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Abstract. The concept of I -convergence is a generalization of statistical convergence and it
is depended on the notion of the ideal I of subsets of the set N of positive integers. In this
paper for sequences in 2 -normed space the relationship between I -convergence and usual
convergence along a filter F (I ) associated with an admissible ideal I with property (AP) is
investigated. We introduce the concepts I -Cauchy and I ∗ -Cauchy sequences in 2 -normed
spaces and study their certain properties.

1. Introduction and Background

The notion of ideal convergence was first introduced by P. Kostyrko et al [8] as an
interesting generalization of statistical convergence [1, 14].

The concept of 2 -normed spaces was initially introduced by Gähler [4] in the
1960s. Since then, this concept has been studied by many authors (see for instance
[5, 13]).

In this paper we investigate basic properties of I -convergent sequences in 2 -
normed spaces. In section 2 we introduce the concepts of I -Cauchy and I ∗ -Cauchy
sequences in 2 -normed spaces and study their some properties.

Throughout this paper N will denote the set of positive integers. Let (X, ‖.‖) be a
normed space. Recall that a sequence (xn)n∈N

of elements of X is said to be statistically
convergent to x ∈ X if the set A (ε) = {n ∈ N : ‖xn − x, z‖ � ε} has natural density
zero for each ε > 0 .

A family I ⊂ 2Y subsets of a nonempty set Y is said to be an ideal in Y if
(i) ∅ ∈ I ; (ii) A, B ∈ I imply A ∪ B ∈ I ; (iii) A ∈ I , B ⊂ A imply
B ∈ I , while an admissible ideal I of Y further satisfies {x} ∈ I for each x ∈ Y
[7, 10]. Let I be a proper ideal in Y (i.e. Y /∈ I ) , Y �= ∅. Then the family of
sets F (I ) = {M ⊂ Y : ∃A ∈ I : M = Y\A} is a filter in Y. It is called the filter
associated with the ideal I [9].

Given I ⊂ 2N be a nontrivial ideal in N , the sequence (xn)n∈N
in X is said to

be I -convergent to x ∈ X, if for each ε > 0 the set A (ε) = {n ∈ N : ‖xn − x‖ � ε}
belongs to I [8, 9]. There are many examples of ideals I ⊂ 2N in [8, 9] and basic
properties of I -convergence have been studied in these works.
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An admissible ideal I ⊂ 2N is said to have the property (AP) if for any sequence
{A1, A2, ...} of mutually disjoint sets of I there is a sequence {B1, B2, ...} of sets such

that each symmetric difference AiΔBi (i = 1, 2, ...) is finite and B =
∞⋃

i=1
Bi ∈ I , [8].

This definition is similar to the condition (APO) used in [2].
Let X be a real vector space of dimension d, where 2 � d < ∞. A 2 -norm on

X is a function ‖., .‖ : X × X → R which satisfies (i) ‖x, y‖ = 0 if and only if x and
y are linearly dependent; (ii) ‖x, y‖ = ‖y, x‖ ; (iii) ‖αx, y‖ = |α| ‖x, y‖ , α ∈ R;
(iv) ‖x, y + z‖ � ‖x, y‖+ ‖x, z‖ . The pair (X, ‖., .‖) is then called a 2 -normed space
[4]. As an example of a 2 -normed space we may take X = R

2 being equipped with
the 2 -norm ‖x, y‖ := the area of the parallelogram spanned by the vectors x and y ,
which may be given explicitly by the formula

‖x, y‖ = |x1y2 − x2y1| , x = (x1, x2) , y = (y1, y2) .

2. Some results of I -Convergence in 2 -normed space

In paper [8] it is proved that I -convergence and I ∗ -convergence are equivalent
for admissible ideals with property (AP). The following Lemma 1 [[11], Lemma 4]
regards to prove this fact by another way in 2 -normed space (X, ‖., .‖) .

LEMMA 1. [11]. Let {Pi}∞i=1 be a countable collection of subsets of N such that
Pi ∈ F (I ) for each i, where F (I ) is a filter associated by an admissible ideal I
with property (AP). Then there is a set P ⊂ N such that P ∈ F (I ) and the set P\Pi

is finite for all i.

Throughout the paper we assume X to be a 2 -normed space having dimension d,
where 2 � d < ∞.

DEFINITION 1. Let I ⊂ 2N be a nontrivial ideal in N. A sequence (xn) of
X is said to be I -convergent to x, if for each ε > 0 and nonzero z in X the set
A (ε) = {n ∈ N : ‖xn − x, z‖ � ε} belongs to I .

If (xn) is I -convergent to x then we write I - lim
n→∞ ‖xn − x, z‖ = 0 or I -

lim
n→∞ ‖xn, z‖ = ‖x, z‖ for each nonzero z in X. The vector x is I -limit of the

sequence (xn) .
Further we will give some examples of ideals and corresponding I -con-

vergences.
(I) Let If be the family of all finite subsets of N . Then If is an admissible

ideal in N and If convergence coincides with usual convergence [4].
(II) Put Iδ = {A ⊂ N : δ (A) = 0} . Then Iδ is an admissible ideal in N and

Iδ convergence coincides with the statistical convergence in [6].
Let I ⊂ 2N be an admissible ideal with property (AP) and (X, ‖., .‖) be an

arbitrary 2 -normed space.

LEMMA 2. If a sequence x = {xn}n∈N
of elements of X is I -convergent to

ξ ∈ X then there exists a set P ∈ F (I ) , P = {p1 < p2 < ... < pk < ...} such that
lim

k→∞
∥∥xpk − ξ , z

∥∥ = 0 for each nonzero z in X.
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Proof. Let I - lim
n→∞ ‖xn − ξ , z‖ = 0 for each nonzero z in X. Then by def-

inition the set A (ε) = {n ∈ N : ‖xn − ξ , z‖ � ε} belongs to I for every ε > 0
and nonzero z in X. Define Pi =

{
n : ‖xn − ξ , z‖ < 1

i

}
for each i ∈ N. Note that

Pi ∈ F (I ) , i ∈ N, since Hi = N\Pi =
{
n ∈ N : ‖xn − ξ , z‖ � 1

i

} ∈ I for each
i ∈ N and nonzero z in X. Then applying Lemma 1 we get P ∈ F (I ) such that
P = {p1 < p2 < ... < pk < ...} . Now define the sequence y ∈ X by yn = xn for
each n ∈ P and yn = ξ for n /∈ P. Then lim

n→∞ ‖yn − ξ , z‖ = 0 which implies

lim
k→∞

∥
∥xpk − ξ , z

∥
∥ = 0 for each nonzero z in X. �

Now we introduce the concept of I ∗ -convergence closely related to I -conver-
gence in 2 -normed spaces X :

DEFINITION 2. A sequence x = {xn}n∈N
of elements of X is said to be

I ∗ -convergent to ξ ∈ X if and only if there exists a set M ∈ F (I ) ,
M = {m1 < m2 < ... < mk < ...} such that lim

k→∞
∥
∥xmk − ξ , z

∥
∥ = 0 for each nonzero z

in X.

Lemma 2 shows that if I is an admissible ideal with property (AP) then I -
lim

n→∞ ‖xn − ξ , z‖ = 0 implies I ∗ - lim
n→∞ ‖xn − ξ , z‖ = 0 for each nonzero z in X.

From Proposition 3.2 in [8] we obtain the following lemma:

LEMMA 3. Let I ⊂ 2N is an admissible ideal with property (AP) and (X, ρ) is
an arbitrary 2 -normed space. Then I - lim

n→∞ ‖xn − ξ , z‖ = 0 for every nonzero z in

X if and only if there exists a set P ∈ F (I ) , P = {p1 < p2 < ... < pk < ...} such
that lim

k→∞
∥
∥xpk − ξ , z

∥
∥ = 0 for every nonzero z in X.

REMARK 1. Let I = Iδ and X be a 2 -normed space. Consider the set
{A ⊂ N : d (A) = 0} where d (A) is the natural density of the set A ⊂ N. Then
Lemma 2 gives the equivalent of statistical convergence in 2 -normed space.

3. I -Cauchy sequences in 2 -normed spaces

Now we introduce the concepts I and I ∗ -Cauchy sequences in 2 -normed
spaces. Also, we will study the relations between these concepts.

DEFINITION 3. Let (X, ‖., .‖) be a linear 2 -normed space and I ⊂ 2N be an
admissible ideal. The sequence (xn) in X is said to be an I -Cauchy sequence in X, if
for each ε > 0 and nonzero z in X there exists a number N = N (ε, z) such that

{
k ∈ N :

∥
∥xk − xN(ε,z), z

∥
∥ � ε

} ∈ I .

DEFINITION 4. Let (X, ‖., .‖) be a linear 2 -normed space and I ⊂ 2N be an
admissible ideal. Then the sequence (xn) in X is said to be an I ∗ -Cauchy sequence
if there exists a set M = {m1 < m2 < ... < mk < ...} ⊂ N, M ∈ F (I ) such that the
subsequence xM =

(
xmk

)
is a Cauchy sequence on X, i.e.,

lim
k,p→∞

∥
∥xmk − xmp , z

∥
∥ = 0 for each nonzero z in X.
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The next theorem gives that I ∗ -Cauchy sequence condition implies I -Cauchy
sequence condition.

THEOREM 1. Let I be an admissible ideal. If x = (xn) is an I ∗ -Cauchy
sequence then it is I -Cauchy.

Proof. Let x = (xn) be an I ∗ -Cauchy sequence. Then by definition there exists a
set M = {m1 < m2 < ... < mk < ...} ⊂ N, M ∈ F (I ) such that

∥∥xmk − xmp , z
∥∥ < ε

for every ε > 0, nonzero z in X and k, p > k0 (ε)
Let N = N (ε) = mk0+1. Then for every ε > 0 we have

∥
∥xmk − xN , z

∥
∥ < ε, for every nonzero z in X and k > k0.

Now put H = N\M. It is clear that H ∈ I and

A (ε) = {n ∈ N : ‖xn − xN , z‖ � ε} ⊂ (H ∪ {m1 < m2 < ... < mk0}) . (3.1)

The right hand side of (3.1) belongs to I . Therefore for every ε > 0 we can find an
N = N (ε) such that A (ε) ∈ I , i.e. (xn) is I -Cauchy sequence. The theorem is
proved. �

Now we will prove that I ∗ -convergence implies I -Cauchy condition in 2 -
normed space.

THEOREM 2. Let I be an admissible ideal and I ∗ - lim
n→∞ ‖xn − ξ , z‖ = 0 where

x = (xn) ∈ X and ξ ∈ X. Then (xn) is an I -Cauchy sequence in 2 -normed space
(X, ‖., .‖) .

Proof. By assumption there exists a set M ∈ F (I ) , M = {m1 < m2 < ...
< mk < ...} such that lim

k→∞
∥
∥xmk − ξ , z

∥
∥ = 0 for each nonzero z in X. It shows that

there exists a k0 = k0 (ε) such that
∥
∥xmk − ξ , z

∥
∥ < ε

2 for every ε > 0, nonzero z in
X and k > k0. Since

∥
∥xmk − xmp , z

∥
∥ <

∥
∥xmk − ξ , z

∥
∥ +

∥
∥xmp − ξ , z

∥
∥

<
ε
2

+
ε
2

= ε

for every ε > 0, nonzero z in X and k > k0, p > k0 we have

lim
k→∞
p→∞

∥
∥xmk − xmp , z

∥
∥ = 0,

i.e. (xn) is a I ∗ -Cauchy sequence in X . Then by Theorem 1 (xn) is an I -Cauchy
sequence in X . Hence the proof is complete. �

From Theorem 2 and Lemma 3 we have

COROLLARY 1. Let I be an admissible ideal with property (AP). Then I -
lim

n→∞ ‖xn − ξ , z‖ = 0 for each nonzero z in X implies that (xn) is an I -Cauchy

sequence in X .
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Finally, we will give the following theorem which states that the notion of I -
Cauchy sequence and I ∗ -Cauchy sequence coincide in the case that I has the (AP)
property.

THEOREM 3. If I is an admissible ideal with property (AP) and (X, ‖., .‖) is
a linear 2 -normed space then the concepts I -Cauchy sequence and I ∗ -Cauchy
sequence coincide.

Proof. I ∗ -Cauchy sequence implies I -Cauchy sequence by virtue of Theorem
1 (in this case I need not have (AP) property). So it suffices to prove x = (xn) in X
is an I ∗ -Cauchy sequence under the assumption that (xn) is an I -Cauchy sequence.
Let x = (xn) in X be an I -Cauchy sequence. Then by definition there is N = N (ε)
such that

A (ε) = {n ∈ N : ‖xn − xN , z‖ � ε} ∈ I

for every ε > 0 and nonzero z in X. Let Pi =
{
n ∈ N : ‖xn − xmi , z‖ < 1

i

}
, i =

1, 2, ... where mi = N
(

1
i

)
. It is clear that Pi ∈ F (I ) , i = 1, 2, ... . Since I has

(AP) property then by Lemma 1 there exists a set P ⊂ N such that P ∈ F (I ) and
P\Pi is finite for all i. Now we show that

lim
n,m→∞
m,n∈P

‖xn − xm, z‖ = 0 for each nonzero z in X.

For this, let ε > 0 and j ∈ N be such that j > 2
ε . If m, n ∈ P then P\Pj is a finite set,

so there exists k = k (j) such that m ∈ Pj and n ∈ Pj for all m, n > k (j) . Therefore,
‖xn − xmj , z‖ < 1

j and ‖xm − xmj , zt‖ < 1
j for all m, n > k (j) and nonzero z in X.

From here we find

‖xn − xm, z‖ < ‖xn − xmj , z‖ + ‖xm − xmj , z‖
< ε

for m, n > k (j) and each nonzero z in X. Hence, for any ε > 0 there exists a
k = k (ε) such that for n, m > k (ε) and n, m ∈ P ∈ F (I )

‖xn − xm, z‖ < ε for every nonzero z ∈ X.

This shows that the sequence (xn) in X is an I ∗ -Cauchy sequence in X . This
completes the proof. �

Note that all of these results imply the similar theorems in 2 -normed spaces for
statistically Cauchy sequences which are investigated in [3, 12].
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Department of Mathematics
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