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ON CONVEX FUNCTIONS OF HIGHER ORDER

ATTILA GILÁNYI AND ZSOLT PÁLES

(communicated by L.-E. Persson)

Abstract. Based on J. L. W. V. Jensen’s concept of convex functions as well on its generalization
byE. M. Wright and related to T. Popoviciu’s convexity notions, higher-order convexity properties
of real functions are introduced and surveyed.

1. Introduction

Although convexity properties of functions were investigated already before the
twentieth century by several authors (among others, M. O. Hölder [10], O. Stolz [24] and
J. Hadamard [7], [8] achieved remarkable results connected to this field), the concept of
convex functions was constructed and their first systematic study was carried out one
hundred years ago by the Danish mathematician J. L. W. V. Jensen (cf. [11] and [12]).
He recognized the importance of this notion already at that time: as he wrote ‘Il me
semble que la notion “fonction convexe” est à peu près aussi fondamentale que celles-ci
“fonction positive”, “fonction croissante”. Si je ne me trompe pas en ceci la notion
devra trouver sa place dans les expositions élémentaires de la théorie des fonctions
réelles.’ (It seems to me that the notion “convex function” is just as fundamental as
“positive function” or “increasing function”. If I am not mistaken in this, the notion
ought to find its place in elementary expositions of the theory of real functions.) Jensen
was certainly not mistaken: the theory of convex functions has become a standard
part of the subject-matter taught for students studying mathematics, alongside with
thousands of scientific papers it is the topic of several books (to mention only some of
the classicals: T. Popoviciu [21], R. T. Rockafellar [22], A. W. Roberts and D. E. Varberg
[23], P. S. Bullen, D. S. Mitrinović and P. M. Vasić [3], D. S. Mitrinović, J. E. Pečarić,
and A. M. Fink, [17] C. E. Niculescu and L.-E. Persson, [18]), the basic concept was
generalized in several directions (e.g., by T. Popoviciu [20], [21], E. F. Beckenbach [1],
B. De Finetti [5], E. M. Wright [25]), and it has a fundamental role in several applications
(for example in optimization theory, cf., e.g., S. Boyd and L. Vandenberghe [2] and the
references therein).

In the present paper, based on Jensen’s concept and on its generalization by Wright
and motivated by Popoviciu’s convexity notions, higher-order convexity properties of

Mathematics subject classification (2000): 26A51, 26A48, 39B62.
Key words and phrases: Jensen-convexity, convexity of higher order, Wright-convexity.
This research has been supported by the Hungarian Scientific Research Fund (OTKA)Grants NK-68040 and K-62316.

c© � � , Zagreb
Paper MIA-11-19

271
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real functions are introduced and investigated. After describing the basic concepts
our examination is connected to, in Section 3, we study the relationship of (higher-
order) symmetric and cyclic convexity. In Section 4, we consider higher-order Wright-
convex functions. In the next part, we describe how symmetric convexity and Wright-
convexity are related, and we show an equivalence-theorem for different higher-order
convexity concepts. Concluding the paper, we formulate some remarks and open
problems connected to our results.

2. Basic concepts

A real valued function f defined on an interval I ⊆ R is called convex on I if it
satisfies the inequality

f (tx + (1 − t)y) � tf (x) + (1 − t)f (y)

for all t ∈ ]0, 1[ and x, y ∈ I . If this property holds for a fixed t ∈ ]0, 1[ (and for all
x, y ∈ I ) then f is said to be t -convex on I . In the case when t = 1

2 , a t -convex
function is also called Jensen-convex (cf. [11], [12]). Obviously, any convex function
is t -convex for all t ∈ ]0, 1[ , however there are non-convex but t -convex functions for
an arbitrary t ∈ ]0, 1[ . (Concerning the construction of such functions with the aid of
Hamel bases, we refer to [9], [14] and [13, Chapter V].)

According to E. M. Wright [25], a function f : I → R is called Wright-convex on
I if

f (tx + (1 − t)y) + f ((1 − t)x + ty) � f (x) + f (y) (1)

for all t ∈ ]0, 1[ and x, y ∈ I . Analogously to the definition of t -convexity, f is said to
be t -Wright-convex, if t ∈ ]0, 1[ is fixed and (1) is valid for all x, y ∈ I . It is easy to see
that Wright-convexity implies t -Wright-convexity for all t ∈ ]0, 1[ . Furthermore, t -
convexity yields t -Wright-convexity for an arbitrary t ∈ ]0, 1[ , thus, Wright-convexity
follows from convexity. (On further properties of convex and Wright-convex functions,
cf. the books [13], [23] and the paper [15].)

3. On (t1, . . . , tn) -convex functions

In order to introduce the main terms of this section, we recall the notion of divided
differences of real functions. The divided difference of the function f : I → R with
respect to the pairwise distinct points x0, . . . , xn ∈ I is defined by

[x0, . . . , xn; f ] =
n∑

i=0

f (xi)∏n
j=0
j�=i

(xi − xj)
. (2)

Obviously, divided differences are symmetric functions of x0, . . . , xn , furthermore, it is
easy to prove that they have the recursive property

[x0, . . . , xn; f ] =
[x1, . . . , xn; f ] − [x0, . . . , xn−1; f ]

xn − x0
(3)
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for all positive integers n and pairwise distinct points x0, . . . , xn ∈ I .
In the following, let n be a fixed positive integer. According to T. Popoviciu

(cf. [20] and [21]), a function f : I → R is called convex of order n − 1 (or monotone
of order n ) on I if

[x0, . . . , xn; f ] � 0 (4)
holds for all pairwise distinct elements x0, . . . , xn ∈ I . Due to the symmetry, we may
assume x0 < · · · < xn here.

Motivated by this definition, we introduce and investigate some more particular
convexity concepts. Let t1, . . . , tn be fixed positive real numbers. A function f : I → R

is said to be (t1, . . . , tn) -convex on I if inequality (4) holds for all x0, . . . , xn ∈ I
satisfying the properties x0 < · · · < xn and

(x1 − x0) : · · · : (xn − xn−1) = t1 : · · · : tn

or equivalently,
[x, x + t1h, . . . , x + (t1 + · · · + tn)h; f ] � 0

for all h > 0 , x ∈ I with x + (t1 + · · · + tn)h ∈ I . We call f cyclically (t1, . . . , tn) -
convex on I if it is (ti1 , . . . , tin) -convex for all cyclic permutations (i1, . . . , in) of
(1, . . . , n) ; finally,we call f symmetrically (t1, . . . , tn) -convex on I if it is (ti1 , . . . , tin) -
convex for all permutations (i1, . . . , in) of the integers {1, . . . , n} . In the case when
t1 = · · · = tn , these definitions (are equivalent and) give the concept of Jensen-
convexity of order n − 1 (cf. [20] and [21]). It is easy to see that convexity of
order 0 means monotonicity, convexity of order 1 is exactly convexity. Furthermore,
cyclic (t1, t2) -convexity, symmetric (t1, t2) -convexity and t -convexity are equivalent
for t1, t2 > 0 and t = t1

t1+t2
. (Observe, that, in view of our notation, the mean-

ing of (t) -convexity is different from that of t -convexity. Namely, (t) -convexity is
a monotonicity property, while t -convexity is equivalent to symmetric and to cyclic
(t, 1 − t) -convexity.)

Obvious consequences of the definitions above are that convexity of order n −
1 implies symmetric (t1, . . . , tn) -convexity, symmetric (t1, . . . , tn) -convexity implies
cyclic (t1, . . . , tn) -convexity, and cyclic (t1, . . . , tn) -convexity implies (t1, . . . , tn) -
convexity for all positive integers n and for all positive n -tuples (t1, . . . , tn) . In what
follows, we investigate the implication between symmetric and cyclic (t1, . . . , tn) -
convexity ‘in the other direction’. By a result of N. Kuhn [14] and Z. Daróczy and
Zs. Páles [4], t -convexity implies r -convexity for all real t ∈ ]0, 1[ and rational r ∈
]0, 1[ . As a generalization of this theorem, we prove that cyclic (t1, . . . , tn) -convexity
implies symmetric (r1, . . . , rn) -convexity for arbitrary positive reals t1, . . . , tn and
positive rationals r1, . . . , rn . In our proof we use the following property of divided
differences (cf. [13, Chapter XV, Lemma 2.6]).

LEMMA 3.1. Let n be a positive integer I be a nonempty interval, x0 < · · · <
xn ∈ I , and let j0 < · · · < jk (fixed) elements of the set {0, . . . , n} . Then there exits
non-negative real numbers c0, . . . , cn−k such that

[xj0 , . . . , xjk ; f ] =
n−k∑
i=0

ci[xi, . . . , xi+k; f ]
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is valid for all functions f : I → R .

THEOREM 3.2. Let n be a positive integer, t1, . . . , tn be positive real numbers
and let f : I → R be a function. If f is cyclically (t1, . . . , tn) -convex then it is
symmetrically (r1, . . . , rn) -convex for all positive rational numbers r1, . . . , rn .

Proof. Let r1, . . . , rn > 0 be fixed rationals and let x ∈ I and h > 0 with
x + (r1 + · · · + rn)h ∈ I . There exist positive integers p1, . . . , pn and q such that

r1 =
p1

q
, . . . , rn =

pn

q
. (5)

Let us consider the elements

xkn+j := x +

(
k +

1
T

j∑
i=1

ti

)
h
q

(6)

for k = 0, . . . , (p1 + · · · + pn) , j = 0, . . . , k , where T :=
∑n

i=1 ti and we use the
convention

∑0
i=1 ti := 0 . It follows easily from this construction that

xi+1−xi = ti1
h
qT

, xi+2−xi = (ti1 +ti2)
h
qT

, . . . , xi+n−xi = (ti1 +ti2 +· · ·+tin)
h
qT

,

where (i1, . . . , in) is a cyclic permutation of (1, . . . , n) for an arbitrary i ∈ {0, . . . , [(p1+
· · · + pn) − 1]n} . Therefore, the cyclic (t1, . . . , tn) -convexity of f implies that

[xi, xi+1, . . . , xi+n; f ] � 0

for i = 0, . . . , [(p1 + · · · + pn) − 1]n . By Lemma 3.1, there exist nonnegative integers
c0, . . . , c[(p1+···+pn)−1]n such that

[x0, xp1n, . . . , x(p1+···+pn)n; f ] =
[(p1+···+pn)−1]n∑

i=0

ci [xi, xi+1, . . . , xi+n; f ],

which yields
[x0, xp1n, . . . , x(p1+···+pn)n; f ] � 0. (7)

On the other hand, by (5) and (6), we have

x0 = x, xp1n = x + r1h, . . . , x(p1+···+pn)n = x + (r1 + · · · + rn)h,

therefore, (7) gives

[x, x + r1h, . . . , x(r1 + · · · + rn)h; f ] � 0,

which implies the (r1, . . . , rn) -convexity of f on I . �
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COROLLARY 3.3. Let n be a positive integer and let r1, . . . , rn be positive rational
numbers. A function f : I → R is cyclically (r1, . . . , rn) -convex if and only if it is
symmetrically (r1, . . . , rn) -convex.

Proof. The definition of symmetric convexity and that of cyclic convexity gives
that symmetric (r1, . . . , rn) -convexity always implies cyclic (r1, . . . , rn) -convexity.
The other direction of the statement follows from Theorem 3.2. �

COROLLARY 3.4. (Cf. [4], [14]). Let t ∈ ]0, 1[ be a real and r ∈ ]0, 1[ be a rational
number. If a function f : I → R is t -convex then it is r -convex, too.

4. On (t1, . . . , tn) -Wright-convex functions

The (forward) difference of the function f : I → R at the point x with step-size
h has the form

Δhf (x) = f (x + h) − f (x)

whenever x, x + h ∈ I .
According to [6], the function f : I → R is called Wright-convex of order n − 1

on I if n is a positive integer and

Δh1 · · ·Δhn f (x) � 0

for all h1, . . . , hn > 0 , x ∈ I with x + h1 + · · · + hn ∈ I ; it is said to be (t1, . . . , tn) -
Wright-convex on I if t1, . . . , tn are (fixed) positive numbers and

Δt1h · · ·Δtnhf (x) � 0 (8)

is valid for all h > 0 , x ∈ I with x+(t1+· · ·+tn)h ∈ I . If t1 = · · · = tn , this definition
gives the notion of Jensen-convexity of order n − 1 introduced by T. Popoviciu ([20],
[21]). It is evident that Wright-convexity of order n − 1 implies (t1, . . . , tn) -Wright-
convexity for all t1, . . . , tn > 0 . It can be easily shown that (t1, t2) -Wright-convexity is
exactly t -Wright-convexity, where t1 and t2 are positive real numbers and t = t1

t1+t2
.

(Note the difference between t -Wright-convexity and (t) -Wright-convexity.)
It is easy to see that the left hand side of (8) is a symmetric function of (t1, . . . , tn) ,

therefore, (t1, . . . , tn) -Wright-convexity implies (ti1 , . . . , tin) -Wright-convexity for all
permutations (i1, . . . , in) of the integers {1, . . . , n} . Another simple consequence of
the definition above is that (t1, . . . , tn) -Wright-convexity yields (ct1, . . . , ctn) -Wright-
convexity for arbitrary positive c and t1, . . . , tn . Gy. Maksa, K. Nikodem and Zs. Páles
showed in [15] that t -Wright-convexity implies kt

kt+n(1−t) -Wright-convexity for every
t ∈ ]0, 1[ and for all positive integers k , n . Motivated by these properties, we formulate
and prove more general results on the relationship of (t1, . . . , tn) - and (t′1, . . . , t

′
n) -

Wright-convex functions in the case of different n -tuples (t1, . . . , tn) and (t′1, . . . , t
′
n) .

Our statements contain the theorem cited above as special case.
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THEOREM 4.1. Let n be a positive integer, T1, . . . , Tn be (not necessarily finite)
sets of positive real numbers, and denote ΣTi the set of all finite linear combinations
of the elements of Ti with positive rational coefficients (i = 1, . . . , n) . If a function
f : I → R is (t1, . . . , tn) -Wright-convex for every (t1, . . . , tn) ∈ T1 × · · · × Tn then it
is (s1, . . . , sn) -Wright-convex for all (s1, . . . , sn) ∈ ΣT1 × · · · × ΣTn , too.

Proof. Suppose that the assumptions of the theorem are valid, and let (s1, . . . , sn)
be fixed. The (s1, . . . , sn) -Wright-convexity of f means that

Δs1h · · ·Δsnhf (x) � 0 (9)

for all h > 0 such that x ∈ I, x + (s1 + · · · + sn)h ∈ I . Since (s1, . . . , sn) ∈
ΣT1 × · · · × ΣTn , we have

si =
�i∑

j=1

rij t̃ij

where rij are positive rational numbers and t̃ij ∈ Ti for j = 1, . . . , �i , i = 1, . . . , n .
There exist positive integers q and pij such that rij = pij

q for j = 1, . . . , �i , i = 1, . . . , n .
Thus, we may write

qsi =
ki∑

j=1

tij

where tij ∈ Ti for j = 1, . . . , ki , i = 1, . . . , n . Replacing h by qh in inequality (9),
we obtain that it is equivalent to

Δ(t11+···+t1k1
)h · · ·Δ(tn1+···+tnkn )hf (x) � 0 (10)

for all h > 0 , x ∈ I , with x + (t11 + · · · + t1k1 + · · · + tn1 + · · · + tnkn)h ∈ I .
In the following, we prove inequality (10). In order to do this, we consider the

translation operator τ defined by τhf (x) = f (x+h) for x ∈ I, h ∈ R with x+h ∈ I .
It is easy to see that

Δu1+···+um = τu1+···+um − τ0

= τu1 − τ0 + (τu2 − τ0)τu1 + · · · + (τum − τ0)τu1+···+um−1

= Δu1 + Δu2τu1 + · · · + Δumτu1+···+um−1

for all positive integers m and real numbers u1, . . . , um . Using this property, we obtain
that

Δt11+···+t1k1
· · ·Δtn1+···+tnkn

= (Δt11+Δt12τt11+· · ·+Δt1k1
τt11+···+t1k1−1

)· · ·(Δtn1+Δtn2τtn1+· · ·+Δtnkn
τtn1+···+tnkn−1

).

Applying the distributive law on the right hand side of this equation, we may write

Δt11+···+t1k1
· · ·Δtn1+···+tnkn

=
k1∑

j1=1

· · ·
kn∑

jn=1

Δt1j1
· · ·Δtnjn

Θj1...jn , (11)
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where Θj1...jn denotes a product of some translation operators, more precisely,

Θj1...jn = τ∑j1−1

r=1
t1r
τ∑j2−1

r=1
t2r
· · · τ∑jn−1

r=1
tnr

(ji = 1, . . . , ki, i = 1, . . . , n).

Since (t1j1 , . . . , tnjn) ∈ T1 × · · · × Tn , f is (t1j1 , . . . , tnjn) -Wright-convex for all ji =
1, . . . , ki , i = 1, . . . , n , thus, we have

Δt1j1 h · · ·Δtnjn hf (x) � 0

for all x ∈ I , h > 0 such that x + t1j1h + · · · + tnjnh ∈ I where ji = 1, . . . , ki ,
i = 1, . . . , n . Therefore, using the notation

Θ̃j1...jn = τ∑j1−1

r=1
t1rh

τ∑j2−1

r=1
t2rh

· · · τ∑jn−1

r=1
tnrh

(ji = 1, . . . , ki, i = 1, . . . , n),

we obtain that
k1∑

j1=1

· · ·
kn∑

jn=1

Δt1j1 h · · ·Δtnjn h Θ̃j1...jn f (x) � 0

for all x ∈ I , h > 0 with x +
(
(t11 + · · ·+ t1k1) + · · ·+ (tn1 + · · ·+ tnkn)

)
h ∈ I which,

due to (11), implies (10), that is our statement. �

COROLLARY 4.2. Let n be a positive integer, t1, . . . , tn be positive real numbers,
and let f : I → R be a function. If f is (t1, . . . , tn) -Wright-convex then it is
(r1t1, . . . , rntn) -Wright-convex for all positive rationals r1, . . . , rn .

Proof. The statement is contained in Theorem 4.1, with T1 = {t1}, . . . , Tn =
{tn} , as special case. �

COROLLARY 4.3. Let n be a positive integer and let r1, . . . , rn be positive
rational numbers. A function f : I → R is (r1, . . . , rn) -Wright-convex if and only if it
is (1, . . . , 1︸ ︷︷ ︸

n−times

) -Wright-convex.

Proof. The statement is an obvious consequence of Corollary 4.2. �

COROLLARY 4.4. (Cf. [15]). If t ∈ ]0, 1[ is a real number and f : I → R is a
t -Wright-convex function then it is also kt

kt+n(1−t) -Wright-convex for all positive integers
k , n .

5. Connection between (t1, . . . , tn) -convexity and (t1, . . . , tn) -Wright-convexity

In this section, using the concepts defined in the previous parts of the paper, we
prove that symmetric (t1, . . . , tn) -convexity implies (t1, . . . , tn) -Wright-convexity for
arbitrary positive n -tuples (t1, . . . , tn) . A corollary of this result is the known theorem
that convexity of order n − 1 yields Wright-convexity of order n − 1 for any positive
integer n (cf. [13, Chapter XV, Theorem 7.1]). We also point out that the converse of
the statement above is not valid in the case when n � 2 . At the end of the section we
formulate a theorem on the equivalence of different higher-order convexity concepts in
special cases.

First we show a statement on divided and forward differences.
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LEMMA 5.1. Let n be a positive integer, I ⊆ R be an interval and f : I → R be
a function. Then the equation∑

(i1,...,in)

[x, x + ti1 , . . . , x + ti1 + · · · + tin ; f ] =
Δt1 · · ·Δtn f (x)

t1 · · · tn (12)

is valid for all x ∈ I , t1, . . . , tn > 0 with x + t1 + · · · + tn ∈ I , where the summation
is for all permutations (i1, . . . , in) of the integers {1, . . . , n} .

Proof. We prove the statement by induction on n . The statement is trivial for
n = 1 . Suppose, that it is valid for a positive integer n . Let x ∈ I and t1, . . . , tn+1 > 0
satisfying x + t1 + · · · + tn+1 ∈ I be given. Using the definition of divided differences
and the inductive hypothesis, we obtain that∑
(i1,...,in+1)

[x, x + ti1 , . . . , x + ti1 + · · · + tin+1 ; f ]

=
∑

(i1,...,in+1)

[x + ti1 , . . . , x + ti1 + · · · + tin+1 ; f ] − [x, x + ti1 , . . . , x + ti1 + · · · + tin ; f ]
t1 + · · · + tn+1

=
1

t1 + · · · + tn+1

n+1∑
i=1

⎛
⎜⎜⎝n+1∏

j=1
j�=i

Δtj

tj
f (x + ti) −

n+1∏
j=1
j�=i

Δtj

tj
f (x)

⎞
⎟⎟⎠

where the first two summations are for all permutations (i1, . . . , in+1) of the integers
{1, . . . , n + 1} , and we use the notation

n+1∏
j=1
j�=i

Δtj

tj
=

Δ1 · · ·Δi−1Δi+1 · · ·Δn+1

t1 · · · ti−1ti+1 · · · tn+1

for i = 1, . . . , n + 1 . Using f (x + ti) = Δti f (x) + f (x) , we can write
n+1∏
j=1
j�=i

Δtj

tj
f (x + ti) −

n+1∏
j=1
j�=i

Δtj

tj
f (x) =

n+1∏
j=1
j�=i

Δtj

tj
Δti f (x) +

n+1∏
j=1
j�=i

Δtj

tj
f (x) −

n+1∏
j=1
j�=i

Δtj

tj
f (x)

=
Δt1 · · ·Δtn+1 f (x)∏n+1

j=1
j�=i

tj
,

therefore,∑
(i1,...,in+1)

[x, x + ti1 , . . . , x + ti1 + · · · + tin+1 ; f ]

=
1

t1 + · · · + tn+1

n+1∑
i=1

ti
Δt1 · · ·Δtn+1 f (x)∏n+1

j=1 tj

=
1

t1 + · · · + tn+1
(t1 + · · · + tn+1)

Δt1 · · ·Δtn+1 f (x)
t1 · · · tn+1

,
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which yields our statement. �

REMARK 5.2. In the case when t = t1 = · · · = tn , our lemma gives the well-
known property (cf. eg. [13, Chapter XV, Lemma 2.5]) that if n is a positive integer,
I ⊆ R is an interval and f : I → R is a function then

n! [x, x + t, . . . , x + nt; f ] =
Δn

t f (x)
tn

for all x ∈ I , t > 0 with x + nt ∈ I .

THEOREM 5.3. Let I ⊆ R be an interval, f : I → R be a function, n be a positive
integer and t1, . . . , tn be positive real numbers. If f is symmetrically (t1, . . . , tn) -
convex on I then it is also (t1, . . . , tn) -Wright-convex.

Proof. Suppose that the assumptions in the theorem are valid. By the definition of
symmetric (t1, . . . , tn) -convexity, we have

[x, x + ti1h, . . . , x + (ti1 + · · · + tin)h; f ] � 0 (13)

for arbitrary permutations (i1, . . . , in) of the integers {1, . . . , n} and for all h > 0 and
x ∈ I satisfying x + (t1 + · · · + tn)h ∈ I . Thus, the sum of the divided differences of
the form in (13) is also nonnegative, therefore, by the positivity of h , t1, . . . , tn and
using the previous lemma, we obtain that

Δt1h · · ·Δtnhf (x) � 0

for all h > 0 and x ∈ I with x + (t1 + · · ·+ tn)h ∈ I , which completes the proof. �

COROLLARY 5.4. (Cf. [13, Chapter XV, Theorem 7.1]). If n is a positive integer
and the function f : I → R is convex of order n − 1 , then f is also Wright-convex of
order n − 1 .

REMARK 5.5. It is easy to see that symmetric (t1) -convexity is equivalent to (t1) -
Wright-convexity for every positive t1 . On the other hand, such an equivalence is not
valid for integers n � 2 : if I is an interval (with positive length) and n � 2 is an integer
then there exist positive reals (t1, . . . , tn) for which there exists a function f : I → R

which is (t1, . . . , tn) -Wright-convex on I but it is not symmetrically (t1, . . . , tn) -convex
there. Namely, let us consider a non-continuous function f : I → R satisfying the
inequality

Δh1 · · ·Δhn f (x) � 0

for all x ∈ I , h1, . . . , hn > 0 with x + h1 + · · · + hn ∈ I . (Such a non-continuous
function can be constructed using Hamel-bases, cf. eg. [9], [13].) By the non-continuity
of f , there exist real numbers x ∈ I and h̄1, . . . , h̄n > 0 satisfying x+ h̄1 + · · ·+ h̄n ∈ I
for which

[x, x + h̄1, . . . , x + h̄1 + · · · + h̄n; f ] < 0
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(in the other case f would be continuous, cf. eg. [13, Chapter XV, §6]), thus, f is not
symmetrically (t1, . . . , tn) -convex for t1 = h̄1, . . . , tn = h̄n . However, there are posi-
tive n -tuples (t1, . . . , tn) for every positive integer n , for which (t1, . . . , tn) -Wright-
convexity implies symmetric (t1, . . . , tn) -convexity. For example, this statement is valid
if t1 = · · · = tn for an arbitrary n . These facts lead to the problem of characterizing
those n -tuples for which symmetric (t1, . . . , tn) -convexity is equivalent to (t1, . . . , tn) -
Wright-convexity. Concerning its (partial) solution in the case when n = 2 , we refer
to [15] and [16].

Now, we present our equivalence-result on different higher-order convexity prop-
erties.

THEOREM 5.6. Let r1, . . . , rn be positive rationals and let f : I → R be a
function. Then the following conditions are equivalent:

(i) f is symmetrically (r1, . . . , rn) -convex;
(ii) f is cyclically (r1, . . . , rn) -convex;
(iii) f is Jensen-convex of order n − 1 ;
(iv) f is (1, . . . , 1︸ ︷︷ ︸

n−times

) -Wright-convex;

(v) f is (r1, . . . , rn) -Wright-convex.

Proof. According to Corollary 3.3, (i) is equivalent to (ii). Corollary 3.3 also im-
plies that cyclic (r1, . . . , rn) -convexity is equivalent to symmetric (1, . . . , 1︸ ︷︷ ︸

n−times

) -convexity,

thus (ii) is equivalent to (iii). The definition of higher order Wright-convexity gives the
equivalence of (iii) and (iv). Finally, Corollary 4.3 yields the equivalence between (iv)
and (v). �

In the classical setting, the statement of the theorem above reduces to various
characterizations of (ordinary) Jensen-convexity.

COROLLARY 5.7. (Cf. [15]). If r ∈ ]0, 1[ is a rational number then the following
conditions are equivalent.

(i) f is r -convex;
(ii) f is Jensen-convex;
(iii) f is 1

2 -Wright-convex;
(iv) f is r -Wright-convex.

6. Concluding Remarks

The notion of (t1, . . . , tn) -Wright-convexity has recently been introduced in [6].
In that paper, among others, it has been shown that (t1, . . . , tn) -Wright-convexity is
a localizable property in the sense that if each point of the interval I has a neighbor-
hood such that f restricted to that neighborhood is (t1, . . . , tn) -Wright-convex then
f is (t1, . . . , tn) -Wright-convex on the entire interval I . Moreover, a particular nth -
order derivative has also been constructed in [6] whose nonnegativity characterizes
(t1, . . . , tn) -Wright-convexity. Analogous results have been obtained for t -convexity
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by Nikodem and Páles in [19]. In view of Theorem 5.6, (r1, . . . , rn) -convexity is also
a localizable property if r1, . . . , rn are positive rationals. However, it is not known
if (cyclic/symmetric) (t1, . . . , tn) -convexity is localizable, or can be characterized via
suitably constructed nth -order generalized derivatives.

By Corollary 3.3, the notions of the cyclic and symmetric (t1, . . . , tn) -convexity
coincide if t1, . . . , tn are positive rationals. It is an open problem if this remains valid
without assuming the rationality of t1, . . . , tn .

In [15], depending on the algebraic character of t , a t -Wright-convex but strictly
Jensen-concave function was constructed. Thus, for such a choice of t , the t -Wright-
convexity property does not imply Jensen-convexity. The exact description of the set of
numbers t when t -Wright-convexity yields Jensen-convexity has not been found yet.
It seems to be an even harder problem to find such a characterization in the higher-order
setting.
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[15] GY. MAKSA, K. NIKODEM, AND ZS. PÁLES, Results on t -Wright convexity, C. R. Math. Rep. Acad. Sci.
Canada 13 (1991), no. 6, 274–278.
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