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SOME PROPERTIES OF THE
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Abstract. The purpose of the present paper is to derive an important inequality of the integral
operator Iσ (f ) which was introduced by Jung, Kim and Srivastava. [J. Math. Anal. Appl.
176(1993), 138–147]. Using the technique of differential subordination, an interesting property
of Iσ (f ) is also obtained.

1. Introduction

Let A denote the class of functions f (z) normalized by

f (z) = z +
∞∑
k=2

akz
k (1.1)

which are analytic in the open unit disc U = {z ∈ C : |z| < 1}.
A function f (z) in the class A is said to be in the class S∗(α) of starlike functions

of order α , if it satisfies

Re

{
zf ′(z)
f (z)

}
> α(z ∈ U), (1.2)

for some α (0 � α < 1) . Also, we write S(0) = S∗, the class of starlike functions in
U.

For f (z) ∈ A and z ∈ U, let the integral operators L(f ) be defined as

L(f )(z) =
2
z

z∫
0

f (t) dt. (1.3)

The operator L(f ) is said to be Libera operator which was introduced earlier by
Libera [3].

Jung et al. [2] introduced the following integral operator:

Iσ(f )(z) =
2σ

zΓ(σ)

z∫
0

(
log
( z

t

))σ−1
f (t) dt (σ > 0, f (z) ∈ A). (1.4)
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They showed that

Iσ(f )(z) = z +
∞∑
k=2

(
2

k + 1

)σ

akz
k. (1.5)

The operator Iσ(f ) is closely related to multiplier transformations studied earlier by
Flett [1], see also ([4], [5], [9]).

For our purpose we introduce:

DEFINITION 1. Let H be the set of complex valued function h(r, s, t) : C3 → C,
such that

(i) h(r, s, t) is continuous in a domain D ⊂ C3,
(ii) (0, 0, 0) ∈ D and |h(0, 0, 0)| < 1,
(iii)

∣∣h (eiθ , 1
2 (1 + m)eiθ , 1

4

[
(1 + 3m)eiθ + L

])∣∣ > 1, whenever(
eiθ ,

1
2
(1 + m)eiθ ,

1
4

[
(1 + 3m)eiθ + L

]) ∈ D,

where Re (e−iθL) � m(m − 1) for real θ and real m � 1.

Also, we shall need the following definitions:

DEFINITION 2. Let f (z) and F(z) be analytic functions. The function f (z) is
said to be subordinate to F(z) , written f (z) ≺ F(z), if there exists a function w(z)
analytic in U, with w(0) = 0 and |w(z)| � 1, and such that f (z) = F(w(z)) . If F(z)
is univalent, then f (z) ≺ F(z) if and only if f (0) = F(0) and f (U) ⊂ F(U).

DEFINITION 3. Let Ψ : C2 × U →C be analytic in a domain D, and let h(z) be
univalent in U . If p(z) is analytic in U with (p(z), zp′(z)) ∈ D when z ∈ U, then we
say that p(z) satisfies a first order differential subordination if:

Ψ(p(z), zp′(z); z) ≺ h(z)(z ∈ U). (1.6)

The univalent function q(z) is called domainant of the differential subordination (1.6),
if p(z) ≺ q(z) for all p(z) satisfying (1.6), if q̃(z) ≺ q(z) for all dominant of (1.6),
then we say that q̃(z) is the best domainant of (1.6).

2. An inequality for Iσ(f )

To show our result for the operator Iσ(f ), we need the following lemma by Miller
and Mocanu [6].

LEMMA 1. Let w(z) ∈ A with w(z) �= 0 in U. If z0 = r0eiθ0 (0 < r0 < 1) and
|w(z0)| = max

|z|�|z0|
|w(z)| , then

z0w
′(z0) = mw(z0) (2.1)

and

Re

{
1 +

z0w′′(z0)
w′(z0)

}
� m, (2.2)

where m is real and m � 1.
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THEOREM 1. Let h(r, s, t) ∈ H, and let the function f (z) belonging to A satisfy(
Iσ+1(f )(z), Iσ (f )(z), Iσ−1(f )(z)

) ∈ D ⊂ C
3 (2.3)

and ∣∣h (Iσ+1(f )(z), Iσ (f )(z), Iσ−1(f )(z)
)∣∣ < 1, (2.4)

for σ > 1 and z ∈ U. Then we have∣∣Iσ+1(f )(z)
∣∣ < 1 (z ∈ U). (2.5)

Proof. Using the identity

z(Iσ+1(f )(z))′ = 2Iσ((f )(z)) − Iσ+1((f )(z)), (2.6)

we define
w(z) = Iσ+1(f )(z). (2.7)

Then, we have w(z) ∈ A, w(0) = 0 and w(z) �= 0(z ∈ U).
Note that

Iσ(f )(z) =
1
2

(
w(z) + zw′(z)

)
(2.8)

and

Iσ−1(f )(z) =
1
4

(
w(z) + 3zw′(z) + z2w′′(z)

)
. (2.9)

If z0 = r0eiθ0 (0 < r0 < 1) and

|w(z0)| = max
|z|�|z0|

|w(z)| = 1, (2.10)

using (2.1) and (2.10), we see that

Iσ+1f (z0) = eiθ , (2.11)

Iσ f (z0) =
1
2
(1 + m)eiθ (2.12)

and

Iσ−1f (z0) =
1
4

[
(1 + 3m)eiθ + D

]
, (2.13)

where D = z2
0w

′′(z0). Furthermore, (2.2) implies

Re

{
z0w′′(z0)
w′(z0)

}
= Re

{
z2
0w

′′(z0)
meiθ

}
� m − 1, (2.14)

that is, that
Re (e−iθD) � m(m − 1). (2.15)

Therefore, it follows from h(r, s, t) ∈ H that∣∣h (Iσ+1(f )(z), Iσ (f )(z), Iσ−1(f )(z)
)∣∣

=
∣∣∣∣h
(

eiθ ,
1
2
(1 + m)eiθ ,

1
4

[
(1 + 3m)eiθ + D

])∣∣∣∣ > 1 (2.16)

which contradicts the condition (2.4). This proves that |w(z)| =
∣∣Iσ+1(f )(z)

∣∣ < 1, for
all z ∈ U . �

Let h(r, s, t) = h1(r, s, t) = s. It is obvious that h1(r, s, t) ∈ H with D = C3 . By
iteration of Theorem 1 applied to h1(r, s, t), we obtain the following corollary
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COROLLARY 1. Let the function f (z) ∈ A, satisfy. | Iσ(f )(z)| < 1 . Then∣∣ Iσ+1(f )(z)
∣∣ < 1 (z ∈ U; σ > 1). (2.17)

3. Differential subordination with Iσ(f )

We require the following lemma due to Miller and Mocanu [7], see also [8, p. 132].

LEMMA 2. Let q(z) be univalent in U and let θ and φ be analytic in a domain
D containing q(U) , with φ(w) �= 0, when w ∈ q(U). Set Q(z) = zq′(z)φ[q(z)],
h(z) = θ[q(z)] + Q(z) and suppose that either

(i) h(z) is convex, or
(ii) Q(z) is starlike.
In addition, assume that

(iii) Re

{
zh ′(z)
Q(z)

}
> 0.

If p(z) is analytic in U, with p(0) = q(0) , p(U) ⊂ D and

θ[p(z)] + zp′(z)φ[p(z)] ≺ θ[q(z)] + zQ ′(z)φ[q(z)] = h(z), (3.1)

then p(z) ≺ q(z), and q(z) is the best dominant of (3.1).

Now, we prove the following theorem

THEOREM 2. Let α ∈ [0, 1) and σ > 0. Also, let

z(Iσ(f )(z))′

Iσ(f )(z)
≺ h(z) (z ∈ U), (3.2)

for all f ∈ A satisfies
Iσ+i(f )(z)

z
�= 0 (i = 0, 1) . Then Iσ+1(f )(z) ∈ S∗(α), α is

the best possible, where

h(z) =
1 + (1 − 2α)z

1 − z
+

(1 − α)z
(1 − z)(1 − αz)

. (3.3)

Proof. We choose p(z) =
z(Iσ+1(f )(z))′

Iσ+1(f )(z)
, then (2.6) becomes

(1 + p(z)) Iσ+1(f )(z) = 2 Iσ(f )(z). (3.4)

Then, from identity (2.6) and (3.4), we have

z(Iσ(f )(z))′

Iσ(f )(z)
=
(

p(z) +
zp′(z)

p(z) + 1

)
. (3.5)

Therefore, (3.5) becomes

p(z) +
zp′(z)

p(z) + 1
≺ h(z), (z ∈ U). (3.6)
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Let q(z) =
1 + (1 − 2α)z

1 − z
, θ(w) = w and φ(w) =

1
w + 1

. Then θ(w) and φ(w) are

analytic with domain D = C\{−1} which contains q(U) , q(0) = 1 and φ(w) �= 0
when w ∈ q(U).

Also, we define the function Q(z) by

Q(z) = zQ ′(z)φ(q(z)) (3.7)

=
(1 − α)z

(1 − z)(1 − αz)
.

Since

θ[q(z)] + Q(z) =
1 + (1 − 2α)z

1 − z
+

(1 − α)z
(1 − z)(1 − αz)

= h(z), (3.8)

zQ ′(z)
Q(z)

=
1

1 − z
+

αz
1 − αz

(3.9)

and

φ[q(z)] =
1 − z

2(1 − αz)
. (3.10)

It follows from (3.8) and (3.9) that, for z ∈ U, Q(z) is starlike and

Re

{
zh ′(z)
Q(z)

}
= Re

{
1

φ(q(z))
+

zQ ′(z)
Q(z)

}
. (3.11)

Since Re (φ(q(z)) > 0, then we have Re

{
zh ′(z)
Q(z)

}
> 0. Also, the condition

Iσ+1(f )(z)
z

�= 0 gives that the function p(z) is analytic in U, p(0) = q(0) = 1,

and the condition
Iσ(f )(z)

z
�= 0 gives that −1 /∈ p(U), therefore p(U) ⊂ D. By

Lemma 2, we deduce p(z) ≺ q(z), i.e., Iσ+1((f )(z)) ∈ S∗(α), and q(z) is the best
dominant of (3.6), therefore the constant α is the best possible. �

Putting α = 0, in Theorem 2, we have

COROLLARY 2. Let the function f (z) ∈ A. satisfy
Iσ+i(f )(z)

z
�= 0 (i = 0, 1) . If

∣∣∣∣∣∣∣∣
z(Iσ(f )(z))′

Iσ(f )(z)
− 1

z(Iσ(f )(z))′

Iσ(f )(z)
+ 2

∣∣∣∣∣∣∣∣
< 1 (z ∈ U; σ > 0), (3.12)

then Iσ+1(f )(z) ∈ S∗, this result is the best possible.
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COROLLARY 3. Let the function f (z) ∈ A satisfy the conditions
L(f )(z)

z
�= 0 and

2
z2

z∫
0

L(f )(t) dt �= 0. If

z(L(f )(z))′

L(f )(z)
≺ h(z) (z ∈ U), (3.13)

then
2
z

z∫
0

L(f )(t) dt ∈ S∗(α) (0 � α < 1), the constant α is the best possible, where

h(z) is given by (3.3).

Proof. Since

I1(f )(z) = z +
∞∑
k=2

(
2

k + 1

)
akz

k

= z +
2
z

z∫
0

( ∞∑
k=2

akt
k

)
dt

=
2
z

z∫
0

f (t) dt = L(f )(z), (3.14)

using the identity (2.6), we have the first order linear differential equation. Therefore

I2(f )(z) =
2
z

z∫
0

L(f )(t) dt. (3.15)

The corollary is obtained by taking σ = 1 in Theorem 2. �
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