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ALEKSANDRA ČIŽMEŠIJA, MARIO KRNIĆ AND JOSIP PEČARIĆ

(communicated by N. Elezović)

Abstract. In this paper we derive a series of new one-dimensional and multidimensional integral
and discrete inequalities of the Hilbert and the Hardy-Hilbert type, with non-conjugate expo-
nents. First, prove and discuss two equivalent general inequalities of such type, as well as their
corresponding reverse inequalities. The obtained results are then applied to various settings con-
sidering homogeneous functions of a negative real degree. In particular, we prove generalizations
and refinements of some recent results of Rassias et al, related to the Hilbert-type inequalities
with conjugate exponents, and some new multidimensional inequalities of the Godunova type.

1. Introduction

Suppose p and q are real parameters, such that

p > 1, q > 1,
1
p

+
1
q

� 1, (1)

and let p′ = p
p−1 and q′ = q

q−1 respectively be their conjugate exponents, that is,
1
p + 1

p′ = 1 and 1
q + 1

q′ = 1 . Further, define

λ =
1
p′

+
1
q′

(2)

and observe that 0 < λ � 1 holds for all p and q as in (1). In particular, equality
λ = 1 holds in (2) if and only if q = p′ , that is, only if p and q are mutually conjugate.
Otherwise, we have 0 < λ < 1 , and such parameters p and q will be referred to as
non-conjugate exponents.

Considering p , q , and λ as in (1) and (2), Hardy, Littlewood, and Pólya, [5],
proved that there exists a constant Cp,q , dependent only on the parameters p and q ,
such that the following Hilbert-type inequality holds for all non-negative functions
f ∈ Lp(R+) and g ∈ Lq(R+) :∫ ∞

0

∫ ∞

0

f (x)g(y)
(x + y)λ

dxdy � Cp,q‖f ‖Lp(R+)‖g‖Lq(R+). (3)
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However, the original proof did not bring any information about the value of the best
possible constant Cp,q . That drawback was improved by Levin, [9], who obtained an
explicit upper bound for Cp,q ,

Cp,q �
(
π cosec

π
λp′

)λ

. (4)

This was an interesting result since the right-hand side of (4) reduces to the previously
known sharp constant πcosec π

p′ when the exponents p and q are conjugate. A simpler
proof of (4), based on a single application of Hölder’s inequality, was given later by
F. F. Bonsall, [2].

On the other hand, through the years, Hilbert-type inequalities with conjugate
exponents were discussed by several authors, who either reproved them using various
techniques, or applied and generalized them in many different ways. A comprehensive
survey of the classical Hilbert and Hardy-Hilbert-type inequalities for integrals and
sums, as well as their new extensions, generalizations, and refinements, can be found
in the recent paper [3] of M. Gao and L C. Hsu. Here we just refer to a recent result
of B. Yang and T. M. Rassias, [13]. Namely, for p > 1 , s > 2 − min{p, p′} , and
non-negative functions f and g , they proved that the following inequalities hold and
are equivalent:∫ ∞

0

∫ ∞

0

f (x)g(y)
(x + y)s

dxdy

� B

(
1 +

s − 2
p

, 1 +
s − 2

p′

)[∫ ∞

0
x1−sf p(x)dx

] 1
p

·
[∫ ∞

0
y1−sgp′(y)dy

] 1
p′

and∫ ∞

0
y(s−1)(p−1)

[∫ ∞

0

f (x)
(x+y)s

dx

]p

dy � Bp

(
1+

s−2
p

, 1+
s−2
p′

)∫ ∞

0
x1−sf p(x)dx,

where B(·, ·) is the usual Beta function. Moreover, the constant involved in the right-
hand sides of both inequalities is the best possible, that is, cannot be replaced by any
smaller constant.

Our aim in this paper is to provide a unified treatment of the mentioned results,
and extend them to cover also the case when p and q are not conjugate exponents.
In particular, we obtain a series of new one-dimensional and multidimensional integral
and discrete inequalities of the Hilbert and the Hardy-Hilbert type, with homogeneous
kernels of some negative real degree and with both conjugate and non-conjugate expo-
nents.

The paper is organized in the following way: After this Introduction, in Section 2
we state and prove a pair of equivalent Hilbert and Hardy-Hilbert-type inequalities with
conjugate and non-conjugate exponents p and q , related to general measure spaces X
and Y with positive σ -finite measures, and to general non-negative kernels K . These
relations are also discussed with respect to parameters p and q , in order to obtain the
corresponding reverse inequalities. The results of this section are then applied to a
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range of settings considering homogeneous functions K of some negative real degree
s . First, in Section 3, we derive equivalent one-dimensional integral Hilbert and Hardy-
Hilbert-type inequalities related to intervals in R+ , whose right-hand sides involve
power weights with arbitrary exponents from certain intervals in R . Especially, in the
case when integrals are taken over R+ , we obtain inequalities with explicit constant
factors on their right-hand sides. On the other hand, in the case of proper intervals, we
show that these relations can be strengthened. In particular, in Section 4 we perform a
detailed analysis of such relations in the case when K(x, y) = (x+ y)−s and derive new
related strengthened inequalities with non-conjugate exponents. The following Section
5 is dedicated to some further generalizations of the results from Section 3, obtained
by some suitable transformations of R

2
+ , namely, translations and transformations of

the form (x, y) �→ (Axμ , Byν) . Moreover, in Section 6 we present the corresponding
discrete results, related to sequences of non-negative real numbers. Finally, in Section
7 we prove some new Godunova-type inequalities, that is, equivalent inequalities of the
Hilbert and Hardy-Hilbert type, with conjugate and non-conjugate exponents, related
to cells in R

n
+ and kernels of the form x−sK

( y
x

)
.

It is important to emphasize that the results presented in this paper cover all
discrete and integral results from [3], [6], [7], [8], [10], [11], and [13], and extend
them to the case of non-conjugate exponents. Moreover, the technique introduced
in Section 2 enables generalizations of one-dimensional integral inequalities to some
multidimensional settings.

Conventions. Throughout this paper, let r′ be the conjugate exponent to a positive
real number r �= 1 , that is, 1

r + 1
r′ = 1 , or r′ = r

r−1 . All measures are assumed to be
positive and σ -finite, and functions to be non-negative and measurable. Expressions of
the form 0 · ∞ , 0

∞ , ∞
∞ , and 0

0 are taken to be equal to zero. In addition, inequalities
like (7) and (8) are interpreted to mean that if the right-hand side is finite, so is the
left-hand side and the inequality holds.

2. General inequalities of the Hardy-Hilbert type

To provide a basis for our main results, in this section we first discuss two general
inequalities of the Hardy-Hilbert type. These equivalent relations are stated and proved
in the following theorem.

THEOREM 1. Let real parameters p , q , and λ be as in (1) and (2), and let X
and Y be measure spaces with positive σ -finite measures μ1 and μ2 respectively. Let
K be a non-negative measurable function on X × Y , ϕ a measurable, a.e. positive
function on X , and ψ a measurable, a.e. positive function on Y . If the functions F on
X and G on Y are defined by

F(x) =
[∫

Y
K(x, y)ψ−q′(y)dμ2(y)

] 1
q′

, x ∈ X, (5)

and

G(y) =
[∫

X
K(x, y)ϕ−p′ (x)dμ1(x)

] 1
p′

, y ∈ Y, (6)
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then for all non-negative measurable functions f on X and g on Y the inequalities∫
X

∫
Y

Kλ (x, y)f (x)g(y)dμ1(x)dμ2(y) � ‖ϕFf ‖Lp(μ1)‖ψGg‖Lq(μ2) (7)

and

{∫
Y

[
(ψG)−1(y)

∫
X

Kλ (x, y)f (x)dμ1(x)
]q′

dμ2(y)

} 1
q′

� ‖ϕFf ‖Lp(μ1) (8)

hold and are equivalent.

Proof. We prove the inequality (7) first. Let K , ϕ , and ψ be as in the statement
of Theorem 1 and let f and g be arbitrary non-negative measurable functions on X
and Y respectively. Since 1

q′ + 1
p′ + (1− λ ) = 1 , the left-hand side of the relation (7)

can be written as∫
X

∫
Y

Kλ (x, y)f (x)g(y)dμ1(x)dμ2(y) =
∫

X

∫
Y

[
K(x, y)ψ−q′(y)(ϕpFp−q′ f p)(x)

] 1
q′ ×

×
[
K(x, y)ϕ−p′(x)(ψqGq−p′gq)(y)

] 1
p′ [(ϕFf )p (x) (ψGg)q (y)

]1−λ
dμ1(x)dμ2(y). (9)

Now, by using Hölder’s inequality, either with the parameters q′, p′, 1
1−λ > 1 in the

case of non-conjugate exponents p and q , or with the parameters p and p′ when
q′ = p (that is, when λ = 1 ), and then applying Fubini’s theorem, we obtain that the
right-hand side of (9) is not greater than

{∫
X

[∫
Y

K(x, y)ψ−q′(y)dμ2(y)
]

(ϕpFp−q′ f p)(x)dμ1(x)
} 1

q′ ×

×
{∫

Y

[∫
X

K(x, y)ϕ−p′(x)dμ1(x)
]

(ψqGq−p′gq)(y)dμ2(y)
} 1

p′ ×

×
[∫

X
(ϕFf )p (x)dμ1(x)

]1−λ

·
[∫

Y
(ψGg)q (y)dμ2(y)

]1−λ

=
[∫

X
(ϕFf )p (x)dμ1(x)

] 1
q′ +1−λ

·
[∫

Y
(ψGg)q (y)dμ2(y)

] 1
p′ +1−λ

= ‖ϕFf ‖Lp(μ1)‖ψGg‖Lq(μ2),

so (7) is proved. The further step is to prove that (7) implies (8) to hold for all non-
negative measurable functions f on X . In particular, for any such f and the function
g defined by

g(y) = (ψG)−q′(y)
[∫

X
Kλ (x, y)f (x)dμ1(x)

] q′
q

, y ∈ Y,
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applying Fubini’s theorem, the left-hand side of (7) becomes

L =
∫

X

∫
Y

Kλ (x, y)f (x)(ψG)−q′ (y)
[∫

X
Kλ (x, y)f (x)dμ1(x)

] q′
q

dμ1(x)dμ2(y)

=
∫

Y

[
(ψG)−1(y)

∫
X

Kλ (x, y)f (x)dμ1(x)
]q′

dμ2(y),

that is, the integral on the left-hand side of (8), while on the right-hand side of (7) we
have

R = ‖ϕFf ‖Lp(μ1)

{∫
Y
(ψG)q(1−q′)(y)

[∫
X

Kλ (x, y)f (x)dμ1(x)
]q′

dμ2(y)

} 1
q

= ‖ϕFf ‖Lp(μ1)L
1
q .

Hence,

L � ‖ϕFf ‖Lp(μ1)L
1
q ,

which directly yields (8), so the implication (7) ⇒ (8) is proved. Conversly, by using
Hölder’s inequality for the conjugate exponents q and q′ , together with the relation
(8), for arbitrary f , g � 0 we have∫

X

∫
Y

Kλ (x, y)f (x)g(y)dμ1(x)dμ2(y)

=
∫

Y
(ψGg)(y)

[
(ψG)−1(y)

∫
X

Kλ (x, y)f (x)dμ1(x)
]

dμ2(y)

� ‖ψGg‖Lq(μ2)

{∫
Y

[
(ψG)−1(y)

∫
X

Kλ (x, y)f (x)dμ1(x)
]q′

dμ2(y)

} 1
q′

� ‖ϕFf ‖Lp(μ1)‖ψGg‖Lq(μ2).

Thus, (8) implies (7), so these inequalities are equivalent. The proof of Theorem 1 is
now completed. �

REMARK 1. Observe that the sign of inequality in (7) depends only on the pa-
rameters p′ , q′ , and λ , since the crucial step in proving this relation was in applying
Hölder’s inequality. Therefore, besides p′, q′ > 1 and λ ∈ 〈 0, 1] , as in (1) and (2), we
can consider exponents which provide the reversed sign of inequality in (7). Especially,
if the parameters p and q from Theorem 1 are such that

p < 0, q ∈ 〈 0, 1〉 ,
1
p

+
1
q

� 1, (10)

and λ is defined by (2), we have p′ ∈ 〈 0, 1〉 , q′ < 0 , and 1 − λ � 0 , so the sign of
inequality in (7) is reversed as a direct consequence of the so-called reversed Hölder’s
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inequality (for details, see e.g. [12, Chapter V]). The same result is achieved also with
the parameters p and q satisfying

p ∈ 〈 0, 1〉 , q < 0,
1
p

+
1
q

� 1, (11)

since from (11) we obtain p′ < 0 , q′ ∈ 〈 0, 1〉 , and 1 − λ � 0 . Moreover, by using
the same arguments, p, q ∈ 〈 0, 1〉 give another sufficient condition for the reversed
inequality sign in (7). In that case we have p′, q′ < 0 , and 1 − λ > 0 . Finally, it is
obvious that for all cases of the parameters p′ , q′ , and λ , the relations (7) and (8)
hold with the same sign of inequality.

REMARK 2. Note that equality in (7) holds if and only if it holds in Hölder’s
inequality, that is, if and only if the functions Kψ−q′ϕpFp−q′ f p , Kϕ−p′ψqGq−p′gq ,
and (ϕFf )p(ψGg)q are effectively proportional on X × Y . Of course, this trivially
happens if at least one of the functions involved in the left-hand side of (7) is a zero-
function. To discuss other non-trivial cases of equality in (7), we can without loss of
generality assume that the functions K , f , and g are positive. Otherwise, instead of
X × Y , we consider the set S = {(x, y) ∈ X × Y : K(x, y)f (x)g(y) > 0} , which has a
positive measure. Under such assumptions, equality in (7) occurs if and only if there
exist positive real constants α1 , β1 , and γ1 , such that the relations

α1K(x, y)ψ−q′(y)(ϕpFp−q′ f p)(x) = β1K(x, y)ϕ−p′ (x)(ψqGq−p′gq)(y)

= γ1 (ϕFf )p (x) (ψGg)q (y)

hold for a.e. (x, y) ∈ X × Y . Further, these equalities can be written in a more suitable,
equivalent form, as

α1(ϕp+p′Fp−q′ f p)(x) = β1(ψq+q′Gq−p′gq)(y), for a.e. (x, y) ∈ X × Y, (12)

and
α1K(x, y) = γ1Fq′(x)(ψq+q′Gqgq)(y), for a.e. (x, y) ∈ X × Y. (13)

Since the left-hand side of (12) depends only on x ∈ X , while the right-hand side of
this relation is a single-variable function of y ∈ Y , (12) holds only if

ϕp+p′Fp−q′ f p = αp = const. a.e. on X

and
ψq+q′Gq−p′gq = βp = const. a.e. on Y,

for some positive real constants α and β . Considering 1 + p′
p = p′ and 1 + q′

q = q′ ,
these identities can be finally transformed to

f = αϕ−p′F
q′
p −1 a.e. on X and g = βψ−q′G

p′
q −1 a.e. on Y. (14)

Moreover, combining (14) with (13), we obtain

K = γFq′Gp′ a.e. on X × Y, (15)



GENERAL HILBERT-TYPE INEQUALITIES WITH NON-CONJUGATE EXPONENTS 243

for some positive real constant γ . Therefore, we proved that the conditions (14) and
(15) are necessary and sufficient for equality in (7). Moreover, it is clear from the proof
of Theorem 1 that the equality in (8) holds only if it holds in (7).

As an example of the function K which fulfills (15), here we mention

K(x, y) =
ϕp′(x)ψq′ (y)
μ1(X)μ2(Y)

, (x, y) ∈ X × Y,

where the sets X and Y are such that μ1(X),μ2(Y) < ∞ and the functions ϕ and ψ
are arbitrary, as in Theorem 1. In particular, in this setting we have

F = μ1(X)
− 1

q′ ϕ
p′
q′ and G = μ2(Y)

− 1
p′ ψ

q′
p′ ,

so K fulfills (15) with γ = 1 . Equality in (7) is attained for f = αϕ−1− p′
q′ and

g = βψ−1− q′
p′ , where α and β are positive constants.

In the case of conjugate exponents, that is, when q = p′ and λ = 1 , Theorem 1
reduces to the following corollary.

COROLLARY 1. Suppose p > 1 and X and Y are measure spaces with positive
σ -finite measures μ1 and μ2 respectively. If K is a non-negative measurable function
on X × Y , ϕ is a measurable, a.e. positive function on X , ψ is a measurable,
a.e. positive function on Y , the function F on X is defined by

F(x) =
[∫

Y
K(x, y)ψ−p(y)dμ2(y)

] 1
p

, x ∈ X,

and the function G on Y is given by (6), then for all non-negativemeasurable functions
f on X and g on Y the inequalities∫

X

∫
Y

K(x, y)f (x)g(y)dμ1(x)dμ2(y) � ‖ϕFf ‖Lp(μ1)‖ψGg‖Lp′(μ2)
(16)

and {∫
Y

[
(ψG)−1(y)

∫
X

K(x, y)f (x)dμ1(x)
]p

dμ2(y)
} 1

p

� ‖ϕFf ‖Lp(μ1) (17)

hold and are equivalent. Moreover, if 0 �= p < 1 , the sign of inequality in (16) and
(17) is reversed.

REMARK 3. Corollary 1 is a slight generalization of Theorem 1 from [7], where
M. Krnić and J. Pečarić considered only the case of conjugate parameters. Thus, our
Theorem 1 may be regarded as an extension of the mentioned result to non-conjugate
exponents.

3. The case of homogeneous functions K

In this section, we apply general results from Theorem 1 to non-negativemonotone
homogeneous functions K on R

2
+ of some negative real degree. More precisely, we

consider a non-negative function K : R
2
+ → R with the following properties:
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(i) K is strictly decreasing in each argument, that is, for all x1, x2, y ∈ R+ , x1 < x2 ,
we have

K(x1, y) > K(x2, y) and K(y, x1) > K(y, x2);

(ii) K is homogeneous of degree −s for some s ∈ R+ , that is, the identity
K(tx, ty) = t−sK(x, y) holds for all t, x, y ∈ R+ ;

(iii) K is such that k(α) < ∞ holds for all α ∈ 〈 1 − s, 1〉 , where we denote

k(α) =
∫ ∞

0
K(1, u)u−αdu, α ∈ R.

Observe that the condition (ii) implies the following sequence of identities:

k(α) =
∫ ∞

0
K

(
1
u
, 1

)
u−s−αdu =

∫ ∞

0
K(u, 1)us+α−2du,

while from (i) we obtain that K is strictly positive on R
2
+ . In particular, for α � 1 ,

monotonicity of K in the second argument and the fact that K(1, 1) > 0 yield

k(α) =
∫ ∞

0
K(1, u)u−αdu �

∫ 1

0
K(1, u)u−αdu � K(1, 1)

∫ 1

0
u−αdu = ∞.

Analogous result holds also for α � 1 − s , since

k(α) =
∫ ∞

0
K(u, 1)us+α−2du �

∫ 1

0
K(u, 1)us+α−2du

� K(1, 1)
∫ 1

0
us+α−2du = ∞.

Therefore, the interval 〈 1−s, 1〉 , considered in (iii), covers all arguments α for which
k(α) may converge. The same conclusion on convergence of k(α) can be drawn if in
(i) we consider a function K decreasing in each argument and such that K(1, 1) > 0 .

Now, we can state our first result concerning homogeneous functions.

THEOREM 2. Let p , q , and λ be as in (1) and (2), and let 0 � a, b, c, d � ∞ be
such that a < b and c < d . Suppose K is a non-negative measurable function on R

2
+ ,

fulfilling the conditions (i), (ii), and (iii), and the function H is, for α ∈ 〈 1 − s, 1〉 ,
0 � e < f � ∞ , and t ∈ R+ defined by

H(α, e, f ; t) =
∫ f

t

e
t

K(1, u)u−αdu. (18)

Then for all real parameters A1 and A2 , such that A1p′, A2q′ ∈ 〈 1− s, 1〉 , and for all
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non-negative measurable functions f on 〈 a, b〉 and g on 〈 c, d〉 , the inequalities∫ b

a

∫ d

c
Kλ (x, y)f (x)g(y)dxdy

�
[∫ b

a
x
(A1−A2)p+(1−s) p

q′ H
p
q′ (A2q

′, c, d; x)f p(x)dx

] 1
p

×

×
[∫ d

c
y
(A2−A1)q+(1−s) q

p′ H
q
p′
(
2 − A1p

′ − s, b−1, a−1; y−1
)
gq(y)dy

] 1
q

(19)

and

{∫ d

c
y
(A1−A2)q′+(s−1) q′

p′ H
− q′

p′
(
2−A1p

′−s, b−1, a−1; y−1
) [∫ b

a
Kλ (x, y)f (x)dx

]q′

dy

⎫⎬
⎭

1
q′

�
[∫ b

a
x
(A1−A2)p+(1−s) p

q′ H
p
q′ (A2q

′, c, d; x)f p(x)dx

] 1
p

(20)

hold and are equivalent. Moreover, if p and q are as in (10), (11), or p, q ∈ 〈 0, 1〉 ,
the signs of inequality in (19) and (20) are reversed.

Proof. Suppose that in Theorem 1 we have X = 〈 a, b〉 , Y = 〈 c, d〉 , ϕ(x) = xA1 ,
ψ(y) = yA2 , and Lebesgue measures dμ1(x) = dx , dμ2(y) = dy . In this setting,
by using homogenity of the function K and some suitable substitutions, (5) and (6)
respectively read

F(x) =

[∫ d

c
K(x, y)y−A2q

′
dy

] 1
q′

= x
− s

q′

[∫ d

c
K
(
1,

y
x

)
y−A2q

′
dy

] 1
q′

= x
1−s
q′ −A2H

1
q′ (A2q

′, c, d; x), x ∈ 〈 a, b〉 ,

and

G(y) =

[∫ b

a
K(x, y)x−A1p

′
dx

] 1
p′

= y
− s

p′

[∫ b

a
K

(
x
y
, 1

)
x−A1p

′
dx

] 1
p′

= y
1−s
p′ −A1

[∫ b
y

a
y

K(u, 1)u−A1p
′
du

] 1
p′

= y
1−s
p′ −A1H

1
p′
(
2 − A1p

′ − s, b−1, a−1; y−1
)
, y ∈ 〈 c, d〉 ,

so (19) and (20) hold directly from Theorem 1 by inserting the obtained expressions for
F(x) and G(y) in the relations (7) and (8). The conditions for the reverse inequalities
are already discussed in Remark 1. Note that the function H is well-defined since we
have A1p′, A2q′ ∈ 〈 1 − s, 1〉 . �
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Evidently, the results of Theorem 2 follow mainly from the fact that K is homoge-
neous function of degree −s , that is, from the property (ii), while other two properties
of K , namely (i) and (iii), serve only to ensure that H

(
2 − A1p′ − s, b−1, a−1; ·) and

H(A2q′, c, d; ·) are well-defined, that is, that k(2 − A1p′ − s) and k(A2q′) converge.
Therefore, in the statement of Theorem2 the conditions (i) and (iii) can be replacedwith
the condition that A1 and A2 are such that k(2 − A1p′ − s) < ∞ and k(A2q′) < ∞ .

Of course, the most important case of Theorem 2 is with integrals over R+ , that is,
when a = c = 0 and b = d = ∞ . The corresponding equivalent Hardy-Hilbert-type
inequalities are given in the following corollary.

COROLLARY 2. If p , q , and λ are as in (1) and (2), and K is a non-negative
measurable function on R

2
+ , fulfilling (i), (ii), and (iii), then the inequalities∫ ∞

0

∫ ∞

0
Kλ (x, y)f (x)g(y)dxdy � k

1
p′ (2 − A1p

′ − s)k
1
q′ (A2q

′) ×

×
[∫ ∞

0
x
(A1−A2)p+(1−s) p

q′ f p(x)dx

] 1
p

·
[∫ ∞

0
y
(A2−A1)q+(1−s) q

p′ gq(y)dy

] 1
q

(21)

and{∫ ∞

0
y
(A1−A2)q′+(s−1) q′

p′
[∫ ∞

0
Kλ (x, y)f (x)dx

]q′

dy

} 1
q′

� k
1
p′ (2 − A1p

′ − s)k
1
q′ (A2q

′)
[∫ ∞

0
x
(A1−A2)p+(1−s) p

q′ f p(x)dx

] 1
p

(22)

hold for all real parameters A1 and A2 , such that A1p′, A2q′ ∈ 〈 1 − s, 1〉 , and for all
non-negative measurable functions f and g on R+ . Moreover, these inequalities are
equivalent. If p and q are as in (10), (11), or p, q ∈ 〈 0, 1〉 , the inequalities (21) and
(22) are reversed.

REMARK 4. If the parameters p and q are conjugate, that is, if λ = 1 , Corollary
2 reduces to Corollary 4 from [7]. Thus, the relations (21) and (22) can be seen as a
generalization of the mentioned result of M. Krnić and J. Pečarić.

REMARK 5. Obviously, the function K(x, y) = (x + y)−s , where s > 0 , fulfils
the conditions of Theorem 2 and Corollary 2. In this case, k(α) converges for all
α ∈ 〈 1 − s, 1〉 and we have

k(α) =
∫ ∞

0
(1+u)−su−αdu = B(1−α, s+α−1) = B(s+α−1, 1−α) = k(2−s−α),

where B is the usual Beta function. Hence, the constant on the right-hand sides of

(21) and (22) becomes C = B(1 − A1p′, A1p′ + s − 1)
1
p′ B(1 − A2q′, A2q′ + s − 1)

1
q′ .

Especially, for s = 1 and A = A1 = A2 ∈
〈
0, min{ 1

p′ ,
1
q′ }
〉

, we have

CA = C = πλ cosec
1
p′ (πp′A)cosec

1
q′ (πq′A)
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and (21) reads ∫ ∞

0

∫ ∞

0

f (x)g(y)
(x + y)λ

dxdy � CA‖f ‖Lp(R+)‖g‖Lq(R+).

Since

inf
A

CA = πλ cosec
1
p′ π
λq′

cosec
1
q′ π
λp′

=
(
π cosec

π
λp′

)λ

,

we obtained (3). On the other hand, in the case of conjugate parameters p and q we get
Theorem 1 in [6], so our result extends the one of I. Brnetić and J. Pečarić. Moreover,
for p > 1 , λ = 1 , s > max{2 − p, 2 − p′, 0} , and A1 = A2 = 2−s

pp′ , we obtain

C = B
(

p+s−2
p , p′+s−2

p′
)

, that is, the inequalities from [13, Theorem 4.1], also stated in

our Introduction.

REMARK 6. In Theorem 2 and Corollary 2 we can also consider the function K
defined on R

2
+ by K(x, y) = ln y−ln x

y−x . Evidently, it is homogeneous of degree −1 and
decreasing in both arguments, k(α) converges for all α ∈ 〈 0, 1〉 , and we have

k(α) =
∫ ∞

0

ln u
u − 1

u−αdu =
∫ ∞

−∞

te(1−α)t

et − 1
dt = ψ ′(α) + ψ ′(1 − α) =

π2

sin2 πα
,

where ψ(x) = Γ′(x)
Γ(x) , x > 0 , is the Digamma function and we used the well-known

identity ψ(1−x) = ψ(x)+π cotπx , x ∈ 〈 0, 1〉 (for details on ψ see [1]). Therefore,

(21) and (22) hold with the constant π2λ sin
− 2

p′ A1p′ sin
− 2

q′ A2q′ on their right-hand
sides.

REMARK 7. For the function K given on R
2
+ by K(x, y) = max{x, y}−s , where

s > 0 , we have

k(α) =
s

(1 − α)(s + α − 1)
, α ∈ 〈 1 − s, 1〉 ,

so the constant factor on the right-hand sides of (21) and (22) in this setting becomes

sλ [(1 − A1p′)(s + A1p′ − 1)]
− 1

p′ [(1 − A2q′)(s + A2q′ − 1)]
− 1

q′ .

Note that for all t ∈ R+ and α ∈ 〈 1−s, 1〉 we have H(α, 0,∞; t) = k(α) < ∞ ,
that is, in the case when a = c = 0 and b = d = ∞ , (19) and (20) hold with an
explicit constant factor on their right-hand sides. Therefore, our next step is to consider
other cases of the intervals 〈 a, b〉 and 〈 c, d〉 . In the sequel, we obtain upper bounds
for H which bring some new interesting inequalities of the Hardy-Hilbert type.

LEMMA 1. Let K be a non-negative measurable function on R
2
+ , fulfilling (i),

(ii), and (iii). If α ∈ 〈 1 − s, 1〉 , 0 � e < f � ∞ , 0 � m < t < M � ∞ , and the
function H is defined by (18), then

H(α, e, f ; t) � k(α) − Em,M(α, e, f ; t), (23)
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where

Em,M(α, e, f ; t)

=
(m

t

)1−α ∫ e
m

0
K(1, u)u−αdu +

( t
M

)s+α−1 ∫ M
f

0
K(u, 1)us+α−2du. (24)

Proof. Starting from (18) and then applying (i), (ii), (iii), and some suitable
substitutions in integrals, we obtain

H(α, e, f ; t) = k(α) −
∫ e

t

0
K(1, u)u−αdu −

∫ ∞

f
t

K(1, u)u−αdu

= k(α) −
(e

t

)1−α∫ 1

0
K
(
1,

e
t
u
)

u−αdu −
(

t
f

)s+α−1∫ 1

0
K

(
t
f

u, 1

)
us+α−2du

� k(α) −
(e

t

)1−α∫ 1

0
K
(
1,

e
m

u
)

u−αdu −
(

t
f

)s+α−1∫ 1

0
K

(
M
f

u, 1

)
us+α−2du

= k(α) − Em,M(α, e, f ; t),

so the proof is completed. �
REMARK 8. Since

Em,M(α, 0, f ; t) =
( t

M

)s+α−1∫ M
f

0
K(u, 1)us+α−2du, t ∈ 〈 0, M〉 ,

for e = 0 the estimate (23) does not depend on m . Similarly, for f = ∞ we have

Em,M(α, e,∞; t) =
(m

t

)1−α
∫ e

m

0
K(1, u)u−αdu, t > m.

REMARK 9. Besides functions decreasing in both arguments, we also consider non-
negative functions K : R

2
+ → R which are homogeneousof degree −s for some s > 0 ,

strictly decreasing in the first argument, strictly increasing in the second argument, and
such that k(α) < ∞ holds for all α > 1 . As it was shown in an analysis presented at
the beginning of this section, it can be easily obtained that such functions are positive
on R+ and that k(α) diverges for all α � 1 . Moreover, for α > 1 , e ∈ [0,∞〉 ,
f ∈ 〈 0,∞] , and 0 � m < t < M � ∞ , in this setting we have

H(α, e,∞; t) = k(α) −
∫ e

t

0
K(1, u)u−αdu = k(α) −

(e
t

)1−α∫ 1

0
K
(
1,

e
t
u
)

u−αdu

� k(α) −
(e

t

)1−α∫ 1

0
K
(
1,

e
m

u
)

u−αdu = k(α) − Em,M(α, e,∞; t) (25)
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and

H(α, 0, f ; t) = k(α) −
∫ ∞

f
t

K(1, u)u−αdu

= k(α) −
(

t
f

)s+α−1∫ 1

0
K

(
t
f

u, 1

)
us+α−2du

� k(α) −
(

t
f

)s+α−1∫ 1

0
K

(
M
f

u, 1

)
us+α−2du = k(α) − Em,M(α, 0, f ; t), (26)

where Em,M(α, e,∞; t) and Em,M(α, 0, f ; t) are defined as in Remark 8.
Analogously, for a non-negative function K : R

2
+ → R , strictly increasing in the

first argument, strictly decreasing in the second argument, which fulfils (ii), and such
that for all α < 1 − s we have k(α) < ∞ , the relations (25) and (26) again hold for
α < 1 − s , e ∈ [0,∞〉 , f ∈ 〈 0,∞] , and 0 � m < t < M � ∞ , but the signs of
inequality are reversed.

Lemma 1 provides estimates which yield further pairs of equivalent Hardy-Hilbert-
type inequalities.

THEOREM 3. Let p , q , and λ be as in (1) and (2), and let 0 � a, b, c, d � ∞
be such that a < b and c < d . If K is a non-negative measurable function on R

2
+ ,

fulfilling the conditions (i), (ii), and (iii), and the function E is defined by (24), then
the inequalities∫ b

a

∫ d

c
Kλ (x, y)f (x)g(y)dxdy

�
{∫ b

a
x
(A1−A2)p+(1−s) p

q′
[
k(A2q

′) − Ea,b(A2q
′, c, d; x)

] p
q′ f p(x)dx

} 1
p

×

×
{∫ d

c
y
(A2−A1)q+(1−s) q

p′ ×

× [k(2 − A1p
′ − s) − Ed−1,c−1

(
2 − A1p

′ − s, b−1, a−1; y−1
)] q

p′ gq(y)dy

} 1
q

(27)

and⎧⎨
⎩
∫ d

c
y
(A1−A2)q′+(s−1) q′

p′

[∫ b

a
Kλ (x, y)f (x)dx

]q′

×

× [k(2 − A1p
′ − s) − Ed−1,c−1

(
2 − A1p

′ − s, b−1, a−1; y−1
)]− q′

p′ dy

} 1
q′

�
[∫ b

a
x
(A1−A2)p+(1−s) p

q′
[
k(A2q

′) − Ea,b(A2q
′, c, d; x)

] p
q′ f p(x)dx

] 1
p

(28)
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hold for all real parameters A1 and A2 , such that A1p′, A2q′ ∈ 〈 1 − s, 1〉 , and for
all non-negative measurable functions f on 〈 a, b〉 and g on 〈 c, d〉 . Moreover, these
inequalities are equivalent. If p, q ∈ 〈 0, 1〉 , the relations (27) and (28) hold with the
reversed sign of inequality.

Proof. Note that the relations (27) and (28) follow directly from Theorem 2 and
Lemma 1. To prove their equivalence, we consider X , Y , ϕ , ψ from the proof of
Theorem 2, the function

g(y) =
[
k(2 − A1p

′ − s) − Ed−1,c−1

(
2 − A1p

′ − s, b−1, a−1; y−1
)]− q′

p′ ×

× y
(A1−A2)q′+(s−1) q′

p′

[∫ b

a
Kλ (x, y)f (x)dx

] q′
q

, y ∈ 〈 c, d〉 ,

and use the same technique as in the proof of Theorem 1. �

REMARK 10. For a = c = 0 and b = d = ∞ Theorem 3 reduces to Corollary 2,
since Em,M(α, 0,∞; t) ≡ 0 .

REMARK 11. Suppose p and q are as in (10), 0 = a = c < b, d � ∞ , and a
non-negative function K : R+ → R is homogeneous of degree −s for some s > 0 ,
strictly decreasing in the first argument, strictly increasing in the second argument, and
such that k(α) < ∞ holds for all α > 1 . If A1p′ > 1 and A2q′ < 1 − s , then (27)
and (28) hold with the reversed sign of inequality as a consequence of Remark 1. and
Remark 9. For such p and q , the same conclusion holds also if 0 � a, c < b = d = ∞ ,
A1p′ < 1 − s , A2q′ > 1 , and K is a non-negative homogeneous function of degree
−s for some s > 0 , strictly increasing in the first argument, strictly decreasing in the
second argument, and such that k(α) < ∞ holds for all α < 1− s . Note that the case
when p and q are as in (11) can be analyzed similarly.

REMARK 12. For a = c , b = d , and λ = 1 in Theorem 3 and Remark 11 we
obtain Theorem 5 from [7], so our results generalize those of M. Krnić and J. Pečarić.

4. Symmetric functions K and one important example

To complete our analysis, we consider a class of non-negative symmetric functions
K on R

2
+ , satisfying (i), (ii), and (iii). Since K(x, y) = K(y, x) , x, y ∈ R+ , for such

functions and parameters as in Lemma 1 we have

k(α) = k(2 − α − s), H(α, e, f ; t) = H(2 − α − s, f −1, e−1; t−1),

and

Em,M(α, e, f ; t) = EM−1,m−1(2 − α − s, f −1, e−1; t−1).
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Therefore, in the case when a = c and b = d , the relations (19) and (27) from
Theorem 2 and Theorem 3 together read

∫ b

a

∫ b

a
Kλ (x, y)f (x)g(y)dxdy

�
[∫ b

a
x
(A1−A2)p+(1−s) p

q′ H
p
q′ (A2q

′, a, b; x)f p(x)dx

] 1
p

×

×
[∫ b

a
y
(A2−A1)q+(1−s) q

p′ H
q
p′ (A1p

′, a, b; y)gq(y)dy

] 1
q

(29)

�
{∫ b

a
x
(A1−A2)p+(1−s) p

q′
[
k(A2q

′) − Ea,b(A2q
′, a, b; x)

] p
q′ f p(x)dx

} 1
p

×

×
{∫ b

a
y
(A2−A1)q+(1−s) q

p′
[
k(A1p

′) − Ea,b(A1p
′, a, b; y)

] q
p′ gq(y)dy

} 1
q

,

while (20) and (28) become

{∫ b

a
y
(A1−A2)q′+(s−1) q′

p′ ×

× [
k(A1p

′) − Ea,b(A1p
′, a, b; y)

]− q′
p′

[∫ b

a
Kλ (x, y)f (x)dx

]q′

dy

⎫⎬
⎭

1
q′

�

⎧⎨
⎩
∫ b

a
y
(A1−A2)q′+(s−1) q′

p′ H
− q′

p′ (A1p
′, a, b; y)

[∫ b

a
Kλ (x, y)f (x)dx

]q′

dy

⎫⎬
⎭

1
q′

�
[∫ b

a
x
(A1−A2)p+(1−s) p

q′ H
p
q′ (A2q

′, a, b; x)f p(x)dx

] 1
p

�
{∫ b

a
x
(A1−A2)p+(1−s) p

q′
[
k(A2q

′) − Ea,b(A2q
′, a, b; x)

] p
q′ f p(x)dx

} 1
p

. (30)

Especially, for λ = 1 , s > max
{

1
p ,

1
p′
}

, and A1 = A2 = 1
pp′ , our Theorem 3 reduces

to Theorem 2 from [8]. Of course, a discussion related to reverse inequalities to (29)
and (30) remains the same as in the general case.

The results obtained for symmetrical functions can be applied to the function K
defined on R

2
+ by K(x, y) = (x + y)−s , where s > 0 . First, we consider some special

choices of parameters s , A1 , and A2 .
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THEOREM 4. Let p , q , and λ be as in (1) and (2), and let 0 � a < b � ∞ .
Then the inequalities∫ b

a

∫ b

a

f (x)g(y)
(x + y)λ

dxdy

�

⎡
⎣∫ b

a

(
π − 2 arc tan

√
a
x
− 2 arc tan

√
x
b

) p
q′

xp−1− p
2 λ f p(x)dx

⎤
⎦

1
p

×

×
⎡
⎣∫ b

a

(
π − 2 arc tan

√
a
y
− 2 arc tan

√
y
b

) q
p′

yq−1− q
2 λgq(y)dy

⎤
⎦

1
q

(31)

and⎧⎪⎨
⎪⎩
∫ b

a

(
π − 2 arc tan

√
a
y
− 2 arc tan

√
y
b

)− q′
p′

y
λq′

2 −1

[∫ b

a

f (x)
(x + y)λ

dx

]q′

dy

⎫⎪⎬
⎪⎭

1
q′

�

⎡
⎣∫ b

a

(
π − 2 arc tan

√
a
x
− 2 arc tan

√
x
b

) p
q′

xp−1− p
2 λ f p(x)dx

⎤
⎦

1
p

(32)

hold for all non-negative measurable functions f and g on 〈 a, b〉 and are equivalent.
Moreover, if p and q are as in (10), (11), or p, q ∈ 〈 0, 1〉 , the signs of inequality in
(31) and (32) are reversed.

Proof. Follows directly from Theorem 2, (29), and (30), considering the function
K(x, y) = (x + y)−1 , that is, s = 1 , and the parameters c = a , d = b , A1 = 1

2p′ ,

A2 = 1
2q′ . In this case, for t ∈ 〈 a, b〉 and α = 1

2 , we have

H

(
1
2
, a, b; t

)
=
∫ b

t

a
t

du
(1 + u)

√
u

= π − 2 arc tan

√
a
t
− 2 arc tan

√
t
b
,

so the function H can be calculated explicitly. �
Since an elementary calculus yields

H

(
1
2
, a, b; t

)
� sup

t>0
H

(
1
2
, a, b; t

)
= H

(
1
2
, a, b;

√
ab

)
= π − 4 arc tan 4

√
a
b
,

we proved the following corollary.

COROLLARY 3. If p , q , and λ are as in (1) and (2), and 0 � a < b � ∞ , then
the inequalities∫ b

a

∫ b

a

f (x)g(y)
(x + y)λ

dxdy

�
(
π − 4 arc tan 4

√
a
b

)λ [∫ b

a
xp−1− p

2 λ f p(x)dx

] 1
p

·
[∫ b

a
yq−1− q

2 λgq(y)dy

] 1
q

(33)
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and⎧⎨
⎩
∫ b

a
y
λq′

2 −1

[∫ b

a

f (x)
(x + y)λ

dx

]q′

dy

⎫⎬
⎭

1
q′

�
(
π − 4 arc tan 4

√
a
b

)λ [∫ b

a
xp−1− p

2 λ f p(x)dx

] 1
p

(34)

hold for all non-negative measurable functions f and g on 〈 a, b〉 and are equivalent.
Moreover, if p, q ∈ 〈 0, 1〉 , the signs of inequality in these relations are reversed.

REMARK 13. Inequality (34) for λ = 1 can be found in [10], while B. Yang and
T. M. Rassias, [13], proved a particular case of (33), with λ = 1 and p = 2 .

Our further step is to consider the relations (29) and (30) with an arbitrary s > 0 ,
K(x, y) = (x + y)−s , A1 = 2−s

2p′ , and A2 = 2−s
2q′ . The case s = 1 is already described

in Theorem 4 and Corollary 3. Since A1p′ = A2q′ = 1 − s
2 , here we need to use

H
(
1 − s

2
, a, b; t

)
=
∫ b

t

a
t

(1 + u)−su
s
2−1du,

which, in general, cannot be calculated easily. On the other hand, in this setting we can
take advantage of the estimates from Lemma 1 and Theorem 3.

THEOREM 5. Suppose p , q , and λ are as in (1) and (2), s > 0 , and 0 � a <
b � ∞ . Then the inequalities∫ b

a

∫ b

a

f (x)g(y)
(x + y)sλ dxdy

� Bλ
( s

2
,
s
2

){∫ b

a

[
1 − 1

2

(a
x

) s
2 − 1

2

( x
b

) s
2

] p
q′

xp−1− s
2 pλ f p(x)dx

} 1
p

×

×
⎧⎨
⎩
∫ b

a

[
1 − 1

2

(
a
y

) s
2

− 1
2

( y
b

) s
2

] q
p′

yq−1− s
2 qλgq(y)dy

⎫⎬
⎭

1
q

(35)

and⎧⎪⎨
⎪⎩
∫ b

a

[
1 − 1

2

(
a
y

) s
2

− 1
2

( y
b

) s
2

]− q′
p′

y
s
2 q′λ−1

[∫ b

a

f (x)
(x + y)sλ dx

]q′

dy

⎫⎪⎬
⎪⎭

1
q′

� Bλ
( s

2
,
s
2

){∫ b

a

[
1 − 1

2

(a
x

) s
2 − 1

2

( x
b

) s
2

] p
q′

xp−1− s
2 pλ f p(x)dx

} 1
p

(36)
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hold for all non-negative measurable functions f and g on 〈 a, b〉 and are equivalent.
Moreover, if p, q ∈ 〈 0, 1〉 , the relations (35) and (36) hold with the reversed sign of
inequality.

Proof. We apply Theorem 3 and Remark 5 with parameters described before the
statement of Theorem 5, considering (29), (30), and that

Ea,b

(
1 − s

2
, a, b; t

)
=

[(a
t

) s
2
+
( t

b

) s
2
]∫ 1

0
(1 + u)−su

s
2−1du

=
1
2
B
( s

2
,
s
2

)[(a
t

) s
2
+
( t

b

) s
2
]

holds for all t ∈ 〈 a, b〉 . �
COROLLARY 4. If p , q , and λ are as in (1) and (2), s > 0 , and 0 � a < b � ∞ ,

then the inequalities∫ b

a

∫ b

a

f (x)g(y)
(x + y)sλ dxdy

� Bλ
( s

2
,
s
2

)[
1 −

(a
b

) s
4

]λ {∫ b

a
xp−1− s

2 pλ f p(x)dx

} 1
p

·
{∫ b

a
yq−1− s

2 qλgq(y)dy

} 1
q

and⎧⎨
⎩
∫ b

a
y

s
2 q′λ−1

[∫ b

a

f (x)
(x + y)sλ dx

]q′

dy

⎫⎬
⎭

1
q′

� Bλ
( s

2
,
s
2

)[
1 −

(a
b

) s
4

]λ {∫ b

a
xp−1− s

2 pλ f p(x)dx

} 1
p

hold for all non-negative measurable functions f and g on 〈 a, b〉 and are equivalent.
Moreover, if p, q ∈ 〈 0, 1〉 , the signs of inequality in (35) and (36) are reversed.

Proof. Note that AG-inequality implies

1
2

(a
t

) s
2
+

1
2

( t
b

) s
2

�
[(a

t

) s
2
( t

b

) s
2
] 1

2

=
(a

b

) s
4
,

so we have the first inequality. The proof that the relations from the statement of
Corollary 4 are equivalent follows the same lines as the proof of Theorem 1. �

REMARK 14. For λ = 1 , the results presented in Theorem 5 and Corollary 4 can
be found in the papers [7] and [10], while, in particular, for λ = 1 and p = 2 we obtain
Theorem 2.2 in [13].

Finally, we shall use the idea from Corollary 3 to consider (29) and (30) with
s > 0 , K(x, y) = (x + y)−s , and general parameters A1 and A2 . Here we have

H(α, a, b; t) =
∫ b

t

a
t

(1 + u)−su−αdu, t > 0, α ∈ 〈 1 − s, 1〉 . (37)
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Since

H′(α, a, b; t) = ts+α−2
[
a1−α(a + t)−s − b1−α(b + t)−s

]
,

it is not hard to convince oneself that H(α, a, b; ·) attains its maximal value on R+ at
the unique point

tα =
a

1−α
s b − ab

1−α
s

b
1−α

s − a
1−α

s

. (38)

Hence,

H(α, a, b; t) � H(α, a, b; tα), t > 0, (39)

and some related results are given in the following theorem.

THEOREM 6. Let p , q , and λ be as in (1) and (2), s > 0 , 0 � a < b � ∞ , and
A1p′, A2q′ ∈ 〈 1 − s, 1〉 . If H is defined by (37) and tα by (38), then the inequalities

∫ b

a

∫ b

a

f (x)g(y)
(x + y)sλ dxdy � H

1
p′ (A1p

′, a, b; tA1p′)H
1
q′ (A2q

′, a, b; tA2q′)×

×
[∫ b

a
x
(A1−A2)p+(1−s) p

q′ f p(x)dx

] 1
p

·
[∫ b

a
y
(A2−A1)q+(1−s) q

p′ gq(y)dy

] 1
q

and

⎧⎨
⎩
∫ b

a
y
(A1−A2)q′+(s−1) q′

p′

[∫ b

a

f (x)
(x + y)sλ dx

]q′

dy

⎫⎬
⎭

1
q′

� H
1
p′ (A1p

′, a, b; tA1p′)H
1
q′ (A2q

′, a, b; tA2q′)

[∫ b

a
x
(A1−A2)p+(1−s) p

q′ f p(x)dx

] 1
p

hold for all non-negative measurable functions f and g on 〈 a, b〉 and are equivalent.
Moreover, if p, q ∈ 〈 0, 1〉 , the obtained relations hold with the reversed sign of
inequality.

Proof. The first inequality follows from (39), while the rest of the proof is
analogous to the proof of Theorem 1 and Theorem 3. �

REMARK 15. For A1 = 2−s
2p′ and A2 = 2−s

2q′ , the constant on the right-hand sides
of the inequalities from Theorem 6 becomes

Hλ
(
1 − s

2
, a, b;

√
ab
)

=
∫ √

b
a

√
a
b

(1 + u)−su
s
2−1du.

Such parameters A1 and A2 in the case of conjugate parameters give the central result
from [11].
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5. Some further generalizations

Like in previous sections, here we continue to analyze homogeneous functions and
related inequalities of the Hardy-Hilbert type. Starting from Theorem 2 and Theorem
3 and applying suitable transformations of integration domains, we obtain some new
interesting results.

First, we consider translations in R
2
+ . The following theoremgives a generalization

of Theorem 2.

THEOREM 7. Let p , q , and λ be as in (1) and (2), 0 � a, b, c, d � ∞ be such
that a < b and c < d , and let μ > −a , ν > −c . If K is a non-negative measurable
function on R

2
+ , fulfilling (i), (ii), and (iii), and the function H is defined by (18),

then for all real parameters A1 and A2 , such that A1p′, A2q′ ∈ 〈 1 − s, 1〉 , and for all
non-negative measurable functions f on 〈 a, b〉 and g on 〈 c, d〉 , the inequalities

∫ b

a

∫ d

c
Kλ (x + μ, y + ν)f (x)g(y)dxdy

�
[∫ b

a
(x + μ)

(A1−A2)p+(1−s) p
q′ H

p
q′ (A2q

′, c + ν, d + ν; x + μ)f p(x)dx

] 1
p

×

×
[∫ d

c
(y + ν)

(A2−A1)q+(1−s) q
p′ H

q
p′
(

2−A1p
′−s, 1

b+μ , 1
a+μ ; 1

y+ν

)
gq(y)dy

] 1
q

(40)

and{∫ d

c
(y + ν)

(A1−A2)q′+(s−1) q′
p′ H

− q′
p′
(

2−A1p
′−s, 1

b+μ , 1
a+μ ; 1

y+ν

)
×

×
[∫ b

a
Kλ (x + μ, y + ν)f (x)dx

]q′

dy

⎫⎬
⎭

1
q′

�
[∫ b

a
(x + μ)

(A1−A2)p+(1−s) p
q′ H

p
q′ (A2q

′, c + ν, d + ν; x + μ)f p(x)dx

] 1
p

(41)

hold and are equivalent. Moreover, if p and q are as in (10), (11), or p, q ∈ 〈 0, 1〉 ,
the signs of inequality in (40) and (41) are reversed.

Proof. Theorem 7 follows directly from Theorem 2, rewritten with a + μ , b + μ ,
c+ν , and d+ν , instead of a , b , c , and d , and the functions ˜f : 〈 a+μ, b+μ〉 → R ,
˜f (u) = f (u− μ) , and g̃ : 〈 c + ν, d + ν〉 → R , g̃(v) = f (v− ν) , instead of f and g .
Note that

H(A2q
′, c + ν, d + ν; x + μ) =

∫ d+ν
x+μ

c+ν
x+μ

K(1, u)u−A2q
′
du
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and

H
(

2−A1p
′−s, 1

b+μ , 1
a+μ ; 1

y+ν

)
=
∫ y+ν

a+μ

y+ν
b+μ

K(1, u)uA1p
′+s−2du,

which makes the statement of Theorem 7 more clear. �
If the same procedure is applied to Theorem 3, we get the following result.

THEOREM 8. Let p , q , and λ be as in (1) and (2), 0 � a, b, c, d � ∞ be such
that a < b and c < d , and let μ > −a , ν > −c . If K is a non-negative measurable
function on R

2
+ , fulfilling (i), (ii), and (iii), and the function E is defined by (24), then

the inequalities∫ b

a

∫ d

c
Kλ (x + μ, y + ν)f (x)g(y)dxdy �

{∫ b

a
(x + μ)

(A1−A2)p+(1−s) p
q′ ×

× [
k(A2q

′) − Ea+μ,b+μ(A2q
′, c + ν, d + ν; x + μ)

] p
q′ f p(x)dx

} 1
p

×

×
{∫ d

c
(y + ν)

(A2−A1)q+(1−s) q
p′ ×

×
[
k(2 − A1p

′ − s) − E 1
d+ν , 1

c+ν

(
2−A1p

′−s, 1
b+μ , 1

a+μ ; 1
y+ν

)] q
p′ gq(y)dy

} 1
q

(42)

and⎧⎨
⎩
∫ d

c
(y + ν)

(A1−A2)q′+(s−1) q′
p′

[∫ b

a
Kλ (x + μ, y + ν)f (x)dx

]q′

×

×
[
k(2 − A1p

′ − s) − E 1
d+ν , 1

c+ν

(
2−A1p

′−s, 1
b+μ , 1

a+μ ; 1
y+ν

)]− q′
p′ dy

} 1
q′

�
[∫ b

a
(x + μ)

(A1−A2)p+(1−s) p
q′ ×

× [k(A2q
′) − Ea+μ,b+μ(A2q

′, c + ν, d + ν; x + μ)
] p

q′ f p(x)dx

] 1
p

(43)

hold for all real parameters A1 and A2 , such that A1p′, A2q′ ∈ 〈 1 − s, 1〉 , and for
all non-negative measurable functions f on 〈 a, b〉 and g on 〈 c, d〉 . Moreover, these
inequalities are equivalent. If p, q ∈ 〈 0, 1〉 , the relations (42) and (43) hold with the
reversed sign of inequality.

Note that in (42) and (43) we have

Ea+μ,b+μ(A2q
′, c+ν, d+ν; x+μ) =

(
a+μ
x+μ

)1−A2q
′ ∫ c+ν

a+μ

0
K(1, u)u−A2q

′
du

+
(

x+μ
b+μ

)s+A2q
′−1 ∫ b+μ

d+ν

0
K(u, 1)us+A2q

′−2du
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and

E 1
d+ν , 1

c+ν

(
2−A1p

′−s, 1
b+μ , 1

a+μ ; 1
y+ν

)
=
(

y + ν
d + ν

)A1p
′+s−1 ∫ d+ν

b+μ

0
K(1, u)uA1p

′+s−2du

+
(

c + ν
y + ν

)1−A1p
′ ∫ a+μ

c+ν

0
K(u, 1)u−A1p

′
du.

REMARK 16. The case λ = 1 , with a = c , b = d , and μ = ν , was already
discussed in [7, Theorem 6]. Moreover, if additionaly K is symmetric, p > 1 ,

μ ∈
〈
max

{
1−s
p′ ,−a

}
, p

2

〉
, and A1 = A2 = 2μ

pp′ , Theorem 7 reduces to Theorem 1

from [8].

REMARK 17. Note that for μ = ν = 0 Theorem 7 and Theorem 8 respectively
become Theorem 2 and Theorem 3.

We continue with another interesting transformation of integration domain,namely,
with (x, y) �→ (Axμ , Byν) . The corresponding results are given in the sequel.

THEOREM 9. Let p , q , and λ be as in (1) and (2), 0 � a, b, c, d � ∞ be such
that a < b and c < d , and let A, B,μ, ν > 0 . If K is a non-negative measurable
function on R

2
+ , fulfilling (i), (ii), and (iii), and the function H is defined by (18),

then for all real parameters A1 and A2 , such that A1p′, A2q′ ∈ 〈 1 − s, 1〉 , and for all
non-negative measurable functions f on 〈 a, b〉 and g on 〈 c, d〉 , the inequalities∫ b

a

∫ d

c
Kλ (Axμ , Byν)f (x)g(y)dxdy

� C

[∫ b

a
x

(
A1−A2+ 1−s

q′
)

pμ+(p−1)(1−μ)
H

p
q′ (A2q

′, Bcν, Bdν; Axμ)f p(x)dx

] 1
p

×

×
[∫ d

c
y

(
A2−A1+ 1−s

p′
)

qν+(q−1)(1−ν)
H

q
p′
(

2−A1p
′−s, 1

Abμ , 1
Aaμ ; 1

Byν

)
gq(y)dy

] 1
q

(44)

and⎧⎨
⎩
∫ d

c
y

(
A1−A2+ s−1

p′
)

q′ν+ν−1
[∫ b

a
Kλ (Axμ , Byν)f (x)dx

]q′

×

× H
− q′

p′
(

2−A1p
′−s, 1

Abμ , 1
Aaμ ; 1

Byν

)
dy

} 1
q′

� C

[∫ b

a
x

(
A1−A2+ 1−s

q′
)

pμ+(p−1)(1−μ)
H

p
q′ (A2q

′, Bcν, Bdν; Axμ)f p(x)dx

] 1
p

, (45)

where

C = μ− 1
p′ ν−

1
q′ A

A1−A2+ 1−s
q′ − 1

p′ B
A2−A1+ 1−s

p′ − 1
q′ , (46)
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hold and are equivalent. Moreover, if p and q are as in (10), (11), or p, q ∈ 〈 0, 1〉 ,
then (44) and (45) hold with the reversed sign of inequality.

Proof. This time we apply Theorem 2 to Aaμ , Abμ , Bcν , Bdν , instead of a , b ,
c , d , and to the functions ˜f : 〈Aaμ , Abμ〉 → R and g̃ : 〈Bcν, Bdν〉 → R ,

˜f (u) =
( u

A

) 1−μ
μ

f

(( u
A

) 1
μ
)

, g̃(v) =
( v

B

) 1−ν
ν

g

(( v
B

) 1
ν
)

,

instead of f and g . Moreover, in this setting we have

H(A2q
′, Bcν, Bdν; Axμ) =

∫ Bdν
Axμ

Bcν
Axμ

K(1, u)u−A2q
′
du

and

H
(

2−A1p
′−s, 1

Abμ , 1
Aaμ ; 1

Byν

)
=
∫ Byν

Aaμ

Byν
Abμ

K(1, u)uA1p
′+s−2du. �

In particular, for a = c = 0 and b = d = ∞ we get the following general
Hilbert-type inequalities.

COROLLARY 5. If p , q , and λ are as in (1) and (2), A, B,μ, ν > 0 , and K
is a non-negative measurable function on R

2
+ , fulfilling (i), (ii), and (iii), then the

inequalities∫ ∞

0

∫ ∞

0
Kλ (Axμ , Byν)f (x)g(y)dxdy

� D

[∫ ∞

0
x

(
A1−A2+ 1−s

q′
)

pμ+(p−1)(1−μ)
f p(x)dx

] 1
p

×

×
[∫ ∞

0
y

(
A2−A1+ 1−s

p′
)

qν+(q−1)(1−ν)
gq(y)dy

] 1
q

(47)

and {∫ ∞

0
y

(
A1−A2+ s−1

p′
)

q′ν+ν−1
[∫ ∞

0
Kλ (Axμ , Byν)f (x)dx

]q′

dy

} 1
q′

� D

[∫ ∞

0
x

(
A1−A2+ 1−s

q′
)

pμ+(p−1)(1−μ)
f p(x)dx

] 1
p

, (48)

where D = Ck
1
p′ (2 − A1p′ − s)k

1
q′ (A2q′) and C is defined by (46), hold for all real

parameters A1 and A2 , such that A1p′, A2q′ ∈ 〈 1 − s, 1〉 , and for all non-negative
measurable functions f and g on R+ . Moreover, these inequalities are equivalent.
If p and q are as in (10), (11), or p, q ∈ 〈 0, 1〉 , the inequalities (47) and (48) are
reversed.
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Finally, we state a generalization of Theorem 3 related to the mentioned transfor-
mation. If E is as in (24), observe that

EAaμ ,Abμ (A2q
′, Bcν, Bdν; Axμ) =

(a
x

)μ(1−A2q
′) ∫ Bcν

Aaμ

0
K(1, u)u−A2q

′
du

+
( x

b

)μ(s+A2q
′−1)

∫ Abμ
Bdν

0
K(u, 1)us+A2q

′−2du

and

E 1
Bdν , 1

Bcν

(
2−A1p

′−s,
1

Abμ
,

1
Aaμ

;
1

Byν

)
=

( y
d

)ν(A1p
′+s−1)

∫ Bdν
Abμ

0
K(1, u)uA1p

′+s−2du

+
(

c
y

)ν(1−A1p
′) ∫ Aaμ

Bcν

0
K(u, 1)u−A1p

′
du.

THEOREM 10. Suppose p , q , and λ are as in (1) and (2), A, B,μ, ν > 0 , and
0 � a, b, c, d � ∞ are such that a < b and c < d . If K is a non-negative measurable
function on R

2
+ , fulfilling (i), (ii), and (iii), and the function E is defined by (24),

then for all real parameters A1 and A2 , such that A1p′, A2q′ ∈ 〈 1 − s, 1〉 , and for all
non-negative measurable functions f on 〈 a, b〉 and g on 〈 c, d〉 , the inequalities

∫ b

a

∫ d

c
Kλ (Axμ , Byν)f (x)g(y)dxdy � C

{∫ b

a
x

(
A1−A2+ 1−s

q′
)

pμ+(p−1)(1−μ)×

× [k(A2q
′) − EAaμ ,Abμ (A2q

′, Bcν, Bdν; Axμ)
] p

q′ f p(x)dx

} 1
p

×

×
{∫ d

c
y

(
A2−A1+ 1−s

p′
)

qν+(q−1)(1−ν) ×

×
[
k(2 − A1p

′ − s) − E 1
Bdν , 1

Bcν

(
2−A1p

′−s, 1
Abμ , 1

Aaμ ; 1
Byν

)] q
p′ gq(y)dy

} 1
q

and⎧⎨
⎩
∫ d

c
y

(
A1−A2+ s−1

p′
)

q′ν+ν−1
[∫ b

a
Kλ (Axμ , Byν)f (x)dx

]q′

×

×
[
k(2 − A1p

′ − s) − E 1
Bdν , 1

Bcν

(
2−A1p

′−s, 1
Abμ , 1

Aaμ ; 1
Byν

)]− q′
p′ dy

} 1
q′

� C

{∫ b

a
x

(
A1−A2+ 1−s

q′
)

pμ+(p−1)(1−μ)×

× [
k(A2q

′) − EAaμ ,Abμ (A2q
′, Bcν, Bdν; Axμ)

] p
q′ f p(x)dx

} 1
p

,
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where the constant C is defined by (46), hold and are equivalent. Moreover, for
p, q ∈ 〈 0, 1〉 , the inequality sign in these relations is reversed.

REMARK 18. For λ = 1 , a = c , and b = d , the results from Theorem 10 and
Corollary 5 reduce to Theorem 7 and Theorem 8 from [7]. On the other hand, for
A = B = μ = ν = 1 , Theorem 9, Corollary 5, and Theorem 10, respectively become
Theorem 2, Corollary 2, and Theorem 3 from our Section 2.

To conclude this section, we emphasize that an analysis from Remark 11 can be
applied to both presented transformations.

6. Discrete Hardy-Hilbert-type inequalities with non-conjugate exponents

General results from Section 2, rewritten with the counting measure on N , lead
to some interesting inequalities of the Hardy-Hilbert type related to sequences of non-
negative real numbers. As in previous sections, we consider non-negative functions
K on R

2
+ , homogeneous of degree −s , where s > 0 , and strictly decreasing in each

argument. Our first result is a discrete analogue of Theorem 9.

THEOREM 11. Let p , q , and λ be as in (1) and (2), A, B,μ, ν > 0 , and let
m, M, n, N ∈ N be such that m < M and n < N . If K is a non-negative measurable
function on R

2
+ , fulfilling the conditions (i), (ii), and (iii), and the function H is defined

by (18), then the inequalities

M∑
i=m

N∑
j=n

Kλ (Aiμ , Bjν)aibj

� C

[
M∑

i=m

i

(
A1−A2+ 1−s

q′
)

pμ+(p−1)(1−μ)
H

p
q′
(
A2q

′, B(n − 1)ν, BNν; Aiμ
)
ap

i

] 1
p

×

×
[

N∑
j=n

j

(
A2−A1+ 1−s

p′
)

qν+(q−1)(1−ν)
H

q
p′
(

2−A1p
′−s, 1

AMμ , 1
A(m−1)μ ; 1

Bjν

)
bq

j

] 1
q

(49)

and⎧⎨
⎩

N∑
j=n

j

(
A1−A2+ s−1

p′
)

q′ν+ν−1
[

M∑
i=m

Kλ (Aiμ , Bjν)ai

]q′

×

× H
− q′

p′
(

2−A1p
′−s, 1

AMμ , 1
A(m−1)μ ; 1

Bjν

)} 1
q′

� C

[
M∑

i=m

i

(
A1−A2+ 1−s

q′
)

pμ+(p−1)(1−μ)
H

p
q′
(
A2q

′, B(n − 1)ν, BNν; Aiμ
)
ap

i

] 1
p

, (50)

where the constant C is defined by (46), hold for all real parameters A1 and A2 , such

that A1p′ ∈
〈
max

{
1 − s, 1 − 1

μ

}
, 1
〉

and A2q′ ∈
〈
max

{
1 − s, 1 − 1

ν
}

, 1
〉
, and for
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all sequences (an)n∈N and (bn)n∈N of non-negative real numbers. Moreover, these
inequalities are equivalent. If p, q ∈ 〈 0, 1〉 , the signs of inequality in (49) and (50)
are reversed.

Proof. Rewrite Theorem 1 for the counting measure on N , Ki,j = K(Aiμ , Bjν) ,

ϕi = (Aiμ)
A1+

1−μ
p′μ , ψj = (Bjν)

A2+ 1−ν
q′ν , and the sequences (an)n∈N and (bn)n∈N . In

this setting, (7) becomes

M∑
i=m

N∑
j=n

Kλ (Aiμ , Bjν)aibj

�
[

M∑
i=m

(Aiμ)A1p+(p−1) 1−μ
μ Fp

i a
p
i

] 1
p

·
[

N∑
j=n

(Bjν)A2q+(q−1) 1−ν
ν Gq

j b
q
j

] 1
q

, (51)

where

Fi =

[
N∑

j=n

Kλ (Aiμ , Bjν)(Bjν)1− 1
ν−A2q

′
] 1

q′

(52)

and

Gj =

[
M∑

i=m

Kλ (Aiμ , Bjν)(Aiμ)1− 1
μ−A1p

′
] 1

p′

. (53)

Since 1 − 1
ν − A2q′ < 0 and K fulfils (i) and (ii), we have

Fq′
i = (Aiμ)−s

N∑
j=n

Kλ
(

1,
Bjν

Aiμ

)
(Bjν)1− 1

ν−A2q
′

� (Aiμ)−s
∫ N

n−1
Kλ

(
1,

Byν

Aiμ

)
(Byν)1− 1

ν−A2q
′
dy

= ν−1B− 1
ν (Aiμ)1−s−A2q

′
∫ BNν

Aiμ

B(n−1)ν
Aiμ

K(1, u)u−A2q
′
du

= ν−1B− 1
ν (Aiμ)1−s−A2q

′
H
(
A2q

′, B(n − 1)ν, BNν; Aiμ
)

(54)

and, by similar arguments,

Gp′
j = (Bjν)−s

M∑
i=m

Kλ
(

Aiμ

Bjν
, 1

)
(Aiμ)1− 1

μ−A1p
′

� (Bjν)−s
∫ M

m−1
Kλ

(
Axμ

Bjν
, 1

)
(Axμ)1− 1

μ −A1p
′
dy

= μ−1A− 1
μ (Bjν)1−s−A1p

′
H
(
2 − A1p′ − s, 1

AMμ , 1
A(m−1)μ ; 1

Bjν

)
. (55)

Hence, (49) holds by combining (51), (52), (53), (54), and (55). The proof that
the relations (49) and (50) are equivalent follows the idea presented in the proofs of



GENERAL HILBERT-TYPE INEQUALITIES WITH NON-CONJUGATE EXPONENTS 263

Theorem 1 and Theorem 3. In particular, to prove that (49) implies (50), we use the
sequence (bn)n∈N given by

bj = H
− q′

p′
(

2−A1p
′−s, 1

AMμ , 1
A(m−1)μ ; 1

Bjν

)
j

(
A1−A2+ s−1

p′
)

q′ν+ν−1
[

M∑
i=m

Kλ (Aiμ , Bjν)ai

] q′
q

.

A discussion concerning reverse inequalities is as in the proof of Theorem 3. �
An important consequence of Theorem 11 is the following corollary for infinite

series.

COROLLARY 6. Suppose p , q , and λ are as in (1) and (2) and A, B,μ, ν > 0 .
If K is a non-negative measurable function on R

2
+ , fulfilling the conditions (i), (ii),

and (iii), then the inequalities

∞∑
i=1

∞∑
j=1

Kλ (Aiμ , Bjν)aibj � D

[ ∞∑
i=1

i

(
A1−A2+ 1−s

q′
)

pμ+(p−1)(1−μ)
ap

i

] 1
p

×

×
⎡
⎣ ∞∑

j=1

j

(
A2−A1+ 1−s

p′
)

qν+(q−1)(1−ν)
bq

j

⎤
⎦

1
q

and

⎧⎨
⎩

∞∑
j=1

j

(
A1−A2+ s−1

p′
)

q′ν+ν−1
[ ∞∑

i=1

Kλ (Aiμ , Bjν)ai

]q′
⎫⎬
⎭

1
q′

� D

[ ∞∑
i=1

i

(
A1−A2+ 1−s

q′
)

pμ+(p−1)(1−μ)
ap

i

] 1
p

,

where D = Ck
1
p′ (2 − A1p′ − s)k

1
q′ (A2q′) and the constant C is defined by (46), hold

for all real parameters A1 and A2 , such that A1p′ ∈
〈
max

{
1 − s, 1 − 1

μ

}
, 1
〉

and

A2q′ ∈
〈
max

{
1 − s, 1 − 1

ν
}

, 1
〉
, and for all sequences (an)n∈N and (bn)n∈N of non-

negative real numbers. Moreover, these inequalities are equivalent. If p, q ∈ 〈 0, 1〉 ,
the signs of inequality in both relations are reversed.

Finally, applying the estimate from Lemma 1 in (54) and (55), we obtain the
following result.

THEOREM 12. Let p , q , and λ be as in (1) and (2), A, B,μ, ν > 0 , and let
m, M, n, N ∈ N , m < M , n < N . If K is a non-negative measurable function on R

2
+ ,

fulfilling the conditions (i), (ii), and (iii), and the function E is defined by (24), then
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the inequalities

M∑
i=m

N∑
j=n

Kλ (Aiμ , Bjν)aibj � C

{
M∑

i=m

i

(
A1−A2+ 1−s

q′
)

pμ+(p−1)(1−μ) ×

× [k(A2q
′) − EAmμ ,AMμ

(
A2q

′, B(n − 1)ν, BNν; Aiμ
)] p

q′ ap
i

} 1
p

×

×
{

N∑
j=n

j

(
A2−A1+ 1−s

p′
)

qν+(q−1)(1−ν) ×

×
[
k(2 − A1p

′ − s) − E 1
BNν , 1

Bnν

(
2−A1p

′−s, 1
AMμ , 1

A(m−1)μ ; 1
Bjν

)] q
p′ bq

j

} 1
q

and⎧⎨
⎩

N∑
j=n

j

(
A1−A2+ s−1

p′
)

q′ν+ν−1
[

M∑
i=m

Kλ (Aiμ , Bjν)ai

]q′

×

×
[
k(2 − A1p

′ − s) − E 1
BNν , 1

Bnν

(
2−A1p

′−s, 1
AMμ , 1

A(m−1)μ ; 1
Bjν

)]− q′
p′
} 1

q′

� C

{
M∑

i=m

i

(
A1−A2+ 1−s

q′
)

pμ+(p−1)(1−μ) ×

× [k(A2q
′) − EAmμ ,AMμ

(
A2q

′, B(n − 1)ν, BNν; Aiμ
)] p

q′ ap
i

} 1
p

,

where the constant C is defined by (46), hold for all real parameters A1 and A2 , such

that A1p′ ∈
〈
max

{
1 − s, 1 − 1

μ

}
, 1
〉

and A2q′ ∈
〈
max

{
1 − s, 1 − 1

ν
}

, 1
〉
, and for

all sequences (an)n∈N and (bn)n∈N of non-negative real numbers. Moreover, these
inequalities are equivalent. If p, q ∈ 〈 0, 1〉 , both relations hold with the reversed sign
of inequality.

REMARK 19. For A = B = μ = ν = 1 we obtain discrete analogues of Theorem
2, Corollary 2, and Theorem 3.

REMARK 20. The results for the case λ = 1 are given in [7, Theorem 9].

7. Godunova-type inequalities

In the previous sections, we considered only integrals and sums over some subsets
of R+ , that is, one-dimensional situations. Since Theorem 1 covers more general
settings, to conclude this paper, we apply that result to n -dimensional cells in R

n
+ .
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Before presenting our idea, it is necessary to introduce some notation. For u, v ∈ R
n ,

u = (u1, u2, . . . , un) , v = (v1, v2, . . . , vn) , we define

u
v

=
(

u1

v1
,
u2

v2
, . . . ,

un

vn

)
and uv = uv1

1 uv2
2 · . . . · uvn

n .

Especially, u1 =
∏n

i=1 ui and u−1 = (
∏n

i=1 ui)−1 , where 1 = (1, 1, . . . , 1) . We shall
also write u < v if ui < vi , i = 1, . . . , n . For such u and v , by Cu,v we denote the
following n -dimensional cell in R

n :

Cu,v = 〈 u1, v1〉 × · · · × 〈 un, vn〉 = {(x1, . . . , xn) ∈ R
n : xi ∈ 〈 ui, vi〉 , i = 1, . . . , n}.

Now, we are ready to state and prove an n -dimensional analogue of Theorem 2.

THEOREM 13. Let p , q , and λ be as in (1) and (2), and let a, b, c, d, s ∈ R
n
+

be such that a < b and c < d . Suppose K is a non-negative measurable function on
R

n
+ , parameters A1, A2 ∈ R

n are such that

k(21 − p′A1 − s) =
∫

Rn
+

K(u)up′A1+s−21du < ∞ (56)

and

k(q′A2) =
∫

R
n
+

K(u)u−q′A2 du < ∞, (57)

and the function H is, for e, f ∈ R
n
+ , e < f , � ∈ {21 − p′A1 − s, q′A2} , and t ∈ R

n
+

defined by

H(�, e, f; t) =
∫

C e
t , ft

K(u)u−�du.

Then for all non-negative measurable functions f on Ca,b and g on Cc,d , the inequal-
ities

∫
Ca,b

∫
Cc,d

x−λ sKλ
(y

x

)
f (x)g(y)dxdy

�
[∫

Ca,b

x
p(A1−A2)+ p

q′ (1−s)
H

p
q′ (q′A2, c, d; x)f p(x)dx

] 1
p

×

×
[∫

Cc,d

y
q(A2−A1)+ q

p′ (1−s)
H

q
p′
(
21 − p′A1 − s, 1

b , 1
a ; 1

y

)
gq(y)dy

] 1
q
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and {∫
Cc,d

y
q′(A1−A2)+ q′

p′ (s−1)
H

− q′
p′
(
21 − p′A1 − s, 1

b , 1
a ; 1

y

)
×

×
[∫

Ca,b

x−λ sKλ
(y

x

)
f (x)dx

]q′

dy

⎫⎬
⎭

1
q′

�
[∫

Ca,b

x
p(A1−A2)+ p

q′ (1−s)
H

p
q′ (q′A2, c, d; x)f p(x)dx

] 1
p

hold and are equivalent. Moreover, if p and q are as in (10), (11), or p, q ∈ 〈 0, 1〉 ,
the signs of inequality in both relations are reversed.

Proof. We applyTheorem1 to X = Ca,b , Y = Cc,d , the functions ϕ(x) = xA1 and
ψ(y) = yA2 on R

n
+ , the non-negative function K̃ : R

2n
+ → R , K̃(x, y) = x−sK

( y
x

)
,

and Lebesgue measures dμ1(x) = dx , dμ2(y) = dy . By using the substitution u = y
x ,

relations (5) and (6) become

F(x) =

[∫
Cc,d

x−sK
(y

x

)
y−q′A2 dy

] 1
q′

= x
− 1

q′ s

[∫
Cc,d

K
(y

x

)
y−q′A2 dy

] 1
q′

= x
− 1

q′ (1−s)−A2H
1
q′ (q′A2, c, d; x), x ∈ Ca,b,

and

G(y) =

[∫
Ca,b

K
(y

x

)
x−p′A1−sdx

] 1
p′

= y
− 1

p′ (1−s)−A1H
1
p′
(
21 − p′A1 − s, 1

b , 1
a ; 1

y

)
, y ∈ Cc,d,

so the inequalities from the statement of Theorem 13 follow directly from (7) and (8).
The reverse inequalities hold due to Remark 1. �

As a direct consequence of Theorem 13, we obtain the following Hardy-Hilbert-
type inequalities.

COROLLARY 7. Suppose p , q , and λ are as in (1) and (2). If s ∈ R
n
+ , K is

a non-negative measurable function on R
n
+ , parameters A1, A2 ∈ R

n fulfil (56) and

(57), and C = k
1
p′ (21 − p′A1 − s)k

1
q′ (q′A2) , then the inequalities∫

Rn
+

∫
Rn

+

x−λ sKλ
(y

x

)
f (x)g(y)dxdy

� C

[∫
Rn

+

x
p(A1−A2)+ p

q′ (1−s)
f p(x)dx

] 1
p

·
[∫

Rn
+

y
q(A2−A1)+ q

p′ (1−s)
gq(y)dy

] 1
q
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and ⎧⎨
⎩
∫

Rn
+

y
q′(A1−A2)+ q′

p′ (s−1)

[∫
Rn

+

x−λ sKλ
(y

x

)
f (x)dx

]q′

dy

⎫⎬
⎭

1
q′

� C

[∫
Rn

+

x
p(A1−A2)+ p

q′ (1−s)
f p(x)dx

] 1
p

hold for all non-negative measurable functions f and g on R
n
+ and are equivalent.

If p and q are as in (10), (11), or p, q ∈ 〈 0, 1〉 , then both relations hold with the
reversed sign of inequality.

REMARK 21. For n = 1 we have K̃(tx, ty) = t−sK̃(x, y) , for all t, x, y ∈ R+ , so
the function K̃ is homogeneous of degree −s . Thus, Theorem 13 and Corollary 7 may
be regarded as n -dimensional generalizations of Theorem 2 and Corollary 2.

Finally, we explicitly state two particular cases of Corollary 7, obtained for some
special choices of parameters. The first one considers s = s1 , A1 = A11 , and
A2 = A21 , where s, A1, A2 are real numbers.

COROLLARY 8. Let p , q , and λ be as in (1) and (2). If s > 0 , K is a non-
negative measurable function on R

n
+ , real parameters A1, A2 are such that A1 = A11

and A2 = A21 fulfil (56) and (57), and the constant C is defined by

C = k
1
p′ ((2 − A1p

′ − s)1)k
1
q′ (q′A21),

then the inequalities∫
Rn

+

∫
Rn

+

x−λ s1Kλ
(y

x

)
f (x)g(y)dxdy

� C

[∫
R

n
+

x

[
p(A1−A2)+

p
q′ (1−s)

]
1
f p(x)dx

] 1
p

·
[∫

R
n
+

y

[
q(A2−A1)+

q
p′ (1−s)

]
1
gq(y)dy

] 1
q

and ⎧⎨
⎩
∫

R
n
+

y

[
q′(A1−A2)+

q′
p′ (s−1)

]
1
[∫

R
n
+

x−λ s1Kλ
(y

x

)
f (x)dx

]q′

dy

⎫⎬
⎭

1
q′

� C

[∫
R

n
+

x

[
p(A1−A2)+

p
q′ (1−s)

]
1
f p(x)dx

] 1
p

hold for all non-negative measurable functions f and g on R
n
+ and are equivalent.

If p and q are as in (10), (11), or p, q ∈ 〈 0, 1〉 , then both relations hold with the
reversed sign of inequality.

The second special case of Corollary 7, and also the concluding result in this paper,
presents an inequality of E. K. Godunova from [4].
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COROLLARY 9. Let p , q , and λ be as in (1) and (2). If s > 0 and L is a
non-negative measurable function on R

n
+ , then the inequalities

∫
R

n
+

∫
R

n
+

x
−
(

1
p′ +λ

)
1
y

1
p′ 1

L
(y

x

)
f (x)g(y)dxdy � ‖L‖

L
1
λ (Rn

+)
‖f ‖Lp′ (Rn

+)‖g‖Lq′(Rn
+)

and ⎧⎪⎨
⎪⎩
∫

Rn
+

y
q′
p′ 1

[∫
Rn

+

x
−
(

1
p′ +λ

)
1
L
(y

x

)
f (x)dx

]q′

dy

⎫⎪⎬
⎪⎭

1
q′

� ‖L‖
L

1
λ (Rn

+)
‖f ‖Lp′ (Rn

+)

hold for all non-negative measurable functions f and g on R
n
+ and are equivalent.

If p and q are as in (10), (11), or p, q ∈ 〈 0, 1〉 , then the signs of inequality in both
relations are reversed.

Proof. Corollary 9 follows from Corollary 8 if we put A1 = 2−s
p′ , A2 = 0 ,

K = L
1
λ , and consider the functions ˜f , g̃ : R

n
+ → R ,

˜f (x) = x

[
(s−1)λ− 1

p′
]

1
f (x), g̃(y) = y

1
p′ 1

g(y),

instead of f and g . Note that in this setting we have

k((2 − p′A1 − s)1) = k(q′A21) =
∫

Rn
+

L
1
λ (u)du = ‖L‖

1
λ

L
1
λ (Rn

+)
,

so C = ‖L‖
L

1
λ (Rn

+)
. �

Since the first inequality in Corollary 9 was proved by E. K. Godunova in [4], all
inequalities obtained in this section will be called the Godunova-type inequalities.
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