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COMPACTNESS OF INTEGRAL OPERATORS

IN LEBESGUE SPACES WITH MIXED NORM

ALBERTO FIORENZA, BABITA GUPTA AND PANKAJ JAIN

(communicated by L.-E. Persson)

Abstract. Compactness of certain double sized multidimensional integral operators is charac-
terized in terms of the corresponding two-dimensional operators in the framework of weighted
Lebesgue spaces with mixed norm.

1. Introduction

Consider the "double sized" multidimensional operators

(TE,Ff )(x, y) =
∫

b(|x|)SM\a(|x|)SM

∫
d(|y|)SN\c(|y|)SN

f (s, t)dt ds, x ∈ E, y ∈ F (1.1)

and

(HE,Ff )(x, y) =
∫

SMx

∫
SNy

f (s, t)dt ds, x ∈ E, y ∈ F (1.2)

where E, F are certain multidimensional cones which along with other symbols are
defined in Section 2. These operators are multidimensional analogues of, respectively,
the two-dimensional Hardy-Steklov operator

(T2f )(x, y) =
∫ b(x)

a(x)

∫ d(y)

c(y)
f (s, t)dt ds, x, y ∈ (0,∞) (1.3)

and the two-dimensional Hardy operator

(H2f )(x, y) =
∫ x

0

∫ y

0
f (s, t)dt ds, x, y ∈ (0,∞) . (1.4)

Note that in (1.1) and (1.2), x and y are multidimensional vectors whereas in (1.3)
and (1.4), they are real numbers but there should be no confusion since it is clear from
the context.

In this paper, we discuss the compactness of the above operators between suitable
Lebesgue spaces with mixed norm. The compactness of TE,F was studied in [6]. Here,
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we shall exhibit that the compactness of TE,F (respectively HE,F ) can be studied in
terms of the compactness of T2 (respectively H2 ) and vice-versa.

The compactness of integral operators has applications in spectral theory. The
initial results on Lp -Lq compactness (one dimensional case) are due to Stepanov [17-
22] (see also [11], [12]) who dealt with the Riemann-Liouville operator with kernel
k(x, y) = (x − y)α , α � 0 and considered all choices of parameters p, q ∈ (1,∞) .

As regards the Hardy-Steklov operator (Tf )(x) =
∫ b(x)

a(x) f (t)dt , its one-dimensional
boundedness was studied by Heinig and Sinnamon [4] while the compactness was
studied in [5] by Jain andGupta. Also, a certain higher dimensional Lp -Lq compactness
with usual norm (not with mixed norm) was dealt with in [7]. For up to date information
about boundedness and compactness of various Hardy-type integral operators, one may
refer to the very recent monograph [9].

The equivalence of higher dimensional problems and the corresponding lower
dimensional ones was initiated by Sinnamon [14], [15] who did it for studying the
boundedness of Hardy and Hardy-Steklov operators in Lebesgue spaces with usual
norm. Here, we show that the same phenomenon works in case of compactness also
studied between Lebesgue spaces with mixed norm.

The paper is organized as follows : in order not to disturb our discussions later on,
we collect certain preliminaries in Section 2 required throughout the paper. Section 3
is devoted to duality where we construct the dual space to the weighted Lebesgue space
with mixed norm and consequently the adjoint operators to (1.1)-(1.4) are obtained.
Finally, in Section 4, we characterize the compactness of the operators (1.1) and (1.2)
in terms of, respectively, (1.3) and (1.4).

2. Preliminaries

Throughout the paper, all the functions are taken to be Lebesgue measurable. Let
Ω ⊂ R

N be a non-empty andmeasurable set. By a weight function (or simply a weight),
we mean a function which is measurable, positive and finite a.e. on Ω . For a weight w
and 1 � p < ∞ , the weighted Lebesgue space L p(Ω, w) is defined to be the space of
all measurable functions f on Ω for which

‖f ‖L p(Ω,w) :=
(∫

Ω
|f (x)|pw(x)dx

)1/p

< ∞.

It is known that the space Lp(Ω, w) is a Banach space and that for 1 < p < ∞ , it is
reflexive too.

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y) be two normed spaces of real measurable functions
over Ω1 ⊂ R

M and Ω2 ⊂ R
N , respectively. We denote by [X, Y] the space of all real

functions f on Ω1 ×Ω2 such that for a.e. x ∈ Ω1

(i) the function f (x, ·) belongs to Y ;
(ii) the function g(x) = ‖f (x, ·)‖Y belongs to X .
The space [X, Y] is equipped with the mixed norm

‖f ‖[X,Y] = ‖g‖X = ‖x → ‖f (x, ·)‖Y‖X .
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The mixed normed space [Lp(Ω), Lq(Ω)] was introduced by Benedek and Panzone
[2] (see also [3]). In [1], Appell and Kufner studied the boundedness of two-dimensional
Hardy operator H2 while in [8], Jain, Jain and Gupta studied the boundedness of two
dimensionalHardy-Steklov operator T2 and the corresponding geometricmean operator
in the context of Lebesgue spaces withmixed norm. Let us mention that the boundedness
of H2 between Lebesgue spaces with usual norm has been studied by Sawyer in his
celebrity paper [13].

Let
∑

M be the unit ball in R
M , i.e.,

∑
M = {x ∈ R

M : |x| = 1} . Let BM be a
measurable subset of

∑
M and E ⊂ R

M be the corresponding spherical cone, i.e.,

E = {x ∈ R
M : x = sσ, 0 � s < ∞, σ ∈ BM} .

We denote by αSM , α > 0 , the part of E with radius � α . In particular, |x|SM

is denoted by SMx . Note that E =
⋃
α>0

αSM . For x ∈ E \ {0} , we denote by |SMx | ,
the volume of SMx . The symbols BN , F, SNy and |SNy | are defined similarly for an
N -dimensional setting.

Suppose, u1, v1 are weight functions on E and u2, v2 are weight functions on F .
Consider theweightedLebesgue spaces [Lp1(E, v1), Lp2(F, v2)] and [Lq1(E, u1), Lq2(F, u2)]
with mixed norm. Now, we define the operator

TE,F : [Lp1(E, v1), Lp2(F, v2)] → [Lq1(E, u1), Lq2(F, u2)]

by

(TE,Ff )(x, y) =
∫

b(|x|)SM\a(|x|)SM

∫
d(|y|)SN\c(|y|)SN

f (s, t)dt ds, x ∈ E, y ∈ F

where a, b, c, d are strictly increasing differentiable functions on [0,∞] satisfying

a(0) = b(0) = 0, a(x) < b(x) for 0 < x < ∞, a(∞) = b(∞) = ∞

and

c(0) = d(0) = 0, c(x) < d(x) for 0 < x < ∞, c(∞) = d(∞) = ∞ .

In Section 4, we shall characterize the compactness of TE,F in terms of the two-
dimensional operator

T2 : [Lp1((0,∞), V1), Lp2((0,∞), V2)] → [Lq1((0,∞), U1), Lq2((0,∞), U2)]

defined by

(T2f )(x, y) =
∫ b(x)

a(x)

∫ d(y)

c(y)
f (s, t)dtds, x, y ∈ (0,∞)

U1, U2, V1, V2 being suitable weight functions defined on (0,∞) .
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3. Duality

In this Section,we shall construct the dual spaces [Lp1((0,∞), V1), Lp2((0,∞), V2)]∗

and [Lp1(E, v1), Lp2(F, v2)]∗ of [Lp1((0,∞), V1), Lp2((0,∞), V2)] and [Lp1(E, v1),
Lp2(F, v2)] respectivelywhen 1 < p1, p2 < ∞ . In this direction,we prove the following

THEOREM 3.1. Let 1 < p1, p2 < ∞ , g ∈ [Lp′1((0,∞),V1−p′1
1 ), Lp′2((0,∞),V1−p′2

2 )]
and denote

〈 g, f 〉 =
∫ ∞

0

∫ ∞

0
g(x, y)f (x, y)dxdy,

for f ∈ [Lp1((0,∞), V1), Lp2((0,∞), V2)] . Then f → 〈 g, f 〉 ∈ [Lp1((0,∞), V1),
Lp2((0,∞), V2)]∗ and

‖g‖
[Lp′

1 ((0,∞),V
1−p′

1
1 ),Lp′

2 ((0,∞),V
1−p′

2
2 )]

= sup
‖f ‖[Lp1 ((0,∞),V1),Lp2 ((0,∞),V2)]=1

|〈 g, f 〉 |.

Proof. We apply Hölder’s inequality twice and obtain

|〈 g, f 〉 | �
∫ ∞

0

∫ ∞

0
|g(x, y)||f (x, y)|V

1
p2
2 (y)V

−1
p2

2 (y)dxdy

�
∫ ∞

0

(∫ ∞

0
|f (x, y)|p2V2(y)dy

) 1
p2
(∫ ∞

0
|g(x, y)|p′2V1−p′2

2 (y)dy

) 1
p′
2 dx

=
∫ ∞

0

(∫ ∞

0
|f (x, y)|p2V2(y)dy

) 1
p2
(∫ ∞

0
|g(x, y)|p′2V1−p′2

2 (y)dy

) 1
p′
2

× V
1
p1
1 (x)V

−1
p1

1 (x)dx

�
(∫ ∞

0

(∫ ∞

0
|f (x, y)|p2V2(y)dy

) p1
p2

V1(x)dx

) 1
p1

×

⎛
⎜⎝∫ ∞

0

(∫ ∞

0
|g(x, y)|p′2V1−p′2

2 (y)dy

) p′1
p′
2 V1−p′1

1 (x)dx

⎞
⎟⎠

1
p′
1

= ‖f ‖[Lp1 ((0,∞),V1),Lp2 ((0,∞),V2)]‖g‖
[Lp′

1 ((0,∞),V
1−p′

1
1 ),Lp′

2 ((0,∞),V
1−p′

2
2 )]

and we find that for ‖f ‖[Lp1 ((0,∞),V1),Lp2 ((0,∞),V2)] = 1

|〈 g, f 〉 | � ‖g‖
[Lp′

1 ((0,∞),V
1−p′

1
1 ),Lp′

2 ((0,∞),V
1−p′

2
2 )]

.

In fact, the equality can be attained in the last estimate. To see this, let us take

f (x, y) = |g(x, y)|p′2−1sgn g(x, y)V1−p′2
2 (y)V1−p′1

1 (x)‖g(x, .)‖p′1−p′2
p′2,V

1−p′
2

2

× ‖g‖1−p′1
[Lp′

1 ((0,∞),V
1−p′

1
1 ),Lp′

2 ((0,∞),V
1−p′

2
2 )]

.
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Then ‖f ‖[Lp1 ((0,∞),V1),Lp2 ((0,∞),V2)] = 1 and

〈 g, f 〉 = ‖g‖
[Lp′

1 ((0,∞),V
1−p′

1
1 ),Lp′

2 ((0,∞),V
1−p′

2
2 )]

.

Consequently, we are done. �

Thus in view of the above theorem, the space [Lp′1((0,∞), V1−p′1
1 ), Lp′2((0,∞),

V1−p′2
2 )] can be identified as the dual space of [Lp1((0,∞), V1), Lp2((0,∞), V2)] .

REMARK 3.2. Theorem 3.1 extends a result of Benedek and Panzone [2] (see also
[3]) who proved it for the non-weighted case, i.e., when V1 ≡ V2 ≡ 1 .

It can, now, be seen that the operators T2 and

T∗
2 : [Lq′1((0,∞), U1−q′1

1 ), Lq′2((0,∞), U1−q′2
2 )]→ [Lp′1((0,∞),V1−p′1

1 ), Lp′2((0,∞),V1−p′2
2 )]

defined by

(T∗
2 g)(x, y) =

∫ a−1(x)

b−1(x)

∫ c−1(y)

d−1(y)
g(s, t)dt ds , x, y ∈ (0,∞)

are mutually conjugate. Indeed, by applying Fubini’s theorem, one can see that

〈 g, T2f 〉 = 〈 f , T∗
2 g〉 .

Similarly, it can be shown that the dual space of [Lp1(E, v1), Lp2(F, v2)] can be

identified with the space [Lp′1(E, v1−p′1
1 ), Lp′2(F, v1−p′2

2 )] and the operators TE,F and

T∗
E,F : [Lq′1(E, u1−q′1

1 ), Lq′2(F, u1−q′2
2 )] → [Lp′1(E, v1−p′1

1 ), Lp′2(F, v1−p′2
2 )]

defined by

(T∗
E,Fg)(x, y) =

∫
a−1(|x|)SM\b−1(|x|)SM

∫
c−1(|y|)SN\d−1(|y|)SN

g(s, t)dt ds , x ∈ E, y ∈ F

are also mutually conjugate.

4. Compactness

Let X be a normed linear space and X∗ denote its conjugate space. We say that a
sequence {xn} in X is strongly convergent (or simply convergent) to x ∈ X , written
xn → x , if ‖xn−x‖ → 0 as n → ∞ . A sequence {xn} in X is said to convergeweakly
to x ∈ X , written xn

w−→ x , if f (xn) → f (x) , for each f ∈ X∗ . A sequence {f n} in X∗

is said to be weak ∗ convergent to f ∈ X∗ , written f n
w∗
−→f , if f n(x) → f (x) for each

x ∈ X . Note that the strong convergence implies the weak convergence which in turn
implies the weak ∗ convergence. The implications in the reverse direction do not hold
in general. However, if X is a reflexive space then the weak ∗ convergence implies the
weak convergence.
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We require certain well known assertions which we collect in the following theo-
rem:

THEOREM A. Let X and Y be Banach spaces.
(a) A bounded linear operator A : X → Y is compact if and only if its conjugate

A∗ : Y∗ → X∗ is compact.
(b) If A : X → Y is compact and {xn} is a sequence in X such that xn

w−→ x ,
for some x ∈ X , then Axn → Ax .

(c) An operator A : X → Y is compact if A∗ : Y∗ → X∗ is weak ∗ -norm

sequentially continuous, i.e., for each sequence {f n} in Y∗ with {f n} w∗−→ f , for some
f ∈ Y∗ , we have ‖A∗f n − A∗f ‖ → 0 .

We, now, prove the following equivalence :

THEOREM 4.1. Let 1 < p1 , p2, q1, q2 < ∞ , u1, v1 be weight functions on E and
u2, v2 be weight functions on F . Then the operator

TE,F : [Lp1(E, v1), Lp2(F, v2)] → [Lq1(E, u1), Lq2(F, u2)]

is compact if and only if the operator

T2 : [Lp1((0,∞), V1), Lp2((0,∞), V2)] → [Lq1((0,∞), U1), Lq2((0,∞), U2)]

is compact with

U1(x0) =
∫

BM

u1(x0x
′)xM−1

0 dx′, x0 > 0 (4.1)

U2(y0) =
∫

BN

u2(y0y
′)yN−1

0 dy′, y0 > 0 (4.2)

V1(x0) =
(∫

BM

v1−p′1
1 (x0x

′)xM−1
0 dx′

)1−p1

, x0 > 0 (4.3)

V2(y0) =
(∫

BN

v1−p′2
2 (y0y

′)yN−1
0 dy′

)1−p2

, y0 > 0. (4.4)

Proof. First assume that T2 is compact. It suffices to show that

T∗
E,F : [Lq′1(E, u1−q′1

1 ), Lq′2(F, u1−q′2
2 )] → [Lp′1(E, v1−p′1

1 ), Lp′2(F, v1−p′2
2 )]

is weak ∗ -norm sequentially continuous. Let {f n} be a sequence in [Lq′1(E, u1−q′1
1 ) ,

Lq′2(F, u1−q′2
2 )] such that f n

w∗−→ 0 . Without any loss of generality, we may assume that
each f n is non-negative. Define

gn(x0, y0) =
∫

BM

∫
BN

f n(x0x
′, y0y

′)xM−1
0 yN−1

0 dy′dx′, x0, y0 > 0, n ∈ N . (4.5)
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Then using Hölder’s inequality

gn(x0, y0) �
∫

BM

(∫
BN

f q′2
n (x0x

′, y0y
′)u1−q′2

2 (y0y
′)yN−1

0 dy′
) 1

q′
2

×
(∫

BN

u2(y0y
′)yN−1

0 dy′
) 1

q2

xM−1
0 dx′ .

Therefore, using (4.2), applying Minkowskii’s integral inequality, Hölder’s in-
equality and using (4.1) we have

(∫ ∞

0
U1−q′1

1 (x0)
(∫ ∞

0
U1−q′2

2 (y0)g
q′2
n (x0, y0)dy0

) q′1
q′
2 dx0

) 1
q′
1

�
(∫ ∞

0
U1−q′1

1 (x0)
(∫ ∞

0
U1−q′2

2 (y0)
(∫

BM

(∫
BN

f q′2
n (x0x

′, y0y
′)u1−q′2

2 (y0y
′)yN−1

0 dy′
)1

q′
2

× U
1
q2
2 (y0)xM−1

0 dx′
)q′2

dy0

) q′1
q′
2 dx0

) 1
q′
1

=
(∫ ∞

0
U1−q′1

1 (x0)
(∫ ∞

0

(∫
BM

(∫
BN

f q′2
n (x0x

′, y0y
′)u1−q′2

2 (y0y
′)yN−1

0 dy′
) 1

q′
2

× xM−1
0 dx′

)q′2
dy0

) q′1
q′
2 dx0

) 1
q′
1

�
(∫ ∞

0
U1−q′1

1 (x0)
(∫

BM

(∫ ∞

0

∫
BN

f q′2
n (x0x

′, y0y
′)u1−q′2

2 (y0y
′)yN−1

0 dy′dy0

) 1
q′
2

× xM−1
0 dx′

)q′1
dx0

) 1

q′
1

�
(∫ ∞

0
U

1−q′1
1 (x0)

(∫
BM

(∫
F

f
q′2
n (x0x

′, y)u1−q′2
2 (y)dy

) q′1
q′
2 u

1−q′1
1 (x0x

′)xM−1
0 dx′

)

×
(∫

BM

u1(x0x
′)xM−1

0 dx′
) q′1

q1

dx0

) 1

q′
1

=
(∫

E

(∫
F

f
q′2
n (x, y)u1−q′2

2 (y)dy

) q′1
q′
2 u

1−q′1
1 (x)dx

) 1

q′
1 < ∞,

which shows that {gn} is a sequence in [Lq′1((0,∞), U1−q′1
1 ), Lq′2((0,∞), U1−q′2

2 )] .
Next, we note that if g ∈ [Lq1((0,∞), U1), Lq2((0,∞), U2)] and f : E × F → R

is defined by

f (x, y) = g(x0, y0), x = x0x
′, y = y0y

′
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then f ∈ [Lq1(E, u1), Lq2(F, u2)] since by making change of variable and using (4.2),
(4.1), we have

(∫
E

(∫
F

f q2(x, y)u2(y)dy

) q1
q2

u1(x)dx

) 1
q1

=
(∫ ∞

0

∫
BM

u1(x0x
′)
(∫ ∞

0

∫
BN

f q2(x0x
′, y0y

′)u2(y0y
′)yN−1

0 dy′dy0

)q1
q2

xM−1
0 dx′dx0

)1
q1

=
(∫ ∞

0

∫
BM

u1(x0x
′)
(∫ ∞

0
gq2(x0, y0)U2(y0)dy0

) q1
q2

xM−1
0 dx′dx0

) 1
q1

=
(∫ ∞

0
U1(x0)

(∫ ∞

0
gq2(x0, y0)U2(y0)dy0

) q1
q2

dx0

) 1
q1

< ∞ .

Then, by using (4.5), we have∫ ∞

0

∫ ∞

0
gn(x0, y0)g(x0, y0)dy0dx0

=
∫ ∞

0

∫ ∞

0

(∫
BM

∫
BN

f n(x0x
′, y0y

′)xM−1
0 yN−1

0 dy′dx′
)

g(x0, y0)dy0dx0

=
∫ ∞

0

∫
BM

(∫ ∞

0

∫
BN

f n(x0x
′, y0y

′)f (x0x
′, y0y

′)yN−1
0 dy′dy0

)
xM−1
0 dx′dx0

=
∫

E

∫
F

f n(x, y)f (x, y)dy dx → 0 as n → ∞

i.e., gn
w−→ 0 . Further, since T2 is compact, in view of Theorem A((a) and (b)), T∗

2 is
also compact and therefore

‖T∗
2 gn‖

[Lp′
1 ((0,∞),V

1−p′
1

1 ),Lp′
2 ((0,∞),V

1−p′
2

2 )]
→ 0 as n → ∞ .

Now, using (4.3), (4.4) and (4.5), we get

‖T∗
E,Ff n‖

[Lp′
1 (E,v

1−p′
1

1 ),Lp′
2 (F,v

1−p′
2

2 )]

=
(∫

E
v
1−p′1
1 (x)

(∫
F

v
1−p′2
2 (y)

(∫
a−1(|x|)SM\b−1(|x|)SM

×
∫

c−1(|y|)SN\d−1(|y|)SN

f n(s, t)dt ds

)p′2
dy

) p′1
p′
2 dx

) 1

p′
1

=
(∫ ∞

0

∫
BM

v1−p′1
1 (x0x

′)
(∫ ∞

0

∫
BN

v1−p′2
2 (y0y

′)

×
(∫ a−1(x0)

b−1(x0)

∫ c−1(y0)

d−1(y0)

∫
BM

∫
BN

f n(s0s
′, t0t′)tN−1

0 sM−1
0 dt′ ds′ dt0 ds0

)p′2
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× yN−1
0 dy′dy0

) p′1
p′
2 xM−1

0 dx′dx0

) 1
p′
1

=
(∫ ∞

0
V1−p′1

1 (x0)
(∫ ∞

0
V1−p′2

2 (y0)
(∫ a−1(x0)

b−1(x0)

∫ c−1(y0)

d−1(y0)
gn(s0, t0)dt0ds0

)p′2
dy0

) p′1
p′
2 dx0

) 1

p′
1

= ‖T∗
2 gn‖

[Lp′
1 ((0,∞),V

1−p′
1

1 ),Lp′
2 ((0,∞),V

1−p′
2

2 )]

and TE,F is compact.
Conversely, assume that

TE,F : [Lp1(E, v1), Lp2(F, v2)] → [Lq1(E, u1), Lq2(F, u2)]

is compact. Let {gn} be a sequence in [Lq′1((0,∞), U1−q′1
1 ), Lq′2((0,∞), U1−q′2

2 )] such

that gn
w∗−→ 0 . Without any loss of generality, assume that each gn is non-negative.

Using the polar coordinates, as before, define

f n(x0x
′, y0y

′) = gn(x0, y0)u2(y0y
′)U−1

2 (y0)u1(x0x
′)U−1

1 (x0) , (4.6)

Then ∫
BM

∫
BN

f n(x0x
′, y0y

′)xM−1
0 yN−1

0 dy′dx′ = gn(x0, y0) (4.7)

and consequently using (4.6), (4.1) and (4.2), we get

(∫
E

(∫
F

f q′2
n (x, y)u1−q′2

2 (y)dy

) q′1
q′
2 u1−q′1

1 (x)dx

) 1

q′
1

=
(∫ ∞

0

∫
BM

(∫ ∞

0
g

q′2
n (x0, y0)

(∫
BN

u2(y0y
′)yN−1

0 dy′
)

U
−q′2
2 (y0)dy0

) q′1
q′
2

× u1(x0x
′)xM−1

0 dx′U−q′1
1 (x0)dx0

) 1

q′
1

=
(∫ ∞

0

(∫ ∞

0
g

q′2
n (x0, y0)U

1−q′2
2 (y0)dy0

) q′1
q′
2 U

1−q′1
1 (x0)dx0

) 1

q′
1

< ∞ ,

i.e., {f n} is a sequence in [Lq′1(E, u1−q′1
1 ), Lq′2(F, u1−q′2

2 )] .
Thus, (4.3), (4.4) and (4.7) yield

‖T∗
2 gn‖

[Lp′
1 ((0,∞),V

1−p′
1

1 ),Lp′
2 ((0,∞),V

1−p′
2

2 )]
= ‖T∗

E,Ff n‖
[Lp′

1 (E,v
1−p′

1
1 ),Lp′

2 (F,v
1−p′

2
2 )]

.
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We, now, show that f n
w−→ 0 . For any function f ∈ [Lq1(E, u1), Lq2(F, u2)] , using (4.6),

we have∫
E

∫
F

f n(x, y)f (x, y)dydx

=
∫ ∞

0

∫
BM

∫ ∞

0

∫
BN

gn(x0, y0)u2(y0y
′)U−1

2 (y0)u1(x0x
′)U−1

1 (x0)

× f (x0x
′, y0y

′)yN−1
0 xM−1

0 dy′dx′ dy0dx0

=
∫ ∞

0

∫ ∞

0
gn(x0, y0)

(∫
BM

∫
BN

u2(y0y
′)u1(x0x

′)f (x0x
′, y0y

′)yN−1
0 xM−1

0 dy′dx′
)

× U−1
2 (y0)U−1

1 (x0)dy0dx0

=
∫ ∞

0

∫ ∞

0
gn(x0, y0)g(x0, y0)dy0 dx0 → 0 as n → ∞,

where

g(x0, y0) =
(∫

BM

∫
BN

u2(y0y
′)u1(x0x

′)f (x0x
′, y0y

′)yN−1
0 xM−1

0 dy′dx′
)

U−1
2 (y0)U−1

1 (x0),

x0, y0 > 0

and it can be verified that g ∈ [Lq1((0,∞), U1), Lq2((0,∞), U2)] . Indeed, using
Hölder’s inequality, (4.2), Minkowski’s integral inequality, again Hölder’s inequality
and (4.1), we have

(∫ ∞

0

(∫ ∞

0
gq2(x0, y0)U2(y0)dy0

) q1
q2

U1(x0)dx0

) 1
q1

=
(∫ ∞

0

(∫ ∞

0

(∫
BM

∫
BN

u2(y0y
′)f (x0x

′, y0y
′)yN−1

0 dy′u1(x0x
′)xM−1

0 dx′
)q2

× U1−q2
2 (y0)dy0

) q1
q2

U1−q1
1 (x0)dx0

) 1
q1

�
(∫ ∞

0

(∫ ∞

0

(∫
BM

(∫
BN

f q2(x0x
′, y0y

′)u2(y0y
′)yN−1

0 dy′
) 1

q2

×
(∫

BN

u2(y0y
′)yN−1

0 dy′
) 1

q′
2 u1(x0x

′)xM−1
0 dx′

)q2

× U1−q2
2 (y0)dy0

) q1
q2

U1−q1
1 (x0)dx0

) 1
q1

�
(∫ ∞

0

(∫
BM

(∫ ∞

0

∫
BN

f q2(x0x
′, y0y

′)u2(y0y
′)yN−1

0 dy′dy0

) 1
q2

× u1(x0x
′)xM−1

0 dx′
)q1

U1−q1
1 (x0)dx0

) 1
q1
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�
(∫ ∞

0

(∫
BM

(∫
F

f q2(x0x
′, y)u2(y)dy

) q1
q2

u1(x0x
′)xM−1

0 dx′
)

×
(∫

BM

u1(x0x
′)xM−1

0 dx′
) q1

q′
1 U1−q1

1 (x0)dx0

) 1
q1

=
(∫

E

(∫
F

f q2(x, y)u2(y)dy

) q1
q2

u1(x)dx

) 1
q1

< ∞.

Now, as TE,F is compact, using Theorem A((a) and (b)), T∗
E,F is also compact and

therefore ‖T∗
E,Ff n‖

[Lp′
1 (E,v

1−p′
1

1 ),Lp′
2 (F,v

1−p′
2

2 )]
and hence ‖T∗

2 gn‖
[Lp′

1 ((0,∞),V
1−p′

1
1 ),Lp′

2 ((0,∞),V
1−p′

2
2 )]

converges to 0 as n → ∞ . Thus T2 is compact, by using Theorem A(c). �

REMARK 4.2. Theorem 4.1 establishes the compactness of the operators TE,F and
T2 in terms of each other. In order that this result makes sense, we need to ensure
the compactness of at least one of these operators. To this end, let us mention that
precise weight conditions are known (see [6, Corollary 5]) for the compactness of
TE,F . Using that result and Theorem 4.1, we can obtain the compactness conditions
for the operator T2 . Precisely, the sufficient conditions are stated in the following (the
necessary conditions can be written similarly)

THEOREM 4.3. Let 1 < pi, qi < ∞, Ui, Vi, i = 1, 2 be weight functions on
(0,∞) . Then the operator T2 : [Lp1((0,∞), V1), Lp2((0,∞), V2)] → [Lq1((0,∞), U1),
Lq2((0,∞), U2)] is compact in the following cases

Case (a): p1 � q1, p2 � q2 and the following conditions are satisfied

sup
0<t�x

a(x)�b(t)

B1(x, t) = sup
0<t�x

a(x)�b(t)

(∫ x

t
U1

) 1
q1

(∫ b(t)

a(x)
V1−p′1

1

) 1

p′
1

< ∞ (4.8)

sup
0<t�x

c(x)�d(t)

B2(x, t) = sup
0<t�x

c(x)�d(t)

(∫ x

t
U2

) 1
q2

(∫ d(t)

c(x)
V1−p′2

2

) 1

p′
2

< ∞ (4.9)

lim
x→t+

B1(x, t) = lim
x→a−1(b(t))−

B1(x, t) = 0 for every t > 0 (4.10)

lim
t→x− B1(x, t) = lim

t→b−1(a(x))+
B1(x, t) = 0 for every x > 0 (4.11)

lim
x→t+

B2(x, t) = lim
x→c−1(d(t))−

B2(x, t) = 0 for every t > 0 (4.12)

and

lim
t→x− B2(x, t) = lim

t→d−1(c(x))+
B2(x, t) = 0 for every x > 0 (4.13)
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Case (b): p1 � q1, q2 < p2 , (4.8), (4.10), (4.11) and the following conditions are
satisfied

⎛
⎝∫ ∞

0

⎛
⎝∫ t

d−1(c(t))

(∫ d(x)

c(t)
V1−p′2

2

) r2
p′
2
(∫ t

x
U2

) r2
p2

U2(x) dx

⎞
⎠ ρ(t) dt

⎞
⎠

1
r2

< ∞ (4.14)

⎛
⎝∫ ∞

0

⎛
⎝∫ c−1(d(t))

t

(∫ d(t)

c(x)
V1−p′2

2

) r2
p′
2
(∫ x

t
U2

) r2
p2

U2(x) dx

⎞
⎠ρ(t) dt

⎞
⎠

1
r2

< ∞

(4.15)

with
1
r2

=
1
q2

− 1
p2

and the function ρ is defined as follows : Fix M0 = d−1(1) and

define Mk+1 = c−1(d(Mk)) if k � 0 and Mk = d−1(c(Mk+1)) if k < 0 . The function
ρ is then defined by

ρ(t) :=
∑
k∈Z

χ(Mk ,Mk+1)(t)
d
dt

(d−1 ◦ c)k(t),

where (d−1 ◦ c)k denotes k times repeated composition.
Case (c): q1 < p1, p2 � q2 , (4.9), (4.12), (4.13) and the following conditions are
satisfied

⎛
⎝∫ ∞

0

⎛
⎝∫ t

b−1(a(t))

(∫ b(x)

a(t)
V

1−p′1
1

) r1
p′
1
(∫ t

x
U1

) r1
p1

U1(x) dx

⎞
⎠ρ′(t) dt

⎞
⎠

1
r1

< ∞

(4.16)⎛
⎝∫ ∞

0

⎛
⎝∫ a−1(b(t))

t

(∫ b(t)

a(x)
V1−p′1

1

) r1
p′
1
(∫ x

t
U1

) r1
p1

U1(x) dx

⎞
⎠ρ′(t) dt

⎞
⎠

1
r1

< ∞

(4.17)

with
1
r1

=
1
q1

− 1
p1

and the function ρ′ is defined as follows : Fix N0 = b−1(1) and

define Nk+1 = a−1(b(Nk)) if k � 0 and Nk = b−1(a(Nk+1)) if k < 0 . The function
ρ′ is then defined by

ρ′(t) :=
∑
k∈Z

χ(Nk,Nk+1)(t)
d
dt

(b−1 ◦ a)k(t),

where (b−1 ◦ a)k denotes k times repeated composition.
Case (d): q1 < p1, q2 < p2 and the conditions (4.14)-(4.17) are satisfied.

The operator HE,F , defined in (1.2), can be studied analogously. Its dual H∗
E,F

is obtained as done in Section 3 for T∗
E,F . Also the result corresponding to Theorem

4.1 (and also to Theorem 4.3) can be obtained on parallel lines with some obvious
modifications and therefore we only state the result.
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THEOREM 4.4. Let 1 < p1, p2, q1, q2 < ∞ , u1, v1 be weight functions on E and
u2, v2 be weight functions on F . Then the operator HE,F : [Lp1(E, v1), Lp2(F, v2)] →
[Lq1(E, u1), Lq2(F, u2)] is compact if and only if H2 : [Lp1((0,∞), V1), Lp2((0,∞),V2)]→
[Lq1((0,∞), U1), Lq2((0,∞), U2)] is compact with U1, U2, V1, V2 given respectively by
(4.1), (4.2), (4.3) and (4.4).

REMARK 4.5. The operators TE,F and HE,F studied in this paper are considered
over multidimensional cones. As a special case, one can derive operators taken over
multidimensional balls. Precisely, if E = R

M, F = R
N , then SMx = BM(x) and

SNy = BN(y) , where BM(x) and BN(y) are the balls in R
M and R

N , respectively,
centered at the origin with radii |x| and |y| , respectively. In that case, the operators
TE,F and HE,F become, respectively

(TM,N)(x, y) =
∫

a(|x|)�|s|�b(|x|)

∫
c(|x|)�|t|�d(|x|)

f (s, t)dtds

and

(HM,N)(x, y) =
∫

BM(x)

∫
BN(y)

f (s, t)dtds.

All the results given in this paper can easily be translated for these operators TM,N and
HM,N .
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