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APPROXIMATION BY A KANTOROVICH VARIANT OF

THE BLEIMANN, BUTZER AND HAHN OPERATORS
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(communicated by Th. Rassias)

Abstract. We study the approximation properties of a Kantorovich variant of the Bleimann,
Butzer and Hahn operators for locally bounded functions, and estimate their rate of convergence
by some techniques of probability theory and analysis methods.

1. Introduction

In 1980, Bleimann, Butzer and Hahn [4] introduced a sequence of positive linear
Bernstein-type operators (abbreviated in the following by BBH operators) defined on
the space of real functions on the infinite interval I = [0, ∞) by

Ln(f ; x) =
n∑

k=0

bn,k (x) f

(
k

n + 1 − k

)
, x ∈ I, n ∈ N, (1)

where

bn,k (x) =
(

n
k

)
xk(1 + x)−n.

The approximation-theoretical properties of the operators Ln have been studied by
several authors (cf. the references, in particular the book of Altomare and Campiti [3].
Recently, Abel and Ivan [2] introduced a Kantorovich variant of the BBH operators as
an approximation process for locally integrable functions defined by

Kn(f ; x) = (n + 2)
n∑

k=0

bn,k (x)
∫ k+1

n+1−k

k
n+2−k

f (t)
(1 + t)2

dt (n ∈ N) (2)

The operators Kn are called BBHK operators. Their basic approximation properties
when applied to continuous or differentiable functions can be found in [2].
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In this paper we consider the rate of convergence of the operators Kn for the
following class of locally bounded functions of exponential growth:

E =
{

f : I → R | f is locally bounded on I and, for a constant A, f (t) = O(eAt)

as t → ∞} .

For f ∈ E , x ∈ I and λ � 0 , set

ωx(f , λ ) = sup
t∈[x−λ ,x+λ ]

|f (t) − f (x)|.

It is clear that
(i) ωx(f , λ ) is monotone increasing with respect to λ ,
(ii) limλ→0 ωx(f , λ ) = 0 , if f is continuous at the point x ,
(iii) if f is of bounded variation on [a, b] , and

∨b
a(f ) denotes the total variation of

f on [a, b] , then ωx(f , λ ) �
∨x+λ

x−λ (f ) .
For further properties of ωx(f , λ ) we refer to Zeng and Cheng [14].
In the case that for f ∈ E and x ∈ (0,∞) both one-sided limits f (x+) , f (x−)

exist the function f x is defined as

f x(t) =

⎧⎨
⎩

f (t) − f (x+), x < t � 1,
0, t = x,
f (t) − f (x−), 0 � t < x.

(3)

Now let us state our main result as follows:

THEOREM 1. Let f ∈ E with |f (t)| � MeAt on I . Assume that f (x+) , f (x−)
exist at a fixed point x ∈ (0,∞) . Then for all n � 1 we have∣∣∣∣Kn(f , x) − 1

2
(f (x+) + f (x−))

∣∣∣∣ � x2 + 4(1 + x)4

nx2

n∑
k=1

ωx

(
f x, x/

√
k
)

+
1 + 2x√

nx
(|f (x+) − f (x−)| + Rn (x) ,

(4)

where

Rn (x) = 2Me−A (1 + x)2 exp

(
− (n + 2)

(
x

16 (1 + x)2 − A

))
. (5)

If f is of polynomial growth with |f (t)| � M (1 + t)γ on I for some γ � 0 we can
put

Rn (x) = 2M(n + 2)γ (1 + x)2 exp

(
− (n + 2) x

16 (1 + x)2

)
. (6)

REMARK 1. The term Rn (x) in estimate (5) decays exponentially fast with n →
∞ for each x > 0 with

x

16 (1 + x)2 > A.

According to Eq. (6) this is always the case if f is of polynomial growth.
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2. Auxiliary Results

We first give several auxiliary results, which mainly are some estimates concerning
the basis functions and moments of BBHK operators. Some results and techniques of
probability theory play important roles in this section.

Throughout this paper we define

Hn(x, t) = (n + 2)
n∑

k=0

bn,k (x)
ϕn,k(t)
(1 + t)2

, (7)

where ϕn,k denotes the characteristic function of the interval Ik = [k/(n + 2− k), (k +
1)/(n + 1 − k)] with respect to I = [0,∞) . With Hn as kernel function the BBHK
operators can be written in the form

Kn(f , x) =
∫ ∞

0
f (t)Hn(x, t)dt.

LEMMA 2. For 0 < y < x , there holds∫ y

0
Hn(x, t)dt � (1 + x)4

n(x − y)2
.

Proof . From Lemma 3.1 of [2] it is known that

Kn((t − x)2, x) � x(1 + x)2

n + 1
+

(1 + x)4

(n + 1)(n + 3)
� (1 + x)4

n
.

Thus ∫ y

0
Hn(x, t)dt �

∫ y

0

(x − t)2

(x − y)2
Hn(x, t)dt � Kn((x − t)2, x)

(x − y)2
� (1 + x)4

n(x − y)2
.

�
LEMMA 3. Let {ξk}∞k=1 be a sequence of independent random variables with the

same two-point distribution

P(ξi = j) =
(

x
1 + x

)j( 1
1 + x

)1−j

, j = 0, 1, x ∈ [0,∞).

Then

Eξ1 =
x

1 + x
, E(ξ1 − Eξ1)2 =

x
(1 + x)2

, E(ξ1 − Eξ1)4 =
x(x2 − x + 1)

(1 + x)4
, (8)

and

E|ξ1 − Eξ1|3 � x
√

x2 − x + 1
(1 + x)3

.

Proof . Direct calculation derives Eq. (8), and by Hölder inequality we get

E|ξ1 − Eξ1|3 �
√

E(ξ1 − Eξ1)4E(ξ1 − Eξ1)2 � x
√

x2 − x + 1
(1 + x)3

.

�
The following lemma is the well-known Berry-Esseen bound for the central limit

theorem of probability theory [7, 12].
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LEMMA 4. Let {ξk}∞k=1 be a sequence of independent and identically distributed
random variables with the expectation Eξ1 , the variance E(ξ1 − Eξ1)2 = σ2 > 0 ,

E|ξ1 − Eξ1|3 = ρ < ∞ , and let Fn stand for the distribution function of
n∑

k=1
(ξk −

Eξ1)/(σ
√

n) . Then there exists an absolute constant C , 1/
√

2π � C < 0.8 , such
that for all t and n ∣∣∣∣Fn(t) − 1√

2π

∫ t

−∞
e−u2/2du

∣∣∣∣ < Cρ
σ3

√
n
.

LEMMA 5. If x ∈
[

k′
n+2−k′ ,

k′+1
n+1−k′

)
for some nonnegative integer k′ � n , then

∣∣∣∣∣
n∑

k=k′+1

bn,k (x) − 1
2

∣∣∣∣∣ � 1 + 2x√
nx

.

Proof . Let {ξk}∞k=1 be a sequence of independent random variables with the
same two-point distribution

P(ξi = j) =
(

x
1 + x

)j( 1
1 + x

)1−j

, j = 0, 1, x ∈ [0,∞).

and let ηn =
n∑

i=1
ξi. Then the probability distribution of the random variable ηn is

P(ηn = k) =
(

n
k

)
xk(1 + x)−n = bn,k (x) .

Thus,

n∑
k=k′+1

bn,k (x) =
∑

(n+2)x
1+x <k�n

bn,k (x) = P

(
ηn >

(n + 2)x
1 + x

)

= 1 − P

(
ηn − nx/(1 + x)√

nx/(1 + x)
� 2

√
x√
n

)
= 1 − Fn

(
2
√

x√
n

)
.

Hence by Lemma 3, Lemma 4 and direct computations we obtain∣∣∣∣∣
n∑

k=k′+1

bn,k (x) − 1
2

∣∣∣∣∣ =
∣∣∣∣12 − Fn

(
2
√

x√
n

)∣∣∣∣
� Cρ

σ3
√

n
+

1√
2π

∫ 2
√

x/
√

n

0
e−u2/2du

<
0.8

√
x2 − x + 1√

nx
+

1√
2π

2x√
nx

� 1 + 2x√
nx

.

�
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LEMMA 6. [9, Lemma 2.3] Let x > 0 , δ > 0 and put

dδ (x) =
δ 2

16x (1 + x)2 .

Then there holds ∑
|k/(n−k)−x|�δ

bn,k (x) � 2e−ndδ (x) (0 < δ � x, n ∈ N) .

3. Proof of Theorem 1

For any f ∈ E , if f (x+) and f (x−) exist at x , Bojanic-Cheng decomposition
yields

f (t) =
f (x+) + f (x−)

2
+ f x(t) +

f (x+) − f (x−)
2

sgnx(t)

+ δx(t)
[
f (x) − f (x+) + f (x−)

2

]
,

where f x is defined in (3) and

sgnx(t) =

⎧⎨
⎩

1, t > x,
0, t = x,
−1, t < x,

δx(t) =
{

1, t = x,
0, t �= x.

Obviously
Kn(δx, x) = 0.

Hence it follows that∣∣∣∣Kn(f , x) − f (x+) + f (x−)
2

∣∣∣∣ � |Kn(f x, x)| +
∣∣∣∣ f (x+) − f (x−)

2
Kn(sgnx, x)

∣∣∣∣ . (9)

We need to estimate |Kn( sgn x, x)| and |Kn(f x, x)| .
Let x ∈ [k′/(n + 2 − k′), (k′ + 1)/(n + 1− k′)) for some k′ . Then by Lemma 5

combining some direct computations, we have

Kn(sgnx, x) = −
k′−1∑
k=0

bn,k (x) +
n∑

k=k′+1

bn,k (x) + bn,k′ (x)
∫

Ik′

sgnx (t)
(1 + t)2

dt

�
∣∣∣∣∣2

n∑
k=k′+1

bn,k (x) − 1

∣∣∣∣∣+ 2bn,k′ (x)

� 1 + 2x√
nx

+
2 + 2x√

2enx
<

2 + 4x√
nx

. (10)
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Now it is clear from (9) and (10) that Theorem 1 will be proved if we establish
that

|Kn(f x, x)| � x2 + 4(1 + x)4

nx2

n∑
k=1

ωx(f x, x
√

k) + Rn (x) . (11)

Recalling the Lebesgue-Stieltjes integral representation we have

Kn(f x, x) =
∫

[0,∞)
f x(t)Hn(x, t)dt,

where Hn is as defined in (7) . We divide Kn(f x, x) into four parts

Kn(f x, x) =
4∑

j=1

∫
Ij

f x(t)Hn(x, t)dt,

where
I1 := [0, x − x/

√
n], I2 := (x − x/

√
n, x + x/

√
n],

I3 := (x + x/
√

n, 2x], I4 := (2x, ∞).
Firstly, note that f x(x) = 0 . Thus

|
∫

I2

f x(t)Hn(x, t)dt| � ωx(f x, x/
√

n). (12)

Next we estimate | ∫I1 f x(t)Hn(x, t)dt| . Note that |f x(t)| � ωx(f x, x− t) , it follows that∣∣∣∣
∫

I1

f x(t)Hn(x, t)dt

∣∣∣∣ �
∫

I1

ωx(f x, x − t)Hn(x, t)dt.

Integration by parts with y = x − x/
√

n and using Lemma 2, we have∫
I1

ωx(f x, x − t)Hn(x, t)dt

� ωx(f x, x − y)
∫ y

0
Hn(x, u)du +

∫ y

0
[
∫ t

0
Hn(x, u)du]dt(−ωx(f x, x − t))

� ωx(f x, x − y)
(1 + x)4

n(x − y)2
+

(1 + x)4

n

∫ y

0

dt(−ωx(f x, x − t))
(x − t)2

. (13)

Since∫ y

0

d(−ωx(f x, x − t))
(x − t)2

= −ωx(f x, x − y)
(x − t)2

+
ωx(f x, x)

x2
+
∫ y

0

2ωx(f x, x − t)
(x − t)3

dt.

So from (13) we have∣∣∣∣
∫

I1

f x(t)Hn(x, t)dt

∣∣∣∣ � (1 + x)4

nx2
ωx(f x, x) +

(1 + x)4

n

∫
I1

2ωx(f x, x − t)
(x − t)3

dt.

Putting t = x − x/
√

u in the last integral we obtain∫ x−x/
√

n

0
ωx(f x, x − t)

2
(x − t)3 dt =

1
x2

∫ n

1
ωx(f x, x/

√
u)du.
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Consequently∣∣∣∣
∫

I1

f x(t)Hn(x, t)dt

∣∣∣∣ � (1 + x)4

nx2

(
ωx(f x, x) +

∫ n

1
ωx(f x, x/

√
u)du

)
.

� 2(1 + x)4

nx2

n∑
k=1

ω(f x, x/
√

k). (14)

Using the similar method we get∣∣∣∣
∫

I3

f x(t)Hn(x, t)dt

∣∣∣∣ � 2(1 + x)4

nx2

n∑
k=1

ω(f x, x/
√

k) (15)

Finally, we estimate ∣∣∣∣
∫

I4

f x(t)Hn(x, t)dt

∣∣∣∣ .
Since |f (t)| � MeAt on I and

∫ k+1
n+1−k

k
n+2−k

(1 + t)−2dt = (n + 2)−1

we conclude that∣∣∣∣
∫

I4

f x(t)Hn(x, t)dt

∣∣∣∣ � MeA(n+1)
∑

0�k�n
k/(n+2−k)�2x

bn,k (x) .

Using the relation

bn,k (x) =
(n + 2 − k) (n + 1 − k)

(n + 2) (n + 1)
(1 + x)2 bn+2,k (x) � (1 + x)2 bn+2,k (x) (16)

we obtain ∣∣∣∣
∫

I4

f x(t)Hn(x, t)dt

∣∣∣∣ � MeA(n+1) (1 + x)2
∑

k/(n+2−k)�2x

bn+2,k (x) .

An application of Lemma 6 with δ = x yields∣∣∣∣
∫

I4

f x(t)Hn(x, t)dt

∣∣∣∣ � 2Me−A (1 + x)2 exp

(
− (n + 2)

(
x

16 (1 + x)2 − A

))
. (17)

In a similar way, we prove the estimate for functions of polynomial growth satisfying
|f (t)| � M (1 + t)γ on I for some γ � 0 . An application of the mean value theorem
for integrals yields

∫ k+1
n+1−k

k
n+2−k

(1 + t)γ−2dt =
n + 2

(n + 2 − k)(n + 1 − k)
(1 + ξ)γ−2
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with k
n+2−k < ξ < k+1

n+1−k . For k
n+2−k � 2x , it is easily to verify that

(1 + ξ)γ−2 � (n + 2)γ−1(n + 1).

Hence, by Eq. (16) we conclude that

(n + 2) bn,k (x)
∫ k+1

n+1−k

k
n+2−k

|f (t)|
(1 + t)2

dt � (n + 2)2(1 + ξ)γ−2

(n + 2 − k)(n + 1 − k)
Mbn,k(x)

=
n + 2
n + 1

(1 + ξ)γ−2M (1 + x)2 bn+2,k (x)

and we obtain,∣∣∣∣
∫

I4

f x(t)Hn(x, t)dt

∣∣∣∣ � n + 2
n + 1

M (1 + x)2
∑

k/(n+2−k)�2x

(1 + ξ)γ−2bn+2,k (x) .

Finally, an application of Lemma 6 with δ = x yields∣∣∣∣
∫

I4

f x(t)Hn(x, t)dt

∣∣∣∣ � 2M(n + 2)γ (1 + x)2 exp

(
− (n + 2) x

16 (1 + x)2

)
. (18)

Collecting the estimates (12) , (14) , (15) , and (17) resp. (18) , we obtain

|Kn(f x, x)| � x2 + 4(1 + x)4

nx2

n∑
k=1

ω
(
f x, x/

√
k
)

+ Rn (x) ,

with Rn (x) as defined in (5) and (6) , respectively. �
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Mat. Palermo, I. Ser. 68 (2002), 205–218.

[3] F. ALTOMARE AND M. CAMPITI, Korovkin-type approximation theory and its applications, de Gruyter,
Berlin, New York, 1994.

[4] G. BLEIMANN, P. L. BUTZER, AND L. HAHN. A Bernstein-type operator approximating continuous
functions on the semi-axis, Indag. Math. 42 (1980), 255–262.

[5] R. BOJANIC AND F. CHENG, Rate of convergence of Bernstein polynomials for functions with derivative
of bounded variation, J. Math. Anal. Appl. 141 (1989), 136–151.

[6] R. A. DEVORE AND G. G. LORENTZ, Constructive Approximation, Springer Verlag, Berlin, Heidelberg,
New York, 1993.

[7] W. FELLER, An Introduction to Probability Theory and Its Applications, John Wiley & Sons, Inc., New
York, London, Toronto, 1971.

[8] T. HERMANN, On the operator of Bleimann, Butzer and Hahn, in: J. Szabados and K. Tandori, editors,
Approximation Theory, Colloquia Mathematica Societatis János Bolyai, North-Holland Publishing
Company, Volume 58 (1990), 355–360.

[9] C. JAYASRI AND Y. SITARAMAN, Direct and inverse theorems for certain Bernstein-type operators, J.
Comput. Appl. Math., 47 (2) (1993), 267–272.



KANTOROVICH VARIANT OF THE BLEIMANN, BUTZER AND HAHN OPERATORS 325

[10] M. K. KHAN, Approximation at discontinuity, Proceedings of the 4th international conference on func-
tional analysis and approximation theory, Acquafredda di Maratea (Potenza), Italy, September 22–28,
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