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L, NORM INEQUALITIES FOR THE
POLAR DERIVATIVE OF A POLYNOMIAL

A. Aziz, N. A. RATHER AND Q. ALIYA

(communicated by Th. M. Rassias)

Abstract. If P(z) is a polynomial of degree n which does not vanish in |z| < 1,then it was
shown by Govil, Nyuydinkong and Tameru [ Some L, inequalities for the polar derivative of a
polynomial, J. Math. Anal. Appl., 254, (2001), 618-626 | that for every real or complex number
o with |o] <1 andg > 1,

lo| + 1
[DaP| < | 77— | I7Il
S\, ) e

where Dy P(z) denotes the polar derivative of P(z) with respect to oo € C. Unfortnunately the
proof of this result is not correct. In this paper, we prove a more general result which not only
provides a correct proof of this result but also extends some known L, norm inequalities for
the polar derivative of a polynomial. We also present L 4 norm inequality for polynomials not
vanishing in |z| > k wherek <1.

1. Introduction and statements results

Let P,(z) be the class of polynomials P(z) of degree at most n. For P, € P,

define
1/q

1 2 ion 14
IPl= 55 [P L 1<a<oa,

and
IPllc = max P(2)].

||

A famous result known as Bernstein’s inequality ( for reference see [13] or [16]) states
that if P, € P, then

1P']| o < 7 lIP]|o (1)

Inequality (1) is sharp and equality in (1) holds for P(z) = az", a # 0. Inequality
was extended to L, -norm by Zygmun who proved that if P, € P, then
1 dedto L, by Z d [17] wh d that if P, € P, th

1P'll, <nllPll,, a>1. 2)
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The result is sharp and equality in (2) holds for P(z) = az", a # 0. If we let g — o0
in (2), we get inequality (1). Melas [12] showed that inequality (2) remains true for
0 < g <1 as well. For polynomials P, € P which does not vanish int he unit disk,
the right hand side of (2) can be improved. In fact, in this direction, it was shown by
De- Bruijn [3] thatif P, € P and P(z) # 0 for |z| < 1, then

n

1P'll, < 77—
7+,

IPl,. ¢=>1 (3)

The above result of De-Bruijn was extended for g > 0 by Rahman and Schmeisser
[14]. If we let ¢ — oo in (3), it follows that if P, € P and P(z) # 0 for |z| < 1, then

n
1P e < 5 1P - 4)

Inequality (4) was conjectured by P. Erdos and later verified by P. D. Lax [10]. Both
the estimates are sharp and equality in (3) and (4) holds for P(z) = az" + b, |a| = |b].

Malik [11] generalized inequality (4) by proving thatif P € P, and P(z) does not
vanish in |z| < k where k > 1, then

n
P < —||P|, - 5
1Pl < T WP (5)

Govil and Rahman [8] extended inequality (5) to L, -norm by proving that if P € P,
and P(z) # 0 for |z| < k where k > 1, then

n
1Pl < MHHMMI? 1. (6)
q

It was shown by Gardner and Weems [7] and independently by Rather [15] that
the inequality (6) remains true for 0 < g < 1 as well. Let Dy P(z) denote the polar
differentiation of polynomial P(z) with respect to a real or complex number ¢, then

Do P(z) = nP(z) + (a0 — 2)P'(z).

If P € P,,then DyP € P,_;. Furthermore, the polar derivative D, P(z) general-
izes the ordinary derivative P’(z) in the sense that

D,P
lim O‘i(z)
o— 00 (04

= P’(z).

As an extension of (1) to the polar derivative, Aziz and Shah [4, Theorem 4 with k
=1] have shown thatif P € P,, then for every real or complex number o with |a| > 1,

PPl < nlef [Pl ()

Inequality (7) becomes equality for P(z) = az",a # 0. If we divide the both sides
of (7) by |c| and let |a| — oo, we get inequality (1).

It is natural to seek L, - norm analog of the inequality (7). In view of L,-norm
extension of (2) of inequality (2), one would expect that if P € P,, then

1DaPl, < nlel [P, (8)
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to be L,-norm extension of (7) analogous to (2). But unfortunately inequality (8) is
not, in general, true for every real or complex number . To see this, we take , in
particular ¢ = 2, P(z) = (1 —iz)" and a = i where B is any positive real number

such that
1<f< n++/2n(2n — 1).
3n—2
Now,
DoP(z) = n(1 — iz)" — ni(a — z)(1 — iz)" !
=n(l —iz)" (1 — i)
so that

o ; n 012(n—1)
/ IDP(e®)|" d6 = |1 - ia? / 11— i ap
0 0
2 ) ’
:nz\lfiodz/ (1 —ie®)y" ' do
0
2
2 ) n—1 n—1\ .
= 1— —
i ) (e
+.

n

st () () ()

ey (D)) ey o

Also,

n2|a2/02n yP(e""))\"dezn2|a2/02ny1—ieif’)yz”de
_n2|a2/()2ﬂ|(1iei9)"|2d9
v [16)- (s
+o 2+ (—1)*{2) (ie’9)2"2d6
=it if) < () )
N (2)2}

©)

(10)
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2
=21 |atf? ( ”> (11)
n
Using (10) and (11) in (8), we get
2(n—1 2
2nn2( (n )) 11— i) < 27m2a|2( ")
n

n—1
This implies
n|l—io)* <22n—1)|af. (12)
Setting o = if} in (12), we get
n(l1+4B)* <2(2n—1)>%

This inequality can be written as

<ﬁn+ 2n<2n1>> <ﬁm> S0 )

3n—2 3n—2

Since 8 > 1, we have

(B _n—+/2n(2n — 1)) > (1 _n—+/2n(2n — 1))

3n—2 3n—2
~(2(n—1)+/2n(2n - 1)
_< -2 >0

and hence from (13), it follows that

(BnJr 2n(2n1)> 0.

3n—2

This gives
n++/2n(2n—1)
B> ;
3n—2

which clearly contradicts (9). Hence inequality (8) is not, in general, true for all
polynomials of degreen > 1.

A. Aziz [1] extended (4) to the polar derivative of a polynomial and proved that if
P € P, and P(z) does not vanish in |z] < 1, then for every real or complex number o
with || > 1,

n
1DaPllo < 5 (lad + 1) [Pl (14)

The estimate is best possible and equality in (14) holds for P(z) = 7" + 1. If we divide
both sides of (14) by |ot| and make |a| — oo, we get inequality (4) due to Lax [10].
Aziz [1] also extended inequality (5) to the polar derivatives by proving that if P € P,
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and P(z) # 0 for |z| < k, where k > 1, then for every real or complex number o with
lof > 1,

loe] + &
Pl <n (1555 1. (15)

The result is best possible and equality in (15) holds for P(z) = (z + k)" where « is
any real number with o > 1.

Whille seeking the desired extension to the L, - norm, recently Govil, Nyuy-
dinkong and Tameru [9] have made an incomplete attempt by claiming to have proved
the following generalization of (3) and (14).

THEOREM 1. If P € P, and P(z) does not vanish in |z| < 1,then for every real or
complex number awith |o] > 1,and g > 1,

loe| 4+ 1
D,P| < _— Pl . 16
IDP, ”<||1+z|q 1P, (16)

Unfotrunately the proof of of this theorem, which is the main result in [9, Theorem
1.1] given by Govil, Nyuydinkong and Tameru is not correct, because the claim made
by the authors on page 624 in lines 12 to 16 by using Lemma 2,3 [9] is incorrect. The
reason being that their polynomial

Do P,(2) + € {nazP,(z) + (1 — €z)zP,(z)}, z=¢"

in general, does not take the form

n
Zlkaka, 7= eie
k=0
where
n
Pn (Z) == Zlkaka
k=0

and the complex numbers [; defined by them on page 624, line 10, by
L (Pu(e”)) = [AP,(€°)] oy = D _lka
k=0

along with the equation (24).
It is worthwhile to note it here that if we use the same argument as used by Govil,
Nyuydinkong and Tameru [9], page 624, line 10, then it would follow from (7) that

1DoPl, < nlaf [P,

forevery ¢ > 1 and o with |ct| > 1, which is not true, in general, as shown above.

In this paper, we first present the following more general result which not only
provides a correct proof of Theorem 1 but also extends inequality (15) due to the first
to the L, - norm.
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THEOREM 2. If P € P,and P(z) does not vanish in |z| < k, where k > 1, then
for every real or complex number awith |a| > 1,and g > 1,

‘Cl| K
DyP| <n 17

In the limiting case, when ¢ — oo, the above inequality is sharp and equality in
(17) holds for P(z) = (z+ k)" where o is any real number with o > 1.

REMARK 1. For k =1, Theorem 2 validates Theorem 1.
REMARK 2. If we let ¢ — oo, in (17), we get inequality (15).

REMARK 3. The result of Govil and Rahman ( inequality (6) ) follows from
Theorem 2 by dividing the two sides of inequality (17) by || and then letting || — oo.

Next we prove the following result.

THEOREM 3. If P € P, and P(z) does not vanish in |z| > k where k < 1, then for
every real or complex number o with || < 1,and g > 1,

loe| + k&
D,P| < 18
IDP, n<”k+ WL (18)

In the limiting case, when ¢ — oo, the above inequality is sharp and equality in
(18) holds for P(z) = (z+ k)" for any real o with 0 < o < 1.

The following result immediately follows from Theorem 3 by letting g — co.

COROLLARY 1. If P € P,and P(z) has all its zeros in |z| < k where k < 1, then
Sfor every real or complex number awith |a| < 1,

lo] + k
Pl <0 (S5 1Pl (19)

The result is best possible and equality in (19) holds for P(z) = (z + k)" for any
real ¢ with 0 < a <1 and k£ < 1.

Setting a = 0 in (19), it follows that if P € P, and P(z) has all its zeros in |z]| < &
where k < 1, then for |z| = 1,

nk

InP(z) — zP'(z)| < Tk 1P| -

This gives for |z] = 1,
|P'(z)| = |nP(z) + zP'(z) — nP(2)]
> n|P(z)| — [nP(z) — zP'(2)]|

nk
nlP@)] = 5 Pl

WV
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which implies

P > P .
Inequality (20) is due to Malik [11].

2. Lemmas

For the proofs of these theorems, we need the following lemmas. The first lemma
is due to A. Aziz.[1].

LEMMA 1. If P € P,and P(z) does not vanish in |z| < k where k > 1, then for
every real or complex number S with |6] > 1,

DsiP(2)| < k |Dg0(2)| for |z|=1

where Q(z) =Z"P(1/Z) .

Setting oo = 0k where k > 1 in Lemma 1, we immediately get:

LEMMA 2. If P € P, and P(z) does not vanish in |z| < k where k > 1, then for
every real or complex number o with |a| > 1,

[DaP(z)] < k|Doye Q(2)] for |z =1

where Q(z) =Z"P(1/Z) .

LEMMA 3. If P € P,and P(z) # 0in |z| < k where k > 1 and Q(z) = Z"P(1/7),
then for |z] =1,

kIP' ()] < 1Q'(2)] -
Lemma 3 is due to Malik [ 9 ].

LEMMA 4. If P € P,and P(z) # 0in |z| < k where k > 1 and Q(z) = Z'P(1/7),
then for every real 3,0 < 8 < 2,

RIPQ) +e? 10| <k[IP@)]+eP 1@ for |l =1.

Proof of Lemma 4. Since P € P, and P(z) does not vanish in |z| < k where

k>1 and Q(z) = Z"P(1/Z), by Lemma 3, we have
RIPERI<IQEI for =1

Multiplying both sides of this inequality by (k> — 1) and rearranging the terms, we get

KPR + QG <RIPEI+2IQ@E)] for | =1. (22)
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Adding 2k% |P'(z)| |Q'(z)| cos B to the both sides of (22), we obtain for |z| = 1,
K P +1Q ()" + 26 [P (2)] 1Q'(2)] cos B
<K IP'R)] +11Q @) + 2k |P'(2)] |Q'(2)] cos B,
which implies
RIPEI+ P I0CI] <R|IPEI+eP ool * for =1
and hence
KIP Q)|+ Q@I <k |IP@)+ P 1@ for [z =1.

This proves Lemma 4. [

LEMMA 5. If P € P, and Q(z) = 2"P(1/Z), then for every q > 0 and [ real,
0< B <2m,

2n 2n
/0 /0

Lemma 5 is due to Aziz and Rather [3] (see also [15])

2
P(e”) + P ()" dbap < 2mnt / [Pe)]" 0.
0

LEMMA 6. If P € P,and P(z) does not vanish in |z| < k where k > 1 and

0(z) = Z'P(1/z2), then for every real or complex number o, q > 1 and B real,
0< B <2m,

/27‘[ /27‘[
0 0

Proof of Lemma 6.. Let r be any positive real number. We have by Minkowski’s
inequality for every ¢ > 1 and f real,

s

2
DuP(¢) + ¢PKD, 1 0(e”)|" d0ap < 21 (|ot] + k)" / [P(e")|" a6
0

1/q
Dy P(e) + eiﬁrZDa/kz 0(e'"?) ‘q d@dﬁ}

2n 21
+ P2 (nQ(eiO) + (% _ eie)Q'(eie)) |qd9dﬁ}1/‘1
2 21
[ [ e = ) 0 (o) — Q')
+ o (P’(eie) + eiBQ/(eie)) \qdedﬂ}l/‘i
2n  p21;
[

1/q
(nP(e®) — P’ (%)) + ePr? (nQ(e) — Q' (7)) ‘q deﬁ}
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tl { [

Since P € P, and Q(z) = "P(1/z), we have P(z) = z"Q(1/7Z) and it can be
easily verified that for 0 < 0 < 27,

. 1/q
P'(e%) + eiﬁQ’(eie)’ dedﬁ} :
(23)

nP(eiG) . eiGP/(eiG) — ei(n—l)em (24)
and

nQ(eie) o ei@ /(ei(-)) — ei(nfl)em. (25)
Using (24) and (25) in (23), we obtain

2n 2n
/0 /0

. . . q
DP(¢?) + ¢P*D, /sz(e’e)‘ d6dp

A0
+la { [
A0
+1of { [

Now for points €?,0 < 6 < 27, for which Q’(e?) # 0,

/q
) . ) . —14
el(n—l)@Q/(ezG)_;'_elﬁrzel(”_l)eP/(e’e)‘ dedﬁ}

l/q
P/(eie) JreiﬁQl(eie)‘qudﬁ}

1/q
rzpl(eie)JreiﬁQl(eie)‘qudﬁ}

1/q
P'(e?) + PO/ () ’q dedﬁ} . (26)

2n 2w | 2 pl( i0 q
/ r2P’(ei9)+eiﬁQ'(ei9)’qu: ’Ql(eie)’q/ rP(? )Jreiﬁ dﬁ
0 o | Q'(e?)
2 2 pl(,i0 q
_ 7o i0N |4 rP(e ) i
—’Q(e )’ /0 0/ (&) +ev| dp
2
=/ rZ\P'(eie)\+eiﬁ]Q’(ei9)]‘qdﬂ. (27)
0

Since (27) is trivially true for points ¢, 0 < 6 < 27, for which Q'(e®®) = 0, it follows
by taking r =k > 1,

2 2
/ ‘kZP/(eie) +eiﬁQl(6i6)’qdﬁ _ / ’kz |P/(ei0)| 1o |Q/(eie)|"’dﬁ. (28)
0 0
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Integrating (28) both sides with respect to 6 from 0 to 27 and then using Lemma 4,
we get

2n 2
/0 [)

2P () + P Q! () “’ d6dp

s

{0
[
T

Setting r = k > 1 and using inequality (29), we obtain

([

k2 ‘P/(eie)‘ + eiB ’Q/(eze)”qdﬁde

/(ei9)| + eiB |Q/(ei0)|‘qdﬁ} 46

P'(eie) JreiﬁQ/(eie)’qdﬁ} 40

P/() + B/ () ‘q d0dp. (29)

1/q
DoP(e") + ePk*Dy 2 0(e™) ‘q dedﬁ}

<qa+m{Ahlm

This gives with the help of Lemma 5,

2n 2n
/0 /0

and the proof of Lemma 6 is complete. [

1/q
P'() + P Q' () \" d6dp } :

2n

Do P(e) + eiﬁkzDa/sz(eie)‘qdedB < 2mnd (o) + k) / |P(e)| a0,
0

We also need the following lemma due to A. Aziz [1].

LEMMA 2. If P € P,and Q(z) = 7"P(1/Z), then for every real or complex number
& with |8] #0,

Ds0(2)| = 18] |D, 5P()| for ld = 1.

3. Proofs of the theorems

Proof of Theorem 2. Since P € P, and P(z) does not vanish in|z| < k where
k > 1, by Lemma 2, we have for every real or complex number o with|o| > 1,

IDoP(2)| < k |DgyQ(2)| for |z] =1 (30)
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where Q(z) = 7'P(1/7). Also, by Lemma 6, for every real or complex number a, g >
1 and B real,

[

Now forevery real §,0 < 6 <2m and t; > t, > 1, we have

2
DaP(eie)JreiﬁkzDa/kzQ(eie)‘qdﬁ} do < 2zn? (|or| 4-k)? / |P(e'%)|" a6.
0

(31

‘ll —&—eiB

> ‘lz + P

which implies

q

tl—‘reiﬁ dB, qg=>1.

2 q 2n )
/ dap > / ’lz +eP
0 0

If DuP(e%) # 0, we take 1, = k* |Dg/eQ(e®)| / |DoP(e)| and 1, = k, then by
(30), t; > 1, > 1, and we get

q

21 ) ) ) q ) 2n k2D eie )
/ DaP(ele)Jre’ﬁkzDa/kzQ(e’e)‘ dp = |DaP(e’9)|q/ 706/1{292 )e’B+1 dp
0 0 Dy P(e®)
. 212Dy 0| |
= |DyP(e” ‘1/ DR T eiByl| d
| o ( )| 0 DaP(eze) B
. 27| | 2Dy 2 0(e™) |
= |DyP(e® q/ 05/7.4-61[3 d
‘ @ ( )‘ o Dap(eze) ﬁ
. 2 1
> |DaP(e’9)|q/ k+e®| dp.
0

For Dy P(e®) = 0, this inequality is trivially true. Using thisin (31), we conclude
that for every real or complex number o with|a| > 1 and ¢ > 1,

2n
/()

which immediately leads to (17) and this completes the proof of Theorem 2. [J

g 2 ) 2m )
k+ P dﬁ/ |DoP(e?)]" d6 < 270 (| +k)"/ |P(e?)|” ao,
0 0

Proof of Theorem 3. Let Q(z) = 7"P(1/Z). Since P € P, and P(z) has all its
zeros in|z] < k where k < 1,0 € P, and Q(z) does not vanish in |z| < (1/k)
where (1/k) > 1. Applying Theorem 2 to the polynomial Q(z), we get for every real or
complex number o with|a| <1 (sothat |[I/a| > 1 )and g > 1,

o 1/q ’;‘ iy o 1/q
{/ |Dl/aQ(ei9)|qd9} <n <°‘71’<> {/ |Q(ei0)|qd9} . (32)
0 HZ+ ZHq 0
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Now since
0(e”)| = |P(e?)], 0<0<2m
and

1
Z+ -

1
= |lz+k
Z 2 llz+ Kl

q

it follows that (32) is equivalent to

2 1/q |O£\—|—k o l/q
_0(9? i0y |4
{/O o] |Dyz0("”)] de} <n<|z+k||q> {/O |P(e)| d@} . (33)

Moreover, Q(z) = 7"P(1/7) implies P(z) = 7"0(1/z), therefore by Lemma 7, we
have for every o with || < 1,

|DoP(e”)| = |a| Dy 50(7)] , 0<6<2m.

Using this in (33), we get

o 1/q o 1/q
. k .
[ perenfaot  <n (92N [l any gz
0 Iz + ]|, 0

and the proof of Theorem 3 is complete. [

4. Some concluding remarks

REMARK 4. If P € P, and Q(z) = Z"P(1/Z) , then by inequality (26) withr = 1,
we have for every real or complex number ¢ and g > 1,

(r

1/q
Do P(e%) + ¢?D,0(e) ‘q dedﬁ}

< (|a‘ N 1) /027r /027r

Combining this inequality with lemma 6, it follows that if P € P, then for every
real or complex number ccand q > 1,

2n 2
/0 /0

where Q(z) = 7"P(1/72).

P/(e) + Q' ()" aoap.

2n

DaP(ei9)+eiﬁDaQ(eie)‘qdedﬁ < 27mn? (Jar| +1)° / |P()|"a0  (34)
0

It is interesting to compare inequality (34) with Lemma 6 fork = 1.
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REMARK 5. Using in (34), the fact that for any q >0,
2n )
/ |a+be’9|qd9 < 2nMax (|al?, |b|?)
0

(see [3, Inequality (19)]), it follows that if P € P,,then for every real or complex
number ccand g > 1,

1/q 1/q

2 2
/\Dap(e"")\"de <n(la)+1) / P()|"a0r . (35)
0 0

which is an interesting extension of Zygmund’s inequality (2) for the polar derivative
of a polynomial. If we divide both sides of (35) by || and then let |a| — oo, we get
inequality (2).

REMARK 6. If P € P, is self-inversive and Q(z) = z"P(1/z), then we have
P(z) =Q(z) forall z€C,
so that
|DaQ(e)] / |DaP ()] = 1.

Using this in (32) and proceeding similarly as in the proof of Theorem 2, it follows that if
P € P, is self-inversive, then for every real or complex number ocand q > 1,

lor] + 1
DoP| <n|———1]|P| . 36
Il < { 1 ) 1Pl (36)

Inequality (36) is a generalization of a result of Dewan and Govil [6] and A. Aziz [2]
for the polar derivatives. Moreover, it also extends a result due to A. Aziz [1, Theorem
2] to L,— norm.
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