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(communicated by Th. M. Rassias)

Abstract. If P(z) is a polynomial of degree n which does not vanish in |z| < 1, then it was
shown by Govil, Nyuydinkong and Tameru [ Some Lp inequalities for the polar derivative of a
polynomial, J. Math. Anal. Appl., 254, (2001), 618–626 ] that for every real or complex number
α with |α| � 1 and q � 1,

|DαP| �
(

|α| + 1
‖1 + z‖q

)
‖P‖q

where DαP(z) denotes the polar derivative of P(z) with respect to α ∈ C . Unfortnunately the
proof of this result is not correct. In this paper, we prove a more general result which not only
provides a correct proof of this result but also extends some known Lq norm inequalities for
the polar derivative of a polynomial. We also present L q norm inequality for polynomials not
vanishing in |z| > k where k � 1 .

1. Introduction and statements results

Let Pn(z) be the class of polynomials P(z) of degree at most n. For Pn ∈ P,
define

‖P‖q :=

{
1
2π

∫ 2π

0

∣∣P(eiθ)
∣∣q}1/q

, 1 � q < ∞,

and
‖P‖∞ := max

|z|=1
|P(z)| .

A famous result known as Bernstein’s inequality ( for reference see [13] or [16]) states
that if Pn ∈ P, then

‖P′‖∞ � n ‖P‖∞ (1)

Inequality (1) is sharp and equality in (1) holds for P(z) = azn , a �= 0 . Inequality
(1) was extended to Lq -norm by Zygmund [17] who proved that if Pn ∈ P , then

‖P′‖q � n ‖P‖q , q � 1. (2)
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The result is sharp and equality in (2) holds for P(z) = azn , a �= 0 . If we let q → ∞
in (2), we get inequality (1). Melas [12] showed that inequality (2) remains true for
0 < q < 1 as well. For polynomials Pn ∈ P which does not vanish int he unit disk,
the right hand side of (2) can be improved. In fact, in this direction, it was shown by
De- Bruijn [5] that if Pn ∈ P and P(z) �= 0 for |z| < 1 , then

‖P′‖q � n
‖1 + z‖q

‖P‖q , q � 1. (3)

The above result of De-Bruijn was extended for q > 0 by Rahman and Schmeisser
[14]. If we let q → ∞ in (3), it follows that if Pn ∈ P and P(z) �= 0 for |z| < 1 , then

‖P′‖∞ � n
2
‖P‖∞ . (4)

Inequality (4) was conjectured by P. Erdös and later verified by P. D. Lax [10]. Both
the estimates are sharp and equality in (3) and (4) holds for P(z) = azn + b, |a| = |b| .

Malik [11] generalized inequality (4) by proving that if P ∈ Pn and P(z) does not
vanish in |z| < k where k � 1 , then

‖P′‖∞ � n
1 + k

‖P‖∞ . (5)

Govil and Rahman [8] extended inequality (5) to Lq -norm by proving that if P ∈ Pn

and P(z) �= 0 for |z| < k where k � 1 , then

‖P′‖q � n
‖k + z‖q

‖P‖q , q � 1. (6)

It was shown by Gardner and Weems [7] and independently by Rather [15] that
the inequality (6) remains true for 0 < q < 1 as well. Let DαP(z) denote the polar
differentiation of polynomial P(z) with respect to a real or complex number α, then

DαP(z) = nP(z) + (α − z)P′(z).

If P ∈ Pn, then DαP ∈ Pn−1. Furthermore, the polar derivative DαP(z) general-
izes the ordinary derivative P′(z) in the sense that

lim
α→∞

DαP(z)
α

= P′(z).

As an extension of (1) to the polar derivative, Aziz and Shah [4, Theorem 4 with k
=1] have shown that if P ∈ Pn, then for every real or complex number α with |α| � 1,

‖DαP‖∞ � n |α| ‖P‖∞ (7)

Inequality (7) becomes equality for P(z) = azn, a �= 0. If we divide the both sides
of (7) by |α| and let |α| → ∞, we get inequality (1).

It is natural to seek L q - norm analog of the inequality (7). In view of Lq -norm
extension of (2) of inequality (2), one would expect that if P ∈ Pn, then

‖DαP‖q � n |α| ‖P‖q (8)
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to be Lq -norm extension of (7) analogous to (2). But unfortunately inequality (8) is
not, in general, true for every real or complex number α. To see this, we take , in
particular q = 2, P(z) = (1 − iz)n and α = iβ where β is any positive real number
such that

1 � β <
n +

√
2n(2n − 1)

3n − 2
. (9)

Now,

DαP(z) = n(1 − iz)n − ni(α − z)(1 − iz)n−1

= n(1 − iz)n−1(1 − iα)

so that∫ 2π

0

∣∣DαP(eiθ )
∣∣q dθ = n2 |1 − iα|2

∫ 2π

0

∣∣1 − ieiθ ∣∣2(n−1)
dθ

= n2 |1 − iα|2
∫ 2π

0

∣∣(1 − ieiθ)n−1
∣∣2 dθ

= n2 |1 − iα|2
∫ 2π

0
|
(

n − 1
0

)
−
(

n − 1
1

)
(ieiθ)

+ · · · + (−1)n−1

(
n − 1
n − 1

)
(ieiθ)n−1|2dθ

= n2 |1 − iα|2 {
(

n − 1
0

)2

+
(

n − 1
1

)2

+
(

n − 1
2

)2

+ · · · +
(

n − 1
n − 1

)2

}

= 2πn2 |1 − iα|2
(

2(n − 1)
n − 1

)
.

(10)
Also,

n2 |α|2
∫ 2π

0

∣∣P(eiθ))
∣∣q dθ = n2 |α|2

∫ 2π

0

∣∣1 − ieiθ)
∣∣2n

dθ

= n2 |α|2
∫ 2π

0

∣∣(1 − ieiθ)n
∣∣2 dθ

= n2 |α|2
∫ 2π

0
|
(

n
0

)
−
(

n
1

)
(ieiθ )

+ · · · + (−1)n

(
n
n

)
(ieiθ )n|2dθ

= n2 |α|2 {
(

n
0

)2

+
(

n
1

)2

+
(

n
2

)2

+ · · · +
(

n
n

)2

}
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= 2πn2 |α|2
(

2n
n

)
. (11)

Using (10) and (11) in (8), we get

2πn2

(
2(n − 1)
n − 1

)
|1 − iα|2 � 2πn2 |α|2

(
2n
n

)
.

This implies
n |1 − iα|2 � 2(2n − 1) |α|2 . (12)

Setting α = iβ in (12), we get

n(1 + β)2 � 2(2n − 1)2.

This inequality can be written as(
β − n +

√
2n(2n − 1)

3n − 2

)(
β − n −√2n(2n − 1)

3n − 2

)
� 0. (13)

Since β � 1, we have

(
β − n −√2n(2n − 1)

3n − 2

)
�
(

1 − n −√2n(2n − 1)
3n − 2

)

=

(
2(n − 1) +

√
2n(2n− 1)

3n − 2

)
> 0

and hence from (13), it follows that(
β − n +

√
2n(2n − 1)

3n − 2

)
� 0.

This gives

β � n +
√

2n(2n − 1)
3n − 2

,

which clearly contradicts (9). Hence inequality (8) is not, in general, true for all
polynomials of degree n � 1.

A. Aziz [1] extended (4) to the polar derivative of a polynomial and proved that if
P ∈ Pn and P(z) does not vanish in |z| < 1, then for every real or complex number α
with |α| � 1,

‖DαP‖∞ � n
2
(|α| + 1) ‖P‖∞ (14)

The estimate is best possible and equality in (14) holds for P(z) = zn + 1. If we divide
both sides of (14) by |α| and make |α| → ∞, we get inequality (4) due to Lax [10].
Aziz [1] also extended inequality (5) to the polar derivatives by proving that if P ∈ Pn
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and P(z) �= 0 for |z| < k, where k � 1, then for every real or complex number α with
|α| � 1,

‖DαP‖∞ � n

( |α| + k
1 + k

)
‖P‖∞ (15)

The result is best possible and equality in (15) holds for P(z) = (z + k)n where α is
any real number with α � 1.

Whille seeking the desired extension to the L q - norm, recently Govil, Nyuy-
dinkong and Tameru [9] have made an incomplete attempt by claiming to have proved
the following generalization of (3) and (14).

THEOREM 1. If P ∈ Pn and P(z) does not vanish in |z| < 1, then for every real or
complex number α with |α| � 1,and q � 1,

‖DαP‖q � n

(
|α| + 1
‖1 + z‖q

)
‖P‖q . (16)

Unfotrunately the proof of of this theorem, which is the main result in [9, Theorem
1.1] given by Govil, Nyuydinkong and Tameru is not correct, because the claim made
by the authors on page 624 in lines 12 to 16 by using Lemma 2,3 [9] is incorrect. The
reason being that their polynomial

DαPn(z) + eiγ {nαzPn(z) + (1 − αz)zP′
n(z)} , z = eiθ

in general, does not take the form

n∑
k=0

lkakz
k, z = eiθ

where

Pn(z) =
n∑

k=0

lkakz
k

and the complex numbers lk defined by them on page 624, line 10, by

L
(
Pn(eiθ)

)
=
[
ΛPn(eiθ)

]
θ=0

=
n∑

k=0

lkak

along with the equation (24).
It is worthwhile to note it here that if we use the same argument as used by Govil,

Nyuydinkong and Tameru [9], page 624, line 10, then it would follow from (7) that

‖DαP‖q � n |α| ‖P‖q

for every q � 1 and α with |α| � 1, which is not true, in general, as shown above.

In this paper, we first present the following more general result which not only
provides a correct proof of Theorem 1 but also extends inequality (15) due to the first
to the L q - norm.
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THEOREM 2. If P ∈ Pn and P(z) does not vanish in |z| < k, where k � 1, then
for every real or complex number α with |α| � 1,and q � 1,

‖DαP‖q � n

(
|α| + k
‖k + z‖q

)
‖P‖q . (17)

In the limiting case, when q → ∞, the above inequality is sharp and equality in
(17) holds for P(z) = (z + k)n where α is any real number with α � 1.

REMARK 1. For k =1, Theorem 2 validates Theorem 1.

REMARK 2. If we let q → ∞, in (17), we get inequality (15).

REMARK 3. The result of Govil and Rahman ( inequality (6) ) follows from
Theorem2bydividing the two sides of inequality (17)by |α| and then letting |α| → ∞.

Next we prove the following result.

THEOREM 3. If P ∈ Pn and P(z) does not vanish in |z| > k where k � 1, then for
every real or complex number α with |α| � 1,and q � 1,

‖DαP‖q � n

(
|α| + k
‖k + z‖q

)
‖P‖q . (18)

In the limiting case, when q → ∞, the above inequality is sharp and equality in
(18) holds for P(z) = (z + k)n for any real α with 0 � α � 1.

The following result immediately follows from Theorem 3 by letting q → ∞.

COROLLARY 1. If P ∈ Pn and P(z) has all its zeros in |z| � k where k � 1, then
for every real or complex number α with |α| � 1,

‖DαP‖∞ � n

( |α| + k
1 + k

)
‖P‖∞ . (19)

The result is best possible and equality in (19) holds for P(z) = (z + k)n for any
real α with 0 � α � 1 and k � 1.

Setting α = 0 in (19), it follows that ifP ∈ Pn and P(z) has all its zeros in |z| � k
where k � 1, then for |z| = 1,

|nP(z) − zP′(z)| � nk
1 + k

‖P‖∞ .

This gives for |z| = 1,

|P′(z)| = |nP(z) + zP′(z) − nP(z)|
� n |P(z)| − |nP(z) − zP′(z)|
� n |P(z)| − nk

1 + k
‖P‖∞ ,
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which implies

‖P′‖∞ � n
1 + k

‖P‖∞ . (20)

Inequality (20) is due to Malik [11].

2. Lemmas

For the proofs of these theorems, we need the following lemmas. The first lemma
is due to A. Aziz.[1].

LEMMA 1. If P ∈ Pn and P(z) does not vanish in |z| < k where k � 1, then for
every real or complex number δ with |δ | � 1,

|DδkP(z)| � k
∣∣Dδ/kQ(z)

∣∣ f or |z| = 1

where Q(z) = znP(1/z) .

Setting α = δk where k � 1 in Lemma 1, we immediately get:

LEMMA 2. If P ∈ Pn and P(z) does not vanish in |z| < k where k � 1, then for
every real or complex number α with |α| � 1,

|DαP(z)| � k
∣∣Dα/k2Q(z)

∣∣ f or |z| = 1

where Q(z) = znP(1/z) .

LEMMA 3. If P ∈ Pn and P(z) �= 0 in |z| < k where k � 1 and Q(z) = znP(1/z),
then for |z| = 1,

k |P′(z)| � |Q′(z)| .
Lemma 3 is due to Malik [ 9 ].

LEMMA 4. If P ∈ Pn and P(z) �= 0 in |z| < k where k � 1 and Q(z) = znP(1/z),
then for every real β , 0 � β < 2π,∣∣∣k2 |P′(z)| + eiβ |Q′(z)|

∣∣∣ � k
∣∣∣|P′(z)| + eiβ |Q′(z)|

∣∣∣ f or |z| = 1.

Proof of Lemma 4. Since P ∈ Pn and P(z) does not vanish in |z| < k where
k � 1 and Q(z) = znP(1/z), by Lemma 3, we have

k2 |P′(z)|2 � |Q′(z)|2 for |z| = 1.

Multiplying both sides of this inequality by (k2 − 1) and rearranging the terms, we get

k4 |P′(z)|2 + |Q′(z)|2 � k2 |P′(z)|2 + k2 |Q′(z)|2 for |z| = 1. (22)
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Adding 2k2 |P′(z)| |Q′(z)| cosβ to the both sides of (22),we obtain for |z| = 1,

k4 |P′(z)|2 + |Q′(z)|2 + 2k2 |P′(z)| |Q′(z)| cosβ

� k2 |P′(z)|2 + k2 |Q′(z)|2 + 2k2 |P′(z)| |Q′(z)| cos β ,

which implies∣∣∣k2 |P′(z)| + eiβ |Q′(z)|
∣∣∣2 � k2

∣∣∣|P′(z)| + eiβ |Q′(z)|
∣∣∣ 2 for |z| = 1

and hence ∣∣∣k2 |P′(z)| + eiβ |Q′(z)|
∣∣∣ � k

∣∣∣|P′(z)| + eiβ |Q′(z)|
∣∣∣ for |z| = 1.

This proves Lemma 4. �

LEMMA 5. If P ∈ Pn and Q(z) = znP(1/z), then for every q > 0 and β real,
0 � β < 2π,∫ 2π

0

∫ 2π

0

∣∣∣P′(eiθ) + eiβQ′(eiθ)
∣∣∣q dθdβ � 2πnq

∫ 2π

0

∣∣P(eiθ)
∣∣q dθ.

Lemma 5 is due to Aziz and Rather [3] (see also [15])

LEMMA 6. If P ∈ Pn and P(z) does not vanish in |z| < k where k � 1 and
Q(z) = znP(1/z), then for every real or complex number α, q � 1 and β real,
0 � β < 2π,∫ 2π

0

∫ 2π

0

∣∣∣DαP(eiθ) + eiβk2Dα/k2Q(eiθ)
∣∣∣q dθdβ � 2πnq (|α| + k)q

∫ 2π

0

∣∣P(eiθ)
∣∣q dθ.

Proof of Lemma 6.. Let r be any positive real number. We have by Minkowski’s
inequality for every q � 1 and β real,

{∫ 2π

0

∫ 2π

0

∣∣∣DαP(eiθ) + eiβ r2Dα/k2Q(eiθ)
∣∣∣q dθdβ

}1/q

= {
∫ 2π

0

∫ 2π

0
| (nP(eiθ) + (α − eiθ)P′(eiθ)

)
+ eiβr2

(
nQ(eiθ) + (

α
r2

− eiθ)Q′(eiθ )
)
|qdθdβ}1/q

= {
∫ 2π

0

∫ 2π

0
| (nP(eiθ) − eiθP′(eiθ )

)
+ eiβ r2

(
nQ(eiθ) − eiθQ′(eiθ)

)
+ α

(
P′(eiθ) + eiβQ′(eiθ)

)
|qdθdβ}1/q

�
{∫ 2π

0

∫ 2π

0

∣∣∣(nP(eiθ) − eiθP′(eiθ )
)

+ eiβr2
(
nQ(eiθ) − eiθQ′(eiθ)

)∣∣∣q dθdβ

}1/q
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+ |α|
{∫ 2π

0

∫ 2π

0

∣∣∣P′(eiθ ) + eiβQ′(eiθ)
∣∣∣q dθdβ

}1/q

.
(23 )

Since P ∈ Pn and Q(z) = znP(1/z), we have P(z) = znQ(1/z) and it can be
easily verified that for 0 � θ < 2π,

nP(eiθ) − eiθP′(eiθ) = ei(n−1)θQ′(eiθ) (24)

and

nQ(eiθ) − eiθQ′(eiθ ) = ei(n−1)θP′(eiθ). (25)

Using (24) and (25) in (23), we obtain

∫ 2π

0

∫ 2π

0

∣∣∣DαP(eiθ) + eiβr2Dα/k2Q(eiθ )
∣∣∣q dθdβ

�
{∫ 2π

0

∫ 2π

0

∣∣∣ei(n−1)θQ′(eiθ) + eiβr2ei(n−1)θP′(eiθ)
∣∣∣q dθdβ

}1/q

+ |α|
{∫ 2π

0

∫ 2π

0

∣∣∣P′(eiθ ) + eiβQ′(eiθ)
∣∣∣q dθdβ

}1/q

=

{∫ 2π

0

∫ 2π

0

∣∣∣r2P′(eiθ) + eiβQ′(eiθ )
∣∣∣q dθdβ

}1/q

+ |α|
{∫ 2π

0

∫ 2π

0

∣∣∣P′(eiθ ) + eiβQ′(eiθ)
∣∣∣q dθdβ

}1/q

. (26)

Now for points eiθ , 0 � θ < 2π, for which Q′(eiθ ) �= 0,

∫ 2π

0

∣∣∣r2P′(eiθ) + eiβQ′(eiθ)
∣∣∣q dβ =

∣∣Q′(eiθ )
∣∣q ∫ 2π

0

∣∣∣∣ r2P′(eiθ )
Q′(eiθ)

+ eiβ
∣∣∣∣
q

dβ

=
∣∣Q′(eiθ )

∣∣q ∫ 2π

0

∣∣∣∣
∣∣∣∣r2P′(eiθ)

Q′(eiθ)

∣∣∣∣+ eiβ
∣∣∣∣
q

dβ

=
∫ 2π

0

∣∣∣r2
∣∣P′(eiθ)

∣∣+ eiβ ∣∣Q′(eiθ )
∣∣∣∣∣q dβ . (27)

Since (27) is trivially true for points eiθ , 0 � θ < 2π, for which Q′(eiθ ) = 0, it follows
by taking r = k � 1,

∫ 2π

0

∣∣∣k2P′(eiθ ) + eiβQ′(eiθ)
∣∣∣q dβ =

∫ 2π

0

∣∣∣k2
∣∣P′(eiθ)

∣∣+ eiβ ∣∣Q′(eiθ)
∣∣∣∣∣q dβ . (28)
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Integrating (28) both sides with respect to θ from 0 to 2π and then using Lemma 4,
we get ∫ 2π

0

∫ 2π

0

∣∣∣k2P′(eiθ) + eiβQ′(eiθ)
∣∣∣q dθdβ

=
∫ 2π

0

∫ 2π

0

∣∣∣k2
∣∣P′(eiθ)

∣∣+ eiβ ∣∣Q′(eiθ )
∣∣∣∣∣q dβdθ

� k

{∫ 2π

0

∫ 2π

0

∣∣∣∣∣P′(eiθ )
∣∣+ eiβ ∣∣Q′(eiθ)

∣∣∣∣∣q dβ

}
dθ

= k
∫ 2π

0

{∫ 2π

0

∣∣∣P′(eiθ) + eiβQ′(eiθ)
∣∣∣q dβ

}
dθ

= k
∫ 2π

0

∫ 2π

0

∣∣∣P′(eiθ) + eiβQ′(eiθ )
∣∣∣q dθdβ . (29)

Setting r = k � 1 and using inequality (29), we obtain

{∫ 2π

0

∫ 2π

0

∣∣∣DαP(eiθ) + eiβk2Dα/k2Q(eiθ )
∣∣∣q dθdβ

}1/q

� (|α| + k)

{∫ 2π

0

∫ 2π

0

∣∣∣P′(eiθ ) + eiβQ′(eiθ)
∣∣∣q dθdβ

}1/q

.

This gives with the help of Lemma 5,∫ 2π

0

∫ 2π

0

∣∣∣DαP(eiθ) + eiβk2Dα/k2Q(eiθ)
∣∣∣q dθdβ � 2πnq (|α| + k)q

∫ 2π

0

∣∣P(eiθ)
∣∣q dθ,

and the proof of Lemma 6 is complete. �

We also need the following lemma due to A. Aziz [1].

LEMMA 2. If P ∈ Pn and Q(z) = znP(1/z), then for every real or complex number
δ with |δ | �= 0,

|DδQ(z)| = |δ |
∣∣∣D1/δP(z)

∣∣∣ f or |z| = 1.

3. Proofs of the theorems

Proof of Theorem 2. Since P ∈ Pn and P(z) does not vanish in |z| < k where
k � 1, by Lemma 2, we have for every real or complex number α with |α| � 1,

|DαP(z)| � k
∣∣Dα/k2Q(z)

∣∣ for |z| = 1 (30)
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where Q(z) = znP(1/z). Also, by Lemma 6, for every real or complex number α, q �
1 and β real,

∫ 2π

0

{∫ 2π

0

∣∣∣DαP(eiθ)+eiβk2Dα/k2Q(eiθ)
∣∣∣q dβ

}
dθ � 2πnq (|α|+k)q

∫ 2π

0

∣∣P(eiθ)
∣∣q dθ.

(31)
Now for every real β , 0 � θ < 2π and t1 � t2 � 1, we have∣∣∣t1 + eiβ

∣∣∣ �
∣∣∣t2 + eiβ

∣∣∣ ,
which implies ∫ 2π

0

∣∣∣t1 + eiβ
∣∣∣q dβ �

∫ 2π

0

∣∣∣t2 + eiβ
∣∣∣q dβ , q � 1.

If DαP(eiθ) �= 0, we take t1 = k2
∣∣Dα/k2Q(eiθ)

∣∣ / ∣∣DαP(eiθ)
∣∣ and t2 = k, then by

(30), t1 � t2 � 1, and we get

∫ 2π

0

∣∣∣DαP(eiθ)+eiβk2Dα/k2Q(eiθ )
∣∣∣q dβ =

∣∣DαP(eiθ)
∣∣q ∫ 2π

0

∣∣∣∣∣k
2Dα/k2Q(eiθ )
DαP(eiθ)

eiβ+1

∣∣∣∣∣
q

dβ

=
∣∣DαP(eiθ)

∣∣q ∫ 2π

0

∣∣∣∣∣
∣∣∣∣∣k

2Dα/k2Q(eiθ)
DαP(eiθ)

∣∣∣∣∣ eiβ+1

∣∣∣∣∣
q

dβ

=
∣∣DαP(eiθ)

∣∣q ∫ 2π

0

∣∣∣∣∣
∣∣∣∣∣k

2Dα/k2Q(eiθ)
DαP(eiθ)

∣∣∣∣∣+eiβ

∣∣∣∣∣
q

dβ

�
∣∣DαP(eiθ)

∣∣q ∫ 2π

0

∣∣∣k+eiβ
∣∣∣q dβ .

For DαP(eiθ) = 0, this inequality is trivially true. Using this in (31), we conclude
that for every real or complex number α with |α| � 1 and q � 1,∫ 2π

0

∣∣∣k + eiβ
∣∣∣q dβ

∫ 2π

0

∣∣DαP(eiθ)
∣∣q dθ � 2πnq (|α| + k)q

∫ 2π

0

∣∣P(eiθ)
∣∣q dθ,

which immediately leads to (17) and this completes the proof of Theorem 2. �

Proof of Theorem 3. Let Q(z) = znP(1/z). Since P ∈ Pn and P(z) has all its
zeros in |z| � k where k � 1, Q ∈ Pn and Q(z) does not vanish in |z| < (1/k)
where (1/k) � 1.Applying Theorem 2 to the polynomial Q(z), we get for every real or
complex number α with |α| � 1 (so that |1/α| � 1 ) and q � 1,

{∫ 2π

0

∣∣D1/αQ(eiθ )
∣∣q dθ

}1/q

� n

( ∣∣ 1
α

∣∣+ 1
k∥∥z + 1

k

∥∥
q

){∫ 2π

0

∣∣Q(eiθ)
∣∣q dθ

}1/q

. (32)
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Now since ∣∣Q(eiθ)
∣∣ =

∣∣P(eiθ)
∣∣ , 0 � θ < 2π,

and ∥∥∥∥z +
1
k

∥∥∥∥
q

=
1
k
‖z + k‖q ,

it follows that (32) is equivalent to

{∫ 2π

0
|α| ∣∣D1/αQ(eiθ )

∣∣q dθ

}1/q

� n

(
|α| + k
‖z + k‖q

){∫ 2π

0

∣∣P(eiθ)
∣∣q dθ

}1/q

. (33)

Moreover, Q(z) = znP(1/z) implies P(z) = znQ(1/z), therefore by Lemma 7, we
have for every α with |α| � 1,∣∣DαP(eiθ)

∣∣ = |α| ∣∣D1/αQ(eiθ)
∣∣ , 0 � θ < 2π.

Using this in (33), we get

{∫ 2π

0

∣∣DαP(eiθ)
∣∣q dθ

}1/q

� n

(
|α| + k
‖z + k‖q

){∫ 2π

0

∣∣P(eiθ)
∣∣q dθ

}1/q

, q � 1

and the proof of Theorem 3 is complete. �

4. Some concluding remarks

REMARK 4. If P ∈ Pn and Q(z) = znP(1/z) , then by inequality (26) with r = 1,
we have for every real or complex numberα and q � 1 ,{∫ 2π

0

∫ 2π

0

∣∣∣DαP(eiθ) + eiβDαQ(eiθ)
∣∣∣q dθdβ

}1/q

� (|α| + 1)
∫ 2π

0

∫ 2π

0

∣∣∣P′(eiθ) + eiβQ′(eiθ )
∣∣∣q dθdβ .

Combining this inequality with lemma 6, it follows that if P ∈ Pn, then for every
real or complex number α and q � 1 ,

∫ 2π

0

∫ 2π

0

∣∣∣DαP(eiθ)+eiβDαQ(eiθ)
∣∣∣q dθdβ � 2πnq (|α|+1)q

∫ 2π

0

∣∣P(eiθ)
∣∣q dθ (34)

where Q(z) = znP(1/z).

It is interesting to compare inequality (34) with Lemma 6 for k = 1.
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REMARK 5. Using in (34), the fact that for any q >0,∫ 2π

0

∣∣a + beiθ ∣∣q dθ � 2πMax
(|a|q , |b|q) ,

(see [5, Inequality (19)]), it follows that if P ∈ Pn, then for every real or complex
number α and q � 1 ,

{∫ 2π

0

∣∣DαP(eiθ)
∣∣q dθ

}1/q

� n (|α| + 1)

{∫ 2π

0

∣∣P(eiθ)
∣∣q dθ

}1/q

, (35)

which is an interesting extension of Zygmund’s inequality (2) for the polar derivative
of a polynomial. If we divide both sides of (35) by |α| and then let |α| → ∞, we get
inequality (2).

REMARK 6. If P ∈ Pn is self-inversive and Q(z) = znP(1/z) , then we have

P(z) = Q(z) for all z ∈ C,

so that ∣∣DαQ(eiθ)
∣∣ / ∣∣DαP(eiθ)

∣∣ = 1.

Using this in (32) and proceeding similarly as in the proof of Theorem2, it follows that if
P ∈ Pn is self-inversive, then for every real or complex number α and q � 1 ,

‖DαP‖q � n

(
|α| + 1
‖1 + z‖q

)
‖P‖q . (36)

Inequality (36) is a generalization of a result of Dewan and Govil [6] and A. Aziz [2]
for the polar derivatives. Moreover, it also extends a result due to A. Aziz [1, Theorem
2] to Lq− norm.
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