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MONOTONICITY RESULTS FOR THE POLYGAMMA FUNCTIONS
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(communicated by A. Laforgia)

Abstract. In this paper, the monotonic results of the functions xc|ψ (n)(x+β)| and xψ (n+1)(x+
β)/ψ (n)(x + β) are established. Several by-products are obtained. Moreover, we prove that the

function dψ (ln x)
dx is completely monotonic.

1. Introduction

The psi (or digamma) funtion is defined for all positive real numbers x as

ψ(x) =
Γ

′
(x)

Γ(x)
= −γ +

∫ ∞

0

e−t − e−xt

1 − e−t
dt = −γ − 1

x
+

∞∑
i=1

x
i(i + x)

,

where Γ denotes Euler’s gamma function and γ = 0.5772 . . . is Euler-Mascheroni
constant. ψ and its derivatives are called polygamma functions.

The digamma and polygamma functions play a central role in the theory of special
functions, and the have many applications in different branches, such as, mathematical
physics and statistics.

There exists an extensive and rich literature on inequalities for ψ and its derivatives.
For the recent developments in this area, we refer the reader to the articles [2, 3, 4, 5,
6, 7, 8, 18, 19, 20, 21] and the references therein. The aim of this paper is to continue
these investigations and to prove some new inequalities for digamma and polygamma
functions, which yield extensions and generalizations of known theorems.

First, we present the following theorem which generalize Alzer’s result [5, Lemma
2.1].

THEOREM 1. Let n � 1 be an integer, c ∈ R , and β > 1/2 . The function

gn(x; c, β) = xc|ψ (n)(x + β)|
is strictly decreasing on (0,∞) if and only if c � 0 . And, gn(x; c, β) is strictly
increasing on (0,∞) if and only if c � n .
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In [6], the authors proved that the function xψ ′′(x + β)/ψ ′(x + β) is strictly
decreasing on [0,∞) with β � 1/2 . Now, we will extend this result as follows.

THEOREM 2. If β � 1
2 is a real number and n � 1 is an integer, then the function

f n(x; β) = x
ψ (n+1)(x + β)
ψ (n)(x + β)

is strictly decreasing on [0,∞) .

THEOREM 3. Let k > n � 1 be two integers, β � 1
2 be a real number, then the

function

f k,n(x; β) = xk−nψ (k)(x + β)
ψ (n)(x + β)

is strictly decreasing on [0,∞) if k − n is odd; f k,n(x; β) is strictly increasing on
[0,∞) if k − n is even.

In [4], Alzer proved that the function xψ (n+1)(x)
ψ (n)(x) is strictly increasing on R+ . With

analogous proof method as Theorem 3, we get the following by-product.

COROLLARY 1. Let k > n � 1 be two integers, then the function

f k,n(x) = xk−nψ (k)(x)
ψ (n)(x)

is strictly increasing on (0,∞) if k− n is odd; f k,n(x) is strictly decreasing on (0,∞)
if k − n is even.

COROLLARY 2. Let k and n be integers with k > n � 1 , β � 1/2 . Then we
have for all x > 0 :

(n − 1)k−n < xk−n |ψ (k)(x + β)|
|ψ (n)(x + β)| < (n)k−n,

where (a)m = a(a + 1) · . . . · (a + m − 1) . Both bounds are sharp.

2. Lemmas

LEMMA 1. ([1, 23]) For x > 0 and r > 0 ,

1
xr

=
1

Γ(r)

∫ ∞

0
tr−1e−xt dt. (1)

LEMMA 2. ([17, p. 16]) The derivatives ψ ′,ψ ′′,ψ ′′′ are known as polygamma
functions, which can be defined as

ψ (n)(x) = (−1)n+1
∫ ∞

0

tn

1 − e−t
e−xt dt = (−1)k+1k!

∞∑
i=0

1
(x + i)k+1

(2)

for x > 0 and n ∈ N := 1, 2, . . . .
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LEMMA 3. ([1, p. 260]) Asymptotic expansions for ψ and ψ (n) can be expressed
as

ψ(x) ∼ ln x − 1
2x

− 1
12x2

+
1

120x4
− · · · (x → ∞), (3)

|ψ (n)(x)| ∼ (n − 1)!
xn

+
n!

2xn+1 +
(n + 1)!
12xn+2 − · · · (x → ∞; n = 1, 2, . . .). (4)

LEMMA 4. ([24]) Let f i(t) for i = 1, 2 be piecewise continuous in arbitrary finite
intervals included in (0,∞) . Suppose there exist some constants Mi > 0 and ci � 0
such that |f i(t)| � Miecit for i = 1, 2 , then

∫ ∞

0

[∫ t

0
f 1(u)f 2(t − u) du

]
e−st dt =

∫ ∞

0
f 1(u)e−su du

∫ ∞

0
f 2(v)e−sv dv. (5)

REMARK 1. Lemma 4 is the convolution theorem of Laplace transforms. It can be
looked up in standard textbooks of integral transform.

LEMMA 5. ([8, Corollary 2.3]) Let n � 2 be an integer. Then for all positive real
numbers x ,

n − 1
n

<
(ψ (n)(x))2

ψ (n−1)(x)ψ (n+1)(x)
<

n
n + 1

. (6)

Both bounds are best possible.

Whereafter, we present two technical lemmas, which will help to prove our main
results.

LEMMA 6. If β > 1
2 , then the function

φβ(x) =
βxex − βx + x

1 − ex

is strictly decreasing for x > 0 .

Proof. The function φβ is decreasing, which is equivalent to

φ
′
β(x) = −β +

1 − ex + xex

(1 − ex)2
< 0.

This is

β >
1 − ex + xex

(1 − ex)2
� τ(x).

Taking logarithm and differentiation yields

(ln τ(x))′ =
xex

1 − ex + xex
+

2ex

1 − ex

=
ex(2ex − xex − x − 2)
(1 − ex + xex)(ex − 1)

� exρ(x)
(1 − ex + xex)(ex − 1)

.
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It is quite easy to see that ρ
′′
(x) = −xex < 0 and ρ′(0) = ρ(0) = 0 . Then we obtain

ρ(x) < 0 for x > 0 . Ihis implies that τ(x) is strictly decreasing on (0,∞). From
limx→0+ τ(x) = 1

2 , we get β > 1
2 . �

LEMMA 7. Let a ∈ (0, 1) , if β > 1
2 , then the function

ϕβ(x) =
eβ(1+a)x − e(β−1)(1+a)x

eβ(1−a)x − e(β−1)(1−a)x

is strictly increasing for x > 0 .

Proof. The function ϕβ is equivalent to e2(β−1) e(1+a)x−1
e(1−a)x−1

. Taking logarithm and
differentiation yields

(lnϕβ(x))′ = 2(β − 1)a +
(1 + a)e(1+a)x

e(1+a)x − 1
− (1 − a)e(1−a)x

e(1−a)x − 1

� 2(β − 1)a + μ(x).

By standard argument, we have

(e(1−a)x − 1)2(e(1+a)x − 1)2μ ′(x)

= e(1−a)x[(e2x − 1)(e2ax − 1)(a2 + 1) − 2a(1 + e2x + e2ax + e2(1+a)x − 4e(1+a)x)
]

� e(1−a)xν(x),

ν′(x) = 2(1 + a)
[
(a − 1)2e2(1+a)x + 4ae(1+a)x − (1 + a)e2x − a(1 + a)e2ax

]
,

ν′′(x) = 4(1 + a2)
[
(a − 1)2e2(1+a)x + 2ae(1+a)x − a2e2ax − e2x

]
.

Since 0 < a < 1 , simple computation yields ν′′(x) > 0 and ν′(0) = ν(0) = 0 . Then
we conclude that μ(x) is strictly increasing for x > 0 and 0 < a < 1 . Moreover,

μ(x) > lim
x→0+

μ(x) = a.

If 2(β − 1)a + a > 0 , which is equivalent to β > 1
2 , we obtain that ϕβ(x) is strictly

increasing with 0 < a < 1 and x > 0 . This completes the proof. �

3. Proofs of theorems

Proof of Theorem 1. Differentiating gn(x; c, β) and applying (1) and (2) yields

g′n(x; c, β)
xc

=
c
x
|ψ (n)(x + β)| − |ψ (n+1)(x + β)|

= c
∫ ∞

0
e−xt dt

∫ ∞

0
e−(x+β)t tn

1 − e−t
dt −

∫ ∞

0
e−(x+β)t tn+1

1 − e−t
dt

Using Lemma 4 leads to

g′n(x; c, β)
xc

=
∫ ∞

0
e−xth(t; c, β) dt,
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where

h(t; c, β) = c
∫ ∞

0

sne−sβ

1 − e−s
ds − tn+1e−β t

1 − e−t
. (7)

If c � 0 , then we have h(t; c, β) < 0 , or g′n(x; c, β) < 0 .
A simple calculation gives

p(t; c, β)� e(1+β)tt−n(1 − e−t)2h′(t; c, β) = (et − 1)(c − n − 1 + β t) + t. (8)

It is clear that p(t; c, β) > 0 on (0,∞) is equivalent with

c − n − 1 >
β tet − β t + t

1 − et
= φβ (t).

From Lemma 6, we obtain that φβ (t) < limx→0+ φβ (t) = −1 with β > 1
2 . Thus, if

c � n , then we have p(t; c, β) > 0 and h′(t; c, β) > 0 on (0,∞) . Since h(t; c, β) is
increasing and limt→0+ h(t; c, β)(t) = 0 , it is obtained that h(t; c, β) > 0 on (0,∞) ,
which implies that g′n(x; c, β) > 0 and gn(x; c, β) is strictly increasing for x ∈ (0,∞) .

On the other hand, if gn(x; c, β) is strictly decreasing on (0,∞) , then we obtain
for x > 0 and β > 1/2 :

g′n(x; c, β)
xc−1

= c|ψ (n)(x + β)| − x|ψ (n+1)(x + β)| � 0.

This implies c � 0 . Assume that gn(x; c, β) is strictly increasing, then we have for
x > 0 and β > 1/2 :

g′n(x; c, β)
xc−n−1

= cxn|ψ (n)(x + β)| − xn+1|ψ (n+1)(x + β)| � 0.

Applying the asymptotic formula (4) we get

lim
x→∞ xn+1−cg′n(x; c, β) = c(n − 1)! − n! � 0.

This implies c � n . The proof is complete. �

Proof of Theorem 2. Applying Lemma 4 we obtain for x ∈ [0,∞)

−f n(x; β) = −x
ψ (n+1)(x + β)
ψ (n)(x + β)

=
|ψ (n+1)(x + β)|
1
x |ψ (n)(x + β)| =

∫ ∞
0 e−xtP(t; β) dt∫ ∞
0 e−xtQ(t; β) dt

,

where

P(t; β) =
tn+1e−β t

1 − e−t
and Q(t; β) =

∫ t

0

sne−βs

1 − e−s
ds.

Differentiating and applying convolution theorem of Laplace transform again, we get

− f ′
n(x; β)

(∫ ∞

0
e−xtQ(t; β) dt

)2

=
∫ ∞

0
e−xtP(t; β) dt

∫ ∞

0
e−xttQ(t; β) dt −

∫ ∞

0
e−xttP(t; β) dt

∫ ∞

0
e−xtQ(t; β) dt

=
∫ ∞

0
e−xtU(t; β) dt,
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where

U(t; β) =
∫ ∞

0
(t − 2s)P(s; β)Q(t − s; β) ds.

Let s = t
2 (1 + y) , then we have

U(t; β) = − t2

2

∫ 1

−1
yP

(p
2
(1 + y

)
; β)Q

(p
2
(1 − y); β

)
dy. (9)

Let δ ∈ R+ , we define for y ∈ (0, 1)

v(y; β) = yP(δ(1 + y); β)Q(δ(1 − y); β) and w(y; β) = v(y; β) + v(−y; β). (10)

A simple calculation gives

1
δ n+1y

w(y; β) =
(1 + y)n+1e−βδ(1+y)

1 − e−δ(1+y)

∫ δ(1−y)

0

sne−βs

1 − e−s
ds

− (1 − y)n+1e−βδ(1−y)

1 − e−δ(1−y)

∫ δ(1+y)

0

sne−βs

1 − e−s
ds. (11)

Using the substitution s = δ(1 − y)z in the first integral and s = δ(1 + y)z in the
second integral, we get from (11)

1
δ 2(n+1)y(1 − y2)n+1

w(y; β) =
∫ 1

0

zke−βδ(1+y)ze−βδ(1+y)(Δβ (z) − Δβ(1))
(1 − e−δ(1+y)z)(1 − e−δ(1+y))

dz, (12)

where

Δβ(z) =
eβδ(1+y)z − e(β−1)δ(1+y)z

eβδ(1−y)z − e(β−1)δ(1−y)z (y ∈ (0, 1), δ ∈ R+).

By Lemma 7, we obtain that the function Δβ (z) is strictly increasing on (0, 1] with
β � 1

2 . so we conclude from (12) that w(y; β) is negative on (0, 1) with β � 1
2 .

Hence, (9) and (10) imply

U(2δ ; β) = −2δ 2
∫ 1

−1
v(y; β) dy = −2δ 2

∫ 1

0
w(y; β) dy > 0

for δ ∈ R+ . From f ′(x; β) < 0 , we know that the function f n(x; β) is strictly
decreasing for x ∈ [0,∞) and β � 1

2 . This completes the proof.
Next, as the aim of researching psi function,we provide another proof of Theorem2

as follows.
Differentiating f n(x; β) and applying (2), (6) , we get(
ψ (n)(x + β)

)2
f ′
n(x; β)

= ψ (n+1)(x + β)ψ (n)(x + β) + x
[
ψ (n+2)(x + β)ψ (n)(x + β) − (

ψ (n+1)(x + β)
)2

]

< ψ (n+1)(x + β)ψ (n)(x + β) +
x
n

(
ψ (n+1)(x + β)

)2

= (−1)n+2x
∫ ∞

0

tn+1e−(x+β)t

1 − e−t
dt

[1
x
ψ (n)(x + β) +

1
n
ψ (n+1)(x + β)

]

� (−1)n+2x
∫ ∞

0

tn+1e−(x+β)t

1 − e−t
dtH(t; β).
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Using Lemma 4 leads to

H(t; β)

= (−1)n+2

[
−

∫ ∞

0
e−xt dt

∫ ∞

0

tne−(x+β)t

1 − e−t
dt +

1
n

∫ ∞

0

tn+1e−(x+β)t

1 − e−t
dt

]

� (−1)n+2
∫ ∞

0
e−xtG(t; β) dt,

where

G(t; β) =
1
n

tn+1e−β t

1 − e−t
−

∫ t

0

sne−βs

1 − e−s
ds.

A simple calculation shows that

e(β+1)tt−n(1 − e−t)2nG′(t; β) = (et − 1)(1 − β t) − t

=
∞∑
k=1

tk+1[1 − β(k + 1)]
(k + 1)!

.

If β � 1
2 , then we obtain G′(t; β) < 0 . From limx→0+ G(t; β) = 0 , we conclude

f ′
n(x; β) < 0 . This implies that f n(x; β) is strictly decreasing for x ∈ [0,∞) and
β � 1

2 . �

REMARK 2. The approach to the first proof of Theorem 2 is suggested by Alzer
[4].

Proof of Theorem 3. Without loss of generality, we suppose k − n = i . From
Theorem 2 we conclude that the function f n(x; β) is strictly decreasing for x ∈ [0,∞)
and β � 1

2 . So we have

x
ψ (k)(x + β)
ψ (k−1)(x + β)

> y
ψ (k)(y + β)
ψ (k−1)(y + β)

for y > x > 0 . It is equivalent to

ψ (k)(x + β)
ψ (k)(y + β)

<
yψ (k−1)(x + β)
xψ (k−1)(y + β)

.

Applying the same method, we obtain

ψ (k)(x + β)
ψ (k)(y + β)

<
yiψ (n)(x + β)
xiψ (n)(y + β)

.

If k − n is odd, we have

xk−nψ (k)(x + β)
ψ (n)(x + β)

> yk−nψ (k)(y + β)
ψ (n)(y + β)
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for y > x > 0 . This implies that the function f k,n(x; β) is strictly decreasing for
x ∈ [0,∞) and β � 1

2 . If k − n is even, then we have

xk−nψ (k)(x + β)
ψ (n)(x + β)

< yk−nψ (k)(y + β)
ψ (n)(y + β)

for y > x > 0 . This implies that f k,n(x; β) is strictly increasing for x ∈ [0,∞) and
β � 1

2 . �

Applying Theorem 3 and (4) we get upper and lower bounds for the ratio |ψ (k)(x+
β)|/|ψ (n)(x + β)| immediately.

4. A completely monotonic function

A function f is said to be completely monotonic on an interval I if f has
derivatives of all orders on I which alternate successively in sign, that is

(−1)nf (n)(x) � 0 (x ∈ I; n = 0, 1, 2, · · · ). (13)

If the inequality (13) is strict, then f is said to be strictly completely monotonic on I .
Completelymonotonic functions have remarkable applications in different branches.

For instance, they play a role in potential theory [11], probability theory [12, 14, 16],
physics [13], numerical and asymptotic analysis [15, 25], and combinatorics [9]. A
detailed collection of the most important properties of completely monotonic functions
can be found in [24, Chaptre IV], and in the abstract in [10].

Now, we establish completely monotonicity for polygamma function in the fol-
lowing theorem.

THEOREM 4. The function dψ(ln x)
dx is strictly completely monotonic on (1,∞) .

In other words,

(−1)n+1 dnψ(ln x)
dxn

> 0

for x ∈ (1,∞) .

Proof. From the formula of higher derivatives of composite function [22, p. 197]:
If the functions y = f (u) , u = g(x) have l th derivative, then

dn

dxn

(
f (g(x))

)
=

∑
1�i�n∑

ik=i

l∑
k=1

kik=n

n!f (i)

i1!i2! · · · il!
(u(1)

1!

)i1(u(2)

2!

)i2 · · ·
(u(l)

l!

)il
, (14)

where

f (i) =
dif
dui

, u(k) =
dku
dxk

.

and the formula

ln(n) x = (−1)n−1(n − 1)!
1
xn

,
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we get for x ∈ (1,∞) and n = 1, 2, . . .

xn dn

dxn

(
ψ(ln x)

)
= xn

∑
1�i�n∑

ik=i

l∑
k=1

kik=n

n!ψ (i)

i1!i2! · · · il!
( ln(1) x

1!

)i1( ln(2) x
2!

)i2 · · ·
( ln(l) x

l!

)il

=
∑ n!ψ (i)

i1!i2! · · · il!
(
− 1

)i1(1−1)(
− 1

2

)i2(2−1)
· · ·

(
− 1

l

)il(l−1)

=
∑ n!ψ (i)

i1!i2! · · · il!
(−1)i1+2i2+···+lii−(i1+i2+···+il)

1 · 2i2 · · · iil(l−1)

=
∑ n!ψ (i)

i1!i2! · · · il!
(−1)n−i

1 · 2i2 · · · iil(l−1) .

Using (2), if n is odd,

dn

dxn

(
ψ(ln x)

){ > 0, i is odd,

> 0, i is even.

If n is even,
dn

dxn

(
ψ(ln x)

){ < 0, i is odd,

< 0, i is even.

These imply dψ(ln x)
dx is strictly completely monotonic on (1,∞) . This completes the

proof. �
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