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NEW INEQUALITIES FOR MEANS IN TWO VARIABLES

LING ZHU

(communicated by I. Pinelis)

Abstract. In this paper, some bounds for /(x,y) in terms of A(x,y) and L(x,y),and L(x,y) in
terms of G(x,y) and I(x,y) are established.

1. Introduction

Assuming x and y to be two different positive numbers, let A(x,y), G(x,y),
L(x,y), and I(x,y) be the arithmetic, geometric, logarithmic, and identric means,
respectively. It is well-known that ( see [1-6])

G(x,y) < L(x,y) < I(x,y) < A(x,). (1)

First, Carlson [7] gives bounds for L(x,y) in terms of G(x,y) and A(x,y) as
follows

1 2
L('x7y) < gA(x,y)—l—gG(x,y) (2)
The further results are obtained by [8] and [9] ( or see [10]) as follows

THEOREM 1. Inequality
holds for all positive x and y such that x # y if and only if o < 0 and B > 1/3.

Second, Sandor [11] proves that

%A(x,y) + %G(X,Y) <I(x,y). )

Alzer and Qiu [8] obtain the following interesting result:

Mathematics subject classification (2000): 26E60, 26D07.

Key words and phrases: Geometric mean; Logarithmic mean; Identric mean; Arithmetic mean; Best
constants.

© ﬂEI’EN Zagreb 229

Paper MIA-11-17



230 LING ZHU

THEOREM 2. Inequality
AA(x,y) + (1 = A)G(x,y) <I(x,y) < pA(x,y) + (1 — u)G(x,y) (5)
holds for all positive x and y such that x £y if andonly if A < 2/3 and u > 2/e.

On the other hand, Sandor [4,12] gives a lower bound for I(x,y) in terms of A(x,y)
and L(x,y), and obtains
Al y) + L(x,y)
Ixy) > ST, (©)
In fact, we can obtain the following further results
THEOREM 3. Inequality
PA(x,y) + (1 = p)L(x,y) <I(x,y) < gA(x,y) + (1 = g)L(x,y) (7)
holds for all positive x and y suchthat x #y ifandonly if p < 1/2 and q > 2/e.

Finally, we give the bounds for L(x,y) in terms of G(x,y) and I(x,y), and obtain
the following new results.

THEOREM 4. Inequality
NG (x,y) + (1 = mI(x,y) < Llx,y) < EG(x,y) + (1 = E)I(x,) (®)
holds for all positive x and y such that x # y ifand only if £ < 1/2 and n > 1.

Obviously, the right side of (8) is an extension of the following inequality

Lx,y) < 5(G) +1(x,)), ©)

which was given by Alzer [5].
In this paper, we shall present new simple proofs of Theorem 1 and 2, then prove
Theorem 3 and 4 by a concise method.

2. Two Lemmas

LEMMA 1 ([13-15]). Let f,g : [a,b] — R be two continuous functions which
are differentiable on (a,b). Further, let g’ # 0 on (a,b). If f'/g’ is increasing (or
decreasing) on (a,b), then the functions

fx)—f()

g(x) — g(b)
and

f (&) —f(a)

g(x) — g(a)

are also increasing (or decreasing) on (a,b).

LEMMA 2 ([16-18]). Let I, and m, (n=0,1,2,---) be real numbers, and let the
power series L(x) = > 1L,x" and M(x) = > ° mux" be convergent for |x| < R.
If my >0 for n=0,1,2,---, and if I,/my, is strictly increasing (or decreasing) for
n=0,1,2, -, then the function L(x)/M(x) is strictly increasing (or decreasing) on
(0,R).
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3. A New Proof of Theorem 1

Without loss of generality, we set 0 < x < y. Let u = /y/x. Then u > 1 and

W1
L(.X,y) _G(x>y) 2logu —u

A(x7y)7G(x7y) L‘22—+1_u

Let logu =t,or u=¢'. Then t > 0 and

L(x,y) — G(x,y) %ht —1
A(x,y) — G(x,y) coshr—1"

So we complete the proof of Theorem 1 by proving the next result.
THEOREM 5. Inequality

sinh ¢

acosht+ (1 —a) < < Beosht+ (1 —P) (10)

holds for all t > 0 ifand only if o0 <0 and > 1/3.

Proof. Let fi(t) = ¥ 'and g,(z) = coshz. Then

HOBAD)
a0 )

(11)

where f5(f) = tcosht — sinhz, and g5(f) = £* sinh¢.

is decreasing on (0, +00), so L0 1

m ~ 2+(t/tanhz)
QE) fz{(t; — -gfizg’;:gi%% is decreasing on (0, 4-00)

by Lemma 1. Thus H(z) = M is decreasing on (0, +00) by Lemma 1.

Since liI(I)l H(r) =% and t 111+n H(t) = 0, the proof of Theorem 5 is complete.
1—0t ——+00

It is easy to show that 2! is

also decreasing on (0, +0c0). Then

4. A New Proof of Theorem 2

Let 1 = 1log?, we obtain

)

I(x7y) B G(X,y) etCOthtfl —1
—G(x,y) coshr — 1

=
—
=
<
~

where ¢t > 0.
So we finish the proof of Theorem 2 by proving the following results.
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THEOREM 6. Inequality
Acosht+ (1 —A) < e M= < ycoshr+ (1 — ) (12)

holds forall t > 0 ifand only if A < 2/3 and u > 2/e.

fcotht—1__ _ + _
hPr?Fo}{. Let J(t) = 5t = ‘ijﬁji_‘j;f&} , where g (f) = "~ ‘and r(r) =
coshz. Then
q/l (t) 1 tcotht—1 sinh 27 — 21 _
7 2° e = ) (13)
We compute
K, (1) = othi=1 (sinh 27 — 21)? + 2(cosh 27 — 1)? — 3sinh 2¢(sinh 27 — 21)
e 4(sinh 1)’
:etcothtfl ul(t)
4(sinhz)>’
where

ui(t) = (sinh 2t — 2¢)* + 2(cosh 2z — 1)* — 3 sinh 2¢(sinh 2¢ — 2¢).
Let w =2¢t. Then w > 0 and

v(w) = uy (¢) = (sinhw — w)? + 2(coshw — 1)? — 3 sinh w(sinh w — w)

=4+ w? + wsinhw — 4 coshw

Cal W2 o i w2n+1 B i WZn
N — (2n+1)! “— (2n)!

so ¢1(¢)/ri(r) = ki(¢) is increasing on (0,+o0). This computation leads to the
conclusion that J(¢) is increasing on (0,+o0) by Lemma 1. At the same time,
liI(I)l+ J(t) =2/3 and liEl J(t) = 2/e. So the proof of Theorem 6 is complete.

— t——+0o0

5. A Concise Proof of Theorem 3

Following the same method, we can compute

I(.’C, ) L(.’C, ) COl — sinl COl —
I(6,)) = L(x,y) _ Ghw) Gl _ €N S ghgehil
— T OA(xy) L(x,y) __sinht T _ ’
A(x,y) — L(x,) el — g cosh — st tcothr — 1

where 0 <x < y,and t = Llog? > 0.
So we accomplish the proof of Theorem 3 by proving the following result.
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THEOREM 7. Inequality
sinh ¢ sinh ¢

pcosht—&-(l—p)T < el < gcosht+ (1 —q) , (14)
holds for all t > 0 ifand only if p < 1/2 and q > 2/e.
t_ tcothr—1 __ +
Proof. Let F(t) = Sl _——— L ‘fi?ﬁ;i‘fff&f , where (1) = —l_e'®h=1 and
rp(t) = tcotht. Then
@) eothr—1 [ Sinht —tcosht t _
= = ko(1). 15
rh(1) ¢ sinh#coshr — ¢ * sinh ¢ 2(1) (15)
we compute
lz(t) _ ercothtfl I/tz(l)

(sinh¢)3(sinhzcosht — ¢)2’
where
uy(t) =2sinh¢(sinhzcoshz — r)*(sinh t — 7 cosh) + #(sinh rcosh 7 — 1)
+ (sinh7)[#(sinh7)? coshz + 7> sinh f — 2(sinh 7)*]
=2(sinh#)* — 4¢(sinh 1)’ cosh 7 4+ 2¢*(sinh7)*> — #(sinh 7 coshr)?
+ ¢*(sinhzcosh #)* 4 #* sinh 7 cosh — #* 4 #(sinh #)° cosh 7 + #*(sinh 7)*

t
— 5 (sinh4r — 2sinh 2r) + *(cosh2t — 1)

2 A
(sinh 6¢ — 3 sinh 2¢) + §(cosh 4t — 1) + £ sinhzcoshr — t* + 5 sinh2¢ - *

1
=—(cosh4t — 4 cosh2t+ 3
4

t

32
t r
+ 3—2(sinh 6t — 4 sinh 4z + 5sinh 27) + n (cosh4t — 4 cosh 2t + 3)
_ - dﬂ 2n+2
2 Z (2n+2)! ’

Il
kN

n

and d, = (2n* —Tn— 1)16" + [8n+ (2n+2)(2n+ 1)(n+ 1) +2(n + 1)]4" > 0 for

n>4. So k() >0 for t > 0, and ¢4(¢)/r5(t) = ka(r) is increasing on (0, +00).

Hence F () isincreasingon (0, +00) by Lemma 1. At the same time, liI(I)l F(t)=1/2
t—0*F

and t 1i1+n F(t) = 2/e. So the proof of Theorem 7 is complete.

6. A Short Proof of Theorem 4

By the transformation ¢ = % log ¥, we can compute and obtain

L)) ~1(6y) _ Gt ~ Gy _ B el
Glx.y) —I(vy) 1 L [ — efeomiT elreonr — 1

where t > 0.
So we complete the proof of Theorem 4 by proving the following result.
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THEOREM 8. Inequality

inh
n+ (1 o n)etcothtfl < Slt ! < g + (1 o g)etcothtfl (16)

holds for all t > 0 ifand only if £ < 1/2 and n > 1.

M()lf[colht_l

— + 1 —
Proof. Let S(t) = L= = ‘287;’;5&; , where g3(1) = el —rcoth? apqg
r3(t) = e!='th? Then

g5(t)  (sinht)®> —Asinht _ A(t)

ri(t)  *(sinhzcoshr —t) — B(r)’ (17)
where A(t) = (sinh¢)? — 2 sinh¢, and B(t) = £*(sinhtcoshz — t). Then
A(t) — Zant2n+l’B(t) — ant2n+17
n=2 n=2
where a, = 2(2;:1)3, — (2}111)!717,, = (21:1:11)! ,n>2,and n € NT.
So
a, 3-9"—16n*—-8n—3
Ch = 71— = 5
b, 4"(2n + 1)2n
which is increasing for n = 2,3,---. Thus 'Zé((:)) = % is increasing on (0, 4+00)
3

by Lemma 2, and S(7) is increasing on (0, +00) by Lemma 1. At the same time,
liI(I)l+ S(t) =1/2 and 1i1+n S(¢) = 1. So the proof of Theorem 8 is complete.
— t—+0o0
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