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WEAK NONCOMPACTNESS IN BANACH SEQUENCE

SPACES AND ITS EXTRAPOLATION PROPERTIES
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Abstract. Explicit formulae in selected Banach sequence spaces are established for the measure
of weak noncompactness based on James’ criteria. Estimates of the deviation from weak com-
pactness are given for bounded linear operators extrapolated by the Jawerth-Milman Σp and Δp
methods for 1 < p < ∞ .

1. Introduction

A characterization of weakly compact sets in Banach spaces is a natural starting
point for a quantitative approach to this property. The classical James’ criteria of [13]
referring to separated convex hulls enable to define measures of weak noncompactness
with the use of sequences. This sequential character of measures is especially useful
in applications when we deal with concrete spaces. A different concept is connected
with Grothendieck’s criterion which refers directly to weakly compact sets. In this
paper we give explicit formulae in selected sequence spaces for the measure of weak
noncompactness which joins a few well-known criteria.

The measures of weak noncompactness applied to operators have turned out to
be useful in fixed point theory and the theories of integral and differential equations
(see for example [1, 3]). One of the natural problems is the behavior of weak non-
compactness of operators under interpolation. The measure we discuss here based
on James’ criteria has regular properties from this viewpoint. That is, for the related
operator seminorm vanishing for weakly compact operators there exist logarithmically
convex-type estimates corresponding to the norm estimates characteristic for real and
complex interpolation (see [15, 17]). In contrast, this property is not shared by the
measure based on Grothendieck’s criterion (see [7]). In this paper, we study in some
sense the converse problem. Using techniques similar to those elaborated in [17] for
real interpolation, we will estimate the deviation from weak compactness of bounded
linear operators extrapolated by the Jawerth-Milman Σp and Δp methods of [14] for
1 < p < ∞ . Again, as in the case of discrete real interpolation, the behavior of weak
noncompactness in lp vector-valued sequence spaces will play here a key role.
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2. Weak noncompactness of sets and operators

Let X be a Banach space, B(X) the open unit ball of X and MX the family of all
nonempty bounded subsets of X . Recall that by James’ [13] criterion, weakly closed
A ∈ MX is not weakly compact if and only if there exist δ > 0 and (xn) ⊂ A such that
dist (conv {x1, . . . , xr}, conv{xr+1, xr+2, . . .}) � δ for every r . It is convenient to use
the following notions: (yn) is said to be a sequence of successive convex combinations,
or scc, for a sequence (xn) in X if there exist integers 0 = r1 < r2 < · · · such that
yn ∈ conv {xrn+1, . . . , xrn+1} for every n ; vectors u1, u2 are said to be a pair of scc for
(xn) if u1 ∈ conv {x1, . . . , xr} and u2 ∈ conv {xr+1, xr+2, . . .} for some integer r � 1 .
The measure of weak noncompactness γ defined in [17] is given for every A ∈ MX by

γ (A) = sup{ csep (xn): (xn) ⊂ A },
where csep (xn) = inf ‖u1 − u2‖ , the infimum being taken over all pairs u1, u2 of scc
for (xn) . Clearly, γ (A) = 0 if and only if A is relatively weakly compact. Other
properties of γ can be found in [17]. Here, let us only recall the following useful
formulae:

γ (A) = sup
{

lim
m→∞ lim

n→∞Fm(xn) − lim
n→∞ lim

m→∞Fm(xn)
}

,

the supremum being taken over all sequences (xn) ⊂ A , (Fm) ⊂ B(X∗) (with X∗

being taken for X over the real field) and such that all the limits exist;

γ (A) = sup dist (x∗∗, conv {xn}),
the supremum being taken over all sequences (xn) ⊂ A and all w∗ -cluster points
x∗∗ ∈ X∗∗ of (xn) .

By Grothendieck’s criterion,weakly closed A ∈ MX is weakly compact if and only
if for each ε > 0 there exists a weakly compact set Kε ⊂ X such that A ⊂ Kε +εB(X) .
The corresponding measure of weak noncompactness ω was introduced by De Blasi
[8]:

ω(A) = inf{ ε > 0: A ⊂ Kε + εB(X), Kε ⊂ X is weakly compact}.
The measures γ and ω are not equivalent in general. An example showing this can be
found in [2].

In [17], the supremums in the above formulae for γ are taken over all sequences
in convA . By a result on double limits recently proved in [10, Theorem 13] we can
restrict this range to all sequences in A . Thus γ (convA) = γ (A) for every A ∈ MX .
This can be viewed as a quantitative version of the Krein-Šmulian theorem (if A is
relatively weakly compact, then so is convA) . It is worth noting that an analogous
quantitative relation holds for ω (see [8]) and does not in another approach to weak
noncompactness studied in [10] where A ∈ MX is called ε -weakly relatively compact
for ε � 0 if

A
w∗

⊂ X + εB(X∗∗).

Here, if A is ε -weakly relatively compact, then convA is 2ε -weakly relatively compact
[10]. In the general case, this constant cannot be improved [11].
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Let L (X, Y) denote the space of all bounded linear operators acting between
Banach spaces X and Y . Let W (X, Y) denote the subspace of L (X, Y) consisting
of all weakly compact operators. To measure the deviation from weak compactness
of T ∈ L (X, Y) we put Γ(T) = γ (T(B(X)) . This gives a seminorm in L (X, Y)
vanishing on W (X, Y) . This seminorm is equivalent neither to the weak essential norm
dist (T, W (X, Y)) nor to the inner and outer measures for W (X, Y) studied in [2] (see
the problem of quantitative versions of Gantmacher’s duality theorem in [15] and [20]).

3. Weak noncompactness in selected spaces

Let Jp , 1 < p < ∞ , denote the space of all real null sequences x = (x(k)) with
finite

‖x‖ = sup

(
n−1∑
l=1

|x(kl+1) − x(kl)|p
)1/p

, (3.1)

where the supremum is taken over all finite sequences of integers 0 < k1 < · · · < kn

with n � 2 . Recall that as in the case of the space introduced by James in [12], the
space Jp has codimension 1 in its bidual. The vectors en = (0, . . . , 0, 1, 0, . . .) with
1 in the n th position form a basis of Jp . The bidual J∗∗p can be identified with all real
sequences x∗∗ = (x∗∗(k)) with finite

‖x∗∗‖ = sup
n

∥∥∥∥∥
n∑

k=1

x∗∗(k)ek

∥∥∥∥∥ .

Since every such x∗∗ is convergent and (x∗∗(k)− liml→∞ x∗∗(l)) ∈ Jp , we will identify
J∗∗p with Jp ⊕ span {(1, 1, . . .)} .

For a sequence x = (x(k)) and n = 1, 2, . . . let

Pnx = (x(1), . . . , x(n), 0, . . .), Rnx = x − Pnx.

If we restrict Pn to J∗∗p , then ‖Pn‖ = 1 for every n and limn→∞ ‖Rnx‖ = 0 for every
x ∈ Jp . In the sequel a constant sequence (α,α, . . .) will be also denoted by α .

LEMMA 3.1. ([16])Let (xn) be a bounded sequence in Jp . For every ε > 0 there
exist a subsequence (xnk ) , an increasing sequence (mk) of natural numbers and a
constant α such that for k = 1, 2, . . . we have∥∥xnk − (Pm1xn1 + Pm2kRm1α + Pm2k+1

Rm2k xnk)
∥∥ � ε.

THEOREM 3.2. If 1 < p < ∞ and A ∈ MJp , then

γ (A) = 21/p sup
{

lim
k→∞

|x∗∗(k)|
}

, (3.2)

where the supremum is taken over all sequences (xn) in A and all w∗ -cluster points
x∗∗ = (x∗∗(k)) ∈ J∗∗p of (xn) .
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Proof. Since γ is positively homogeneous, we can assume that A ⊂ B(Jp) . Let
γ ′(A) denote the right-hand side of (3.2). Fix ε > 0 , a sequence (xn) ⊂ A and its w∗ -
cluster point x∗∗ = (x∗∗(k)) ∈ J∗∗p . By passing to a subsequence we can assume that
x∗∗ = w∗ - limn→∞ xn . Then x∗∗(k) = limn→∞ xn(k) for xn = (xn(k)) ∈ J∗∗p . Writing
α = limk→∞ x∗∗(k) and passing to a subsequence once more, by Lemma 3.1 we can
assume that ‖xn − un‖ � ε for all n , where un = Pm1x1 + Pm2nRm1α + Pm2n+1Rm2nxn

and (mk) is an increasing sequence of natural numbers. Moreover, we can assume that
m1 and x1 are taken to satisfy ‖Pm1(x∗∗ − x1)‖ � 1

6ε and ‖Rm1(x∗∗ − α)‖ � 1
6ε . Let

u∗∗ = Pm1x1 + Rm1α . Thus

‖x∗∗ − u∗∗‖ � ‖Pm1(x
∗∗ − x1)‖ + ‖Rm1(x

∗∗ − α)‖ � ε
3
.

We first prove that γ (A) � γ ′(A) . For N = 1, 2, . . . we have∥∥∥∥∥u∗∗ − 1
N

N∑
n=1

un

∥∥∥∥∥ �
∥∥∥∥∥ 1

N

N∑
n=1

Rm2nα

∥∥∥∥∥+

∥∥∥∥∥ 1
N

N∑
n=1

Pm2n+1Rm2nxn

∥∥∥∥∥ .

Clearly,
∥∥∥ 1

N

∑N
n=1 Rm2nα

∥∥∥ = 21/p |α| . Applying |a − b|p � 2p−1(|a|p + |b|p) to some

terms realizing variations in the norm we obtain∥∥∥∥∥ 1
N

N∑
n=1

Pm2n+1Rm2nxn

∥∥∥∥∥
p

� 2p−1

Np

N∑
n=1

‖Pm2n+1Rm2nxn‖p � 22p−1

Np−1
.

We now choose N such that (22p−1N1−p)1/p � 2
3ε . Then∥∥∥∥∥x∗∗ − 1

N

N∑
n=1

xn

∥∥∥∥∥ � ‖x∗∗ − u∗∗‖ +

∥∥∥∥∥u∗∗ − 1
N

N∑
n=1

un

∥∥∥∥∥+

∥∥∥∥∥ 1
N

N∑
n=1

(un − xn)

∥∥∥∥∥
� 21/p |α| + 2ε � γ ′(A) + 2ε.

It follows that dist (x∗∗, conv {xn}) � γ ′(A) + 2ε and consequently, γ (A) � γ ′(A) .
To prove the opposite inequality let us observe that in the case of (xn) as above

for every nonnegative t1, . . . , tk with sum 1 and each subset {n1, . . . , nk} of indices
we have

21/p |α| �
∥∥∥∥∥u∗∗ −

k∑
i=1

tniuni

∥∥∥∥∥ �
∥∥∥∥∥x∗∗ −

k∑
i=1

tni xni

∥∥∥∥∥+
4
3
ε.

Hence

21/p |α| � dist (x∗∗, conv{xn}) +
4
3
ε � γ (A) +

4
3
ε

and finally, γ ′(A) � γ (A) . �
Combining the above resultwith the evident formula dist (x∗∗, Jp) = limk→∞ |x∗∗(k)|

for x∗∗ = (x∗∗(k)) ∈ J∗∗p , we get immediately the following corollary.

COROLLARY 3.3. If 1 < p < ∞ and A ∈ MJp , then

γ (A) = 21/p sup dist (x∗∗, Jp),

where the supremum is taken as in (3.2). In particular, γ (B(Jp)) = 21/p .
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Recall that if X is nonreflexive, then ω(B(X)) = 1 and 1 � γ (B(X)) � 2 . The
gap between 1 and 2 for γ is filled by B(Jp) , 1 < p < ∞ , which is not the case for
Jp endowed with the equivalent norm

‖x‖0 = sup

(
|x(kn) − x(k1)|p +

n−1∑
l=1

|x(kl+1) − x(kl)|p
)1/p

,

the supremum being taken as in (3.1), corresponding to the original one of [12] for
p = 2 . It is easily seen that ‖x‖ � ‖x‖0 � 21/p ‖x‖ . Let J0

p denote the space Jp

with ‖ · ‖0 . Both Lemma 3.1 and Theorem 3.2 hold for J0
p . Clearly, dist (x∗∗, J0

p) =
21/p limk→∞ |x∗∗(k)| . It follows that γ (B(J0

p)) = 1 for every 1 < p < ∞ .
Although nonequivalent in general, themeasures γ and ω coincide up to a constant

multiplier in some classical spaces. For example, in the Lebesgue space L1(ν) with
finite measure ν we have γ = 2ω (see [15]). In the space c0 of null sequences we have
γ = ω (see [17]). It is not difficult to prove that in l1 we have γ = 2ω = 2χ , where
χ is the Hausdorff measure of (strong) noncompactness. We show that in the space c
of convergent real sequences with supremum norm γ and ω are equivalent but there
is no constant a such that γ = aω . We identify c∗∗ with l∞ , thus for the canonical
image x∗∗ = (x∗∗(k)) ∈ l∞ of x = (x(k)) ∈ c , we have x∗∗(1) = limk→∞ x(k) and
x∗∗(k + 1) = x(k) for k � 1 .

THEOREM 3.4. If A ∈ Mc , then

γ (A) = sup

{
lim sup

k→∞
|x∗∗(k) − x∗∗(1)|

}
, (3.3)

where the supremum is taken over all sequences (xn) in A and all w∗ -cluster points
x∗∗ = (x∗∗(k)) ∈ c∗∗ of (xn) .

Proof. We can assume that A ⊂ B(c) . Fix ε > 0 , a sequence (xn) ⊂ A
and its w∗ -cluster point x∗∗ = (x∗∗(k)) ∈ c∗∗ . By passing to a subsequence we
can assume that x∗∗ = w∗ - limn→∞ xn . For xn = (xn(k)) we have x∗∗(1) =
limn→∞ limk→∞ xn(k) and x∗∗(k + 1) = limn→∞ xn(k) if k � 1 . We can assume
that |x∗∗(1) − limk→∞ xn(k)| � ε for every n � 1 .

Let γ ′(A) denote the right-hand side of (3.3). We first prove that γ (A) � γ ′(A) .
Write yn(k) = xn(k) − liml→∞ xn(l) and y∗∗(k) = x∗∗(k) − x∗∗(1) for all k, n � 1 .
Put q = lim supk→∞ |y∗∗(k)| . Then (yn) ⊂ c0 and y∗∗(k + 1) = limn→∞ yn(k) for
k � 1 . We now follow the case of c0 in [17]. Fix natural N such that N−1 � ε .
Choose (yni)N

i=1 and integers 1 < k1 < · · · < kN+1 so that |y∗∗(k)| � q+ ε for k > k1

and the following is satisfied:
∣∣y∗∗ni

(k) − y∗∗(k)
∣∣ � ε for 1 � k � ki and

∣∣y∗∗ni
(k)
∣∣ � ε

for k > ki+1 , where i = 1, . . . , N . Let u = 1
N

∑N
i=1 yni . Then for 1 � k � k1 ,

|u∗∗(k) − y∗∗(k)| � ε,

and for k > k1 ,

|u∗∗(k) − y∗∗(k)| � |y∗∗(k)| + ε + 2N−1 � q + 4ε.
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For v = 1
N

∑N
i=1 xni ∈ conv {xn} and k � 1 we have

|v∗∗(k) − x∗∗(k)| �
∣∣∣∣∣x∗∗(1) − 1

N

N∑
i=1

lim
l→∞

xni(l)

∣∣∣∣∣+ q + 4ε � γ ′(A) + 5ε,

which gives dist (x∗∗, conv {xn}) � γ ′(A) + 5ε and consequently, γ (A) � γ ′(A) .
To prove the opposite inequality from a given sequence take a subsequence

(xn) as in the beginning of our proof and z ∈ conv{xn} such that ‖x∗∗ − z‖ �
dist (x∗∗, conv {xn}) + ε . Then

lim sup
k→∞

|x∗∗(k) − x∗∗(1)| � lim sup
k→∞

|x∗∗(k + 1) − z(k)| +
∣∣∣ lim
k→∞

z(k) − x∗∗(1)
∣∣∣

� ‖x∗∗ − z‖ + ε � γ (A) + 2ε.

Finally, γ (A) � γ ′(A) and the proof is complete. �

THEOREM 3.5. If A ∈ Mc , then ω(A) � γ (A) � 2ω(A) .

Proof. Clearly, γ (A) � γ (B(c))ω(A) = 2ω(A) . To prove the first inequality we
proceed similarly to [17, Theorem 2.9]. For q � 0 let

rq (α) =
{

0 if |α| � q
α − qα |α|−1 if |α| > q.

Observe that rq is continuous and |α − rq(α)| � q for every α ∈ R . Let the mapping
Rq : c → c be given for every x = (x(k)) by

(Rqx)(k) = rq

(
x(k) − lim

l→∞
x(l)
)

+ lim
l→∞

x(l).

Let A ∈ Mc and q = γ (A) . We show that γ (Rq (A)) = 0 . Let (xn) ⊂ A . Assume that
w∗ - limn→∞ xn = x∗∗ . By Theorem 3.4, lim supk→∞ |x∗∗(k) − x∗∗(1)| � q . Then

lim sup
k→∞

∣∣∣(w∗- lim
n→∞Rqxn

)
(k) − x∗∗(1)

∣∣∣ = lim sup
k→∞

|rq (x∗∗ (k) − x∗∗(1))|

= rq

(
lim sup

k→∞
|x∗∗ (k) − x∗∗(1)|

)
= 0.

By Theorem 3.4 we get γ (Rq(A)) = 0 and therefore Rq (A) is relatively weakly
compact. If u = (u(k)) ∈ A , then

‖u − Rqu‖ = sup
k

∣∣∣u(k) − rq

(
u(k) − lim

l→∞
u(l)
)
− lim

l→∞
u(l)
∣∣∣ � q.

Thus A ⊂ Rq (A) + qB(c) and ω (A) � q = γ (A) . �
The obtained estimates cannot be improved: γ (B(c)) = 2 and ω(B(c)) = 1 , on

the other hand, γ (B(c0)) = 1 and ω(B(c0)) = 1 . The latter for B(c0) as a subset of c
can be verified directly (recall that ω may vary through linear isometries).
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In the case of the Lions-Peetre discrete real interpolation a key role in interpolation
of weak noncompactness plays certain class of operators acting between lp(X) vector-
valued spaces (see [17]). For the Jawerth-Milman extrapolation methods the natural
underlying space is lp(Xν) for some family {Xν}ν∈Z of Banach spaces. Here, lp(Xν) ,
1 � p � ∞ , denotes the Banach space of all families x = {x(ν)}ν∈Z , x(ν) ∈ Xν ,
such that ‖x‖lp(Xν) < ∞ , where

‖x‖l∞(Xν) = sup
ν∈Z

‖x(ν)‖Xν
, ‖x‖lp(Xν) =

(∑
ν∈Z

‖x(ν)‖p
Xν

)1/p

, 1 � p < ∞.

THEOREM 3.6. Let {Xν}ν∈Z and {Yν}ν∈Z be families of Banach spaces. Let
{Tν}ν∈Z be a family of operators such that Tν ∈ L (Xν, Yν) and supν∈Z

‖Tν‖ < ∞ .
Suppose that 1 < p < ∞ and T ∈ L (lp(Xν), lp(Yν)) is given by Tx = {Tνx(ν)}ν∈Z

for every x = {x(ν)}ν∈Z ∈ lp(Xν) . Then Γ(T) = supν∈Z
Γ(Tν) .

The above result is an extension of Theorem 3.6 of [17] to arbitrary spaces lp(Xν)
with 1 < p < ∞ . The proof with easy alterations can be adopted from [17].

In particular, if A = B(lp(Xν)) then γ (A) = supν∈Z
γ (Pν(A)) , where Pν: lp(Xν) →

Xν is the projection Pν(x) = x(ν) , x = {x(ν)}ν∈Z . As in the case of ω (see [4]) such
relation is not true for every bounded A . Indeed, let Xν = c0 for every ν and let (en)
be the standard basis of c0 . For all positive integers n, k let xn,k = {xn,k(ν)}ν∈Z with

xn,k(ν) =
{

k−1/p(e1 + · · · + en) if 1 � ν � k,
0 otherwise.

Then for Ak = {xn,k : n � 1} we have γ (Ak) = 1 and supν∈Z
γ (Pν(Ak)) = k−1/p .

4. Weak noncompactness of extrapolated operators

In this section we estimate Γ for operators extrapolated by the Σp and Δp Jawerth-
Milman [14] methods for 1 < p < ∞ . These extrapolation methods enable to generate
various scales of spaces, for example abstract logarithmic spaces Aθ(logA)b,p studied
in [9], and to extend into these scales Yano’s [21, 22] classical extrapolation result
concerning L (logL) , Lexp and Lp spaces.

Let us recall some terminology of [14]. A family {Aθ}θ∈Θ of Banach spaces
is said to be strongly compatible if there exist two Banach spaces Δα , Σα such that
Δα ↪→ Aθ ↪→ Σα (continuous embeddings) for every θ ∈ Θ . The norms of the
inclusion maps Δα ↪→ Aθ and Aθ ↪→ Σα will be denoted by MΔα (θ) and MΣα (θ) ,
respectively.

Let {Aθ}θ∈Θ and {Bθ}θ∈Θ be two strongly compatible families with spaces Δα ,

Σα and Δβ , Σβ , respectively. We write T: {Aθ}θ∈Θ 1→ {Bθ}θ∈Θ if T:Σα → Σβ
is a linear operator and for every θ ∈ Θ the restriction of T to Aθ maps Aθ into
Bθ with norm � 1 . Banach spaces A and B are said to be extrapolation spaces
(with respect to {Aθ}θ∈Θ and {Bθ}θ∈Θ ) if Δα ↪→ A ↪→ Σα , Δβ ↪→ B ↪→ Σβ and if

T: {Aθ}θ∈Θ 1→ {Bθ}θ∈Θ implies T: A → B , that is, the restriction of T to A maps
boundedly A into B.
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We deal with strongly compatible countable families {Aθ}θ∈Z . Let 1 < p < ∞
and 1/p+1/q = 1 . The Σp extrapolationmethod is definedwhenever

∑
θ∈Z

(MΣα (θ))q

is finite. By the Σp(Aθ) space we mean all a ∈ Σα for which there exists a family
{a(θ)}θ∈Z

, a(θ) ∈ Aθ , such that
∑

θ∈Z
‖a(θ)‖p

Aθ
is finite and

∑
θ∈Z

a(θ) is (abso-
lutely) convergent to a in Σα . The norm in Σp(Aθ) is given by

‖a‖Σp(Aθ ) = inf

(∑
θ∈Z

‖a(θ)‖p
Aθ

)1/p

,

where the infimum is taken over all representations {a(θ)}θ∈Z
of a as above.

The Δq extrapolation method is defined whenever
∑

θ∈Z
(MΔα (θ))q is finite. By

the Δq(Aθ) space we mean all a ∈ ⋂θ∈Z
Aθ with

∑
θ∈Z

‖a‖q
Aθ

finite. The norm in
Δq(Aθ) is given by

‖a‖Δq(Aθ ) =

(∑
θ∈Z

‖a‖q
Aθ

)1/q

.

THEOREM 4.1. Let 1 < p < ∞ . Let {Aθ}θ∈Z and {Bθ}θ∈Z be strongly

compatible families as for the Σp method. If T: {Aθ}θ∈Z

1→ {Bθ}θ∈Z , then

Γ (T:Σp(Aθ) → Σp(Bθ)) � sup {Γ (T: Aθ → Bθ) : θ ∈ Z} .

Proof. Let (an) be a sequence in B(Σp(Aθ)). Then for each n there exists a repre-
sentation {an(θ)}θ∈Z ∈ B(lp(Aθ)) of an . Write bn = Tan and yn = {Tθan(θ)}θ∈Z ,
where Tθ is the restriction of T to Aθ . Clearly, yn ∈ lp(Bθ) and yn is a representation
of bn .

Define the operator T ∈ L (lp(Aθ), lp(Bθ)) by Ta = {Tθa(θ)}θ∈Z for every
a = {a(θ)}θ∈Z ∈ lp(Aθ) . Thus yn ∈ T(B(lp(Aθ))) . Fix ε > 0 . By Theorem 2.1 in
[17], there exists a sequence (y′n) of scc for (yn) such that

‖v1 − v2‖lp(Bθ ) � csep (y′n) + ε

for every pair v1, v2 of scc for (y′n) . Then y′n =
∑rn+1

i=rn+1 tiyi for some sequence of
integers 0 = r1 < r2 < · · · and nonnegative trn+1, . . . , trn+1 with sum 1 for all n . Put
b′n =

∑rn+1

i=rn+1 tibi . Then (b′n) is a sequence of scc for (bn) . Therefore

csep (bn) � csep (b′n) � ‖b′1 − b′2‖Σp(Bθ ) � ‖y′1 − y′2‖lp(Bθ ) � csep (y′n) + ε.

Since (y′n) is a sequence in T(B(lp(Aθ)) , we have

csep (y′n) � Γ(T: lp(Aθ) → lp(Bθ))

By Theorem 3.6 we get

Γ(T: lp(Aθ) → lp(Bθ)) = sup {Γ (T: Aθ → Bθ) : θ ∈ Z} .

An arbitrary choice of (an) and ε > 0 gives the assertion. �
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Arguments similar to those in the Σp method give immediately the next result.

THEOREM 4.2. Let 1 < q < ∞ . Let {Aθ}θ∈Z and {Bθ}θ∈Z be strongly

compatible families as for the Δq method. If T: {Aθ}θ∈Z

1→ {Bθ}θ∈Z , then

Γ (T:Δq(Aθ) → Δq(Bθ)) � sup {Γ (T: Aθ → Bθ) : θ ∈ Z} .

COROLLARY 4.3. Under the assumptions of Theorem 4.1 and Theorem 4.2, respec-
tively, if T: Aθ → Bθ is weakly compact for every θ ∈ Z , then so are T:Σp(Aθ) →
Σp(Bθ) and T:Δq(Aθ) → Δq(Bθ) . In particular, if Aθ is reflexive for every θ ∈ Z ,
then so are Σp(Aθ) and Δq(Aθ) .

The above results cannot be extended into the Σ and Δ extrapolation methods
of [14], which in the above notation can be viewed as, respectively, the Σ1 and Δ∞
methods for any Θ with usual alterations in the norms. Let Ω denote [0, 1] with
Lebesgue measure. The Lions-Peetre interpolation space (L1(Ω), L∞(Ω))θ,q with
0 < θ < 1 and 1 � q � ∞ is equal (up to an equivalent norm) to the Lorentz space
Lp,q(Ω) with 1/p = 1 − θ (see [6]). The space Lp,q(Ω) (endowed with an equivalent
norm if necessary) is reflexive whenever 1 < p, q < ∞ (see [5]). According to [19,
Example 8], we have

Σ(θ−1(L1(Ω), L∞(Ω))θ,q) = L(log L)(Ω).

It follows that reflexivity is not extrapolatedby the Σ method. A similar counterexample
can be given for the Δ method with Lexp(Ω) as a result [18, Example 22].
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