3(t) = e1−t coth t . Then

q′3(t)
r′3(t)

=
(sinh t)3 − t2 sinh t
t2(sinh t cosh t − t)

≡ A(t)
B(t)

, (17)

where A(t) = (sinh t)3 − t2 sinh t , and B(t) = t2(sinh t cosh t − t) . Then

A(t) =
∞∑
n=2

ant
2n+1, B(t) =

∞∑
n=2

bnt
2n+1,

where an = 32n+1−3
4(2n+1)! − 1

(2n−1)! , bn = 4n−1

(2n−1)! , n � 2 , and n ∈ N
+ .

So

cn ≡ an

bn
=

3 · 9n − 16n2 − 8n − 3
4n(2n + 1)2n

,

which is increasing for n = 2, 3, · · · . Thus q′3(t)
r′3(t)

= A(t)
B(t) is increasing on (0, +∞)

by Lemma 2, and S(t) is increasing on (0, +∞) by Lemma 1. At the same time,
lim

t→0+
S(t) = 1/2 and lim

t→+∞ S(t) = 1 . So the proof of Theorem 8 is complete.

Acknowlegdements. The authorwould like to thank the editors for their constructive
and useful comments to get the article corrected and published as accurately as possible.

RE F ER EN C ES

[1] D. S. MITRINOVIC, Analytic inequalities, Springer-Verlag, 1970.
[2] B. OSTLE AND H. L. TERWILLIGER, A comparison of two means, Proc. Montana Acad. Sci. 17 (1957),

69–70.
[3] E. B. LEACH AND M. C. SHOLANDER, Extended mean values, J. Math. Anal. Appl. 92 (1983), 207–223.
[4] J. SANDOR, On the identric and logarithmic means, Aequat. Math. 40 (1990), 261–270.
[5] H. ALZER, Ungleichungen fur Mittelwerte, Arch. Math. 47 (1986), 422–426.
[6] K. B. STOLARSKY, The power mean and generalized logarithmic means, Amer. Math. Monthly 87

(1980), 545–548.
[7] B. C. CARLSON, The logarithmic mean, Amer. Math. Monthly 79 (1972), 615–618.
[8] H. ALZER AND S.-L. QIU, Inequalities for means in two variables, Arch. Math. 80 (2003), 201–215.
[9] L. ZHU AND J. H. WU, The weighted arithmetic and geometric means of the arithmetic mean and the

geometric Mean, Journal of Mathematics for Technology (in Chinese) 14 (1998), 150–154.
[10] L. ZHU, From chains for mean value Inequalities to Mitrinovic’s problem II, Int. J. Educ. Sci. Technol.

36 (2005), 118–125.
[11] J. SANDOR, A note on some Inequalities for means, Arch. Math. 56 (1991), 471–473.
[12] J. SANDOR, On certain inequalities for means, II, J. Math. Anal. Appl. 199 (1996), 629–635.
[13] K. VAMANAMURTHY AND M. VUORINEN, Inequalities for means, J. Math. Anal. Appl. 183 (1994),

155–166.



NEW INEQUALITIES FOR MEANS IN TWO VARIABLES 235

[14] G. D. ANDERSON, S.-L. QIU, M. K. VAMANAMURTHY, AND M. VUORINEN, Generalized elliptic integral
and modular equations, Pacific J. Math. 192 (2000), 1–37.

[15] I. PINELIS, L’Hospital type results for monotonicity, with applications, J. Inequal. Pure Appl. Math. 3
(2002), article 5, 5 pp. (electronnic).

[16] M. BIERNACKI AND J. KRZYZ, On the monotonicity of certain functionals in the theory of analytic
functions, Ann. Univ. M. Curie-Sklodowska 2 (1955), 134–145.

[17] S. PONNUSAMY AND M. VUORINEN, Asymptotic expansions and inequalities for hypergeometric
functions, Mathematika 44 (1997), 278–301.

[18] H. ALZER AND S.-L. QIU, Monotonicity theorems and inequalities for the complete elliptic integrals, J.
Comput. Appl. Math. 172 (2004), 289–312.

(Received June 14, 2006) Ling Zhu
Department of Mathematics

Zhejiang Gongshang University
HangZhou

Zhejiang 310035 P. R. of China
e-mail: zhuling0571@163.com

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


